Editorial: Photodynamic Therapy as an Important Tool for Biological Breakthroughs—Photoactive Photosensitizers Applied from Cancer to Microbial Targets
1. Introduction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Nguyen, M.T.; Guseva, E.V.; Ataeva, A.N.; Sigan, A.L.; Shibaeva, A.V.; Dmitrieva, M.V.; Burtsev, I.D.; Volodina, Y.L.; Radchenko, A.S.; Egorov, A.E.; et al. Perfluorocarbon Nanoemulsions with Fluorous Chlorin-Type Photosensitizers for Antitumor Photodynamic Therapy in Hypoxia. Int. J. Mol. Sci. 2023, 24, 7995. https://doi.org/10.3390/ijms24097995.
- Razlog, R.; Kruger, C.A.; Abrahamse, H. Cytotoxic Effects of Combinative ZnPcS4 Photosensitizer Photodynamic Therapy (PDT) and Cannabidiol (CBD) on a Cervical Cancer Cell Line. Int. J. Mol. Sci. 2023, 24, 6151. https://doi.org/10.3390/ijms24076151.
- Simelane, N.W.N.; Matlou, G.G.; Abrahamse, H. Photodynamic Therapy of Aluminum Phthalocyanine Tetra Sodium 2-Mercaptoacetate Linked to PEGylated Copper–Gold Bimetallic Nanoparticles on Colon Cancer Cells. Int. J. Mol. Sci. 2023, 24, 1902. https://doi.org/10.3390/ijms24031902.
- Kamiyanagi, M.; Taninaka, A.; Ugajin, S.; Nagoshi, Y.; Kurokawa, H.; Ochiai, T.; Arashida, Y.; Takeuchi, O.; Matsui, H.; Shigekawa, H. Cell-Level Analysis Visualizing Photodynamic Therapy with Porphylipoprotein and Talaporphyrin Sodium. Int. J. Mol. Sci. 2022, 23, 13140. https://doi.org/10.3390/ijms232113140.
- Capozza, M.; Stefania, R.; Dinatale, V.; Bitonto, V.; Conti, L.; Grange, C.; Skovronova, R.; Terreno, E. A Novel PSMA-Targeted Probe for NIRF-Guided Surgery and Photodynamic Therapy: Synthesis and Preclinical Validation. Int. J. Mol. Sci. 2022, 23, 12878. https://doi.org/10.3390/ijms232112878.
- Rosa, M.; Jędryka, N.; Skorupska, S.; Grabowska-Jadach, I.; Malinowski, M. New Route to Glycosylated Porphyrins via Aromatic Nucleophilic Substitution (SNAr)—Synthesis and Cellular Uptake Studies. Int. J. Mol. Sci. 2022, 23, 11321. https://doi.org/10.3390/ijms231911321.
- Lv, G.; Dong, Z.; Zhao, Y.; Ma, N.; Jiang, X.; Li, J.; Wang, J.; Wang, J.; Zhang, W.; Lin, X.; et al. Precision Killing of Sinoporphyrin Sodium-Mediated Photodynamic Therapy against Malignant Tumor Cells. Int. J. Mol. Sci. 2022, 23, 10561. https://doi.org/10.3390/ijms231810561.
- Lourenço, L.M.O.; Cunha, Â.; Sierra-Garcia, I.N. Light-Driven Tetra- and Octa-β-substituted Cationic Zinc(II) Phthalocyanines for Eradicating Fusarium oxysporum Conidia. Int. J. Mol. Sci. 2023, 24, 16980. https://doi.org/10.3390/ijms242316980.
- Gamelas, S.R.D.; Sierra-Garcia, I.N.; Tomé, A.C.; Cunha, Â.; Lourenço, L.M.O. In Vitro Photoinactivation of Fusarium Oxysporum Conidia with Light-Activated Ammonium Phthalocyanines. Int. J. Mol. Sci. 2023, 24, 3922. https://doi.org/10.3390/ijms24043922.
- Santos, P.; Gomes, A.T.P.C.; Lourenço, L.M.O.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Almeida, A. Anti-Viral Photodynamic Inactivation of T4-like Bacteriophage as a Mammalian Virus Model in Blood. Int. J. Mol. Sci. 2022, 23, 11548. https://doi.org/10.3390/ijms231911548.
References
- Pham, T.C.; Nguyen, V.-N.; Choi, Y.; Lee, S.; Yoon, J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef] [PubMed]
- Olszowy, M.; Nowak-Perlak, M.; Woźniak, M. Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the Future Potential of Nanotechnology in Cancer Treatment. Pharmaceutics 2023, 15, 1712. [Google Scholar] [CrossRef] [PubMed]
- Halaskova, M.; Rahali, A.; Almeida-Marrero, V.; Machacek, M.; Kucera, R.; Jamoussi, B.; Torres, T.; Novakova, V.; de la Escosura, A.; Zimcik, P. Peripherally Crowded Cationic Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy. ACS Med. Chem. Lett. 2021, 12, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Guo, Y.; Xiao, X.; Zhu, X.; Liu, Y.; Ruan, X.; Huang, X.; Yuan, Y.; Wei, X. Glutathione Depletion and Photosensitizer Activation Augments Efficacy of Tumor Photodynamic Immunotherapy. Chem. Eng. J. 2022, 442, 136170. [Google Scholar] [CrossRef]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer—A Review of the Current Clinical Status. Front. Chem. 2021, 9, 686303. [Google Scholar] [CrossRef] [PubMed]
- Drescher, K.; Nadell, C.D.; Stone, H.A.; Wingreen, N.S.; Bassler, B.L. Solutions to the Public Goods Dilemma in Bacterial Biofilms. Curr. Biol. 2014, 24, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Bottery, M.J.; Pitchford, J.W.; Friman, V.-P. Ecology and Evolution of Antimicrobial Resistance in Bacterial Communities. ISME J. 2021, 15, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Karbaschi, M.; Cooke, M.; Gaitas, A. Light-Based Methods for Whole Blood Bacterial Inactivation Enabled by a Recirculating Flow System. Photochem. Photobiol. 2018, 94, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Garcia, I.N.; Cunha, Â.; Lourenço, L.M.O. In Vitro Photodynamic Treatment of Fusarium oxysporum Conidia through the Action of Thiopyridinium and Methoxypyridinium Chlorins. J. Photochem. Photobiol. A Chem. 2022, 432, 114081. [Google Scholar] [CrossRef]
- Ziental, D.; Mlynarczyk, D.T.; Czarczynska-Goslinska, B.; Lewandowski, K.; Sobotta, L. Photosensitizers Mediated Photodynamic Inactivation against Fungi. Nanomaterials 2021, 11, 2883. [Google Scholar] [CrossRef] [PubMed]
- Yaakoub, H.; Mina, S.; Calenda, A.; Bouchara, J.-P.; Papon, N. Oxidative Stress Response Pathways in Fungi. Cell. Mol. Life Sci. 2022, 79, 333. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Cunha, Â.; Almeida, A. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages. Viruses 2012, 4, 1034–1074. [Google Scholar] [CrossRef] [PubMed]
- Ke, M.-R.; Eastel, J.M.; Ngai, K.L.K.; Cheung, Y.-Y.; Chan, P.K.S.; Hui, M.; Ng, D.K.P.; Lo, P.-C. Photodynamic Inactivation of Bacteria and Viruses Using Two Monosubstituted Zinc(II) Phthalocyanines. Eur. J. Med. Chem. 2014, 84, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Sharshov, K.; Solomatina, M.; Kurskaya, O.; Kovalenko, I.; Kholina, E.; Fedorov, V.; Meerovich, G.; Rubin, A.; Strakhovskaya, M. The Photosensitizer Octakis(Cholinyl)Zinc Phthalocyanine with Ability to Bind to a Model Spike Protein Leads to a Loss of SARS-CoV-2 Infectivity In Vitro When Exposed to Far-Red LED. Viruses 2021, 13, 643. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.P.S.; Lourenço, L.M.O. Overview of Cationic Phthalocyanines for Effective Photoinactivation of Pathogenic Microorganisms. J. Photochem. Photobiol. C Photochem. Rev. 2021, 48, 100422. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, W.; Du, J.; Fan, J.; Peng, X. Immuno-Photodynamic Therapy (IPDT): Organic Photosensitizers and Their Application in Cancer Ablation. JACS Au. 2023, 3, 682–699. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.; Correia, J.H. Enhanced Photodynamic Therapy: A Review of Combined Energy Sources. Cells 2022, 11, 3995. [Google Scholar] [CrossRef] [PubMed]
- Moura, N.M.M.; Monteiro, C.J.P.; Tomé, A.C.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S. Synthesis of Chlorins and Bacteriochlorins from Cycloaddition Reactions with Porphyrins. Arkivoc 2022, 2022, 54–98. [Google Scholar] [CrossRef]
Entry | Photosensitizer Structures | Application |
---|---|---|
1 | PDT in colon carcinoma cells (HCT116) | |
2 | PDT in cervical cancer cell line (HeLa cells) | |
3 | PDT in colon cancer cells (Caco-2) | |
4 | Studies in lysosomes or phagosomes | |
5 | PDT in prostate cancer (PCa) cells | |
6 | Studies in A549 and MCF-7 cellular uptake | |
7 | PDT in human malignant glioblastoma U-118MG and melanoma A375 cells | |
8 | aPDT in Fusarium oxysporum conidia | |
9 | aPDT in Fusarium oxysporum conidia | |
10 | aPDT in T4-like bacteriophages |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, L.M.O.; Tomé, A.C.; Tomé, J.P.C. Editorial: Photodynamic Therapy as an Important Tool for Biological Breakthroughs—Photoactive Photosensitizers Applied from Cancer to Microbial Targets. Int. J. Mol. Sci. 2024, 25, 330. https://doi.org/10.3390/ijms25010330
Lourenço LMO, Tomé AC, Tomé JPC. Editorial: Photodynamic Therapy as an Important Tool for Biological Breakthroughs—Photoactive Photosensitizers Applied from Cancer to Microbial Targets. International Journal of Molecular Sciences. 2024; 25(1):330. https://doi.org/10.3390/ijms25010330
Chicago/Turabian StyleLourenço, Leandro M. O., Augusto C. Tomé, and João P. C. Tomé. 2024. "Editorial: Photodynamic Therapy as an Important Tool for Biological Breakthroughs—Photoactive Photosensitizers Applied from Cancer to Microbial Targets" International Journal of Molecular Sciences 25, no. 1: 330. https://doi.org/10.3390/ijms25010330
APA StyleLourenço, L. M. O., Tomé, A. C., & Tomé, J. P. C. (2024). Editorial: Photodynamic Therapy as an Important Tool for Biological Breakthroughs—Photoactive Photosensitizers Applied from Cancer to Microbial Targets. International Journal of Molecular Sciences, 25(1), 330. https://doi.org/10.3390/ijms25010330