Conserved Residues Lys64 and Glu78 at the Subunit Surface of Tau Glutathione Transferase in Rice Affect Structure and Enzymatic Properties
Abstract
:1. Introduction
2. Results
2.1. Prediction of Amino Acid Residues Involved in Subunit Interactions
2.2. Expression and Purification of Mutant Proteins
2.3. Substrate Activities of Mutant Proteins
2.4. Kinetic Parameters of Mutant Proteins
2.5. Structural and Thermodynamic Analysis of Mutant Proteins
3. Discussion
4. Materials and Methods
4.1. Alignment of Protein Sequences
4.2. Three-Dimensional Structural Prediction of OsGSTU17 Protein
4.3. Construction of Mutants
4.4. Expression and Purification of Mutant Recombinant Proteins
4.5. Detection of Enzymatic Properties
4.6. Detection of Protein Structure Changes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GSTs | Glutathione transferases |
NBD-Cl | 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole |
CDNB | 1-chloro-2,4-dinitrobenzene |
NBC | 4-nitrobenzyl chloride |
Cum-OOH | Cumene hydroperoxide |
DCNB | 1,2-dichloro-4-nitrobenzene |
4-NPA | 4-nitrophenyl acetate |
ECA | Ethacrynic Acid |
ANS | 1-aniline-8-naphthalene sulfonate |
CD | Circular Dichroism |
References
- Kao, C.W.; Bakshi, M.; Sherameti, I.; Dong, S.; Reichelt, M.; Oelmüller, R.; Yeh, K.W. A Chinese cabbage (Brassica campetris subsp. Chinensis) tau-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. Plant Mol. Biol. 2016, 92, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.; Verma, G.; Chauhan, A.S.; Pande, V.; Chakrabarty, D. Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance. Met. Integr. Biomet. Sci. 2019, 11, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Sylvestre-Gonon, E.; Law, S.R.; Schwartz, M.; Robe, K.; Keech, O.; Didierjean, C.; Dubos, C.; Rouhier, N.; Hecker, A. Hecker, Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. Front. Plant Sci. 2019, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Morel, M.; Meux, E.; Mathieu, Y.; Thuillier, A.; Chibani, K.; Harvengt, L.; Jacquot, J.; Gelhaye, E. Xenomic networks variability and adaptation traits in wood decaying fungi. Microb. Biotechnol. 2013, 6, 248–263. [Google Scholar] [CrossRef]
- Munyampundu, J.-P.; Xu, Y.-P.; Cai, X.-Z. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups. Evol. Bioinform. Online 2016, 12, 59–71. [Google Scholar] [CrossRef]
- Armstrong, R.N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 1997, 10, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Sommer, A.; Peter, B. Characterization of Recombinant Corn GlutathioneS-Transferase Isoforms I, II, III, and IV. Pestic. Biochem. Physiol. 1999, 63, 127–138. [Google Scholar] [CrossRef]
- Yang, X.; Wei, J.; Wu, Z.; Gao, J. Effects of Substrate-Binding Site Residues on the Biochemical Properties of a Tau Class Glutathione S-Transferase from Oryza sativa. Genes 2019, 11, 25. [Google Scholar] [CrossRef]
- Nianiou-Obeidat, I.; Madesis, P.; Kissoudis, C.; Voulgari, G.; Chronopoulou, E.; Tsaftaris, A.; Labrou, N.E. Plant glutathione transferase-mediated stress tolerance: Functions and biotechnological applications. Plant Cell Rep. 2017, 36, 791–805. [Google Scholar] [CrossRef]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- Lallement, P.A.; Meux, E.; Gualberto, J.M.; Prosper, P.; Didierjean, C.; Saul, F.; Haouz, A.; Rouhier, N.; Hecker, A. Structural and enzymatic insights into Lambda glutathione transferases from Populus trichocarpa, monomeric enzymes constituting an early divergent class specific to terrestrial plants. Biochem. J. 2014, 462, 39–52. [Google Scholar] [CrossRef] [PubMed]
- UHegazy, M.; Mannervik, B.; Stenberg, G. Functional role of the lock and key motif at the subunit interface of glutathione transferase p1-1. J. Biol. Chem. 2004, 279, 9586–9596. [Google Scholar] [CrossRef] [PubMed]
- Wongsantichon, J.; Ketterman, A.J. An intersubunit lock-and-key ‘clasp’ motif in the dimer interface of Delta class glutathione transferase. Biochem. J. 2006, 394, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Wongsantichon, J.; Robinson, R.C.; Ketterman, A.J. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site. Biosci. Rep. 2015, 35, e00272. [Google Scholar] [CrossRef] [PubMed]
- Hornby, J.A.; Codreanu, S.G.; Armstrong, R.N.; Dirr, H.W. Molecular recognition at the dimer interface of a class mu glutathione transferase: Role of a hydrophobic interaction motif in dimer stability and protein function. Biochemistry 2002, 41, 14238–14247. [Google Scholar] [CrossRef]
- Thom, R.; Cummins, I.; Dixon, D.P.; Edwards, R.; Cole, D.J.; Lapthorn, A.J. Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification. Biochemistry 2002, 41, 7008–7020. [Google Scholar] [CrossRef] [PubMed]
- Axarli, I.; Dhavala, P.; Papageorgiou, A.C.; Labrou, N.E. Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site. J. Mol. Biol. 2009, 385, 984–1002. [Google Scholar] [CrossRef]
- Valenzuela-Chavira, I.; Contreras-Vergara, C.A.; Arvizu-Flores, A.A.; Serrano-Posada, H.; Lopez-Zavala, A.A.; García-Orozco, K.D.; Hernandez-Paredes, J.; Rudiño-Piñera, E.; Stojanoff, V.; Sotelo-Mundo, R.R.; et al. Insights into ligand binding to a glutathione S-transferase from mango: Structure, thermodynamics and kinetics. Biochimie 2017, 135, 35–45. [Google Scholar] [CrossRef]
- Chronopoulou, E.G.; Papageorgiou, A.C.; Ataya, F.; Nianiou-Obeidat, I.; Madesis, P.; Labrou, N.E. Expanding the Plant GSTome Through Directed Evolution: DNA Shuffling for the Generation of New Synthetic Enzymes With Engineered Catalytic and Binding Properties. Front. Plant Sci. 2018, 9, 1737. [Google Scholar] [CrossRef]
- Wang, C.L.; Yang, H.L. Conserved residues in the subunit interface of tau glutathione s-transferase affect catalytic and structural functions. J. Integr. Plant Biol. 2011, 53, 35–43. [Google Scholar] [CrossRef]
- Yang, X.; Sun, W.; Liu, J.P.; Liu, Y.J.; Zeng, Q.Y. Biochemical and physiological characterization of a tau class glutathione transferase from rice (Oryza sativa). Plant Physiol. Biochem. 2009, 47, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meng, L.; Ren, S.; Jia, C.; Liu, R.; Jiang, H.; Chen, J. OsGSTU17, a Tau Class Glutathione S-Transferase Gene, Positively Regulates Drought Stress Tolerance in Oryza sativa. Plants 2023, 12, 3166. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Sakurai, H.; Nagai, Y.; Nagai, M. Changes of near-UV CD spectrum of human hemoglobin upon oxygen binding: A study of mutants at alpha 42, alpha 140, beta 145 tyrosine or beta 37 tryptophan. Biopolymers 2004, 74, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Strickland, E.H.; Beychok, S. Aromatic Contributions To Circular Dichroism Spectra Of Protein. CRC Crit. Rev. Biochem. 1974, 2, 113–175. [Google Scholar] [CrossRef] [PubMed]
- Nagatomo, S.; Nagai, M.; Ogura, T.; Kitagawa, T. Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins. J. Phys. Chem. B 2013, 117, 9343–9353. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, Z.; Gao, J. Effects of conserved Arg20, Glu74 and Asp77 on the structure and function of a tau class glutathione S-transferase in rice. Plant Mol. Biol. 2021, 105, 451–462. [Google Scholar] [CrossRef]
- Schonbrunn, E.; Eschenburg, S.; Luger, K.; Kabsch, W.; Amrhein, N. Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc. Natl. Acad. Sci. USA 2000, 97, 6345–6349. [Google Scholar] [CrossRef]
- Piromjitpong, J.; Wongsantichon, J.; Ketterman, A.J. Differences in the subunit interface residues of alternatively spliced glutathione transferases affects catalytic and structural functions. Biochem. J. 2007, 401, 635–644. [Google Scholar] [CrossRef]
- Sayed, Y.; Wallace, L.A.; Dirr, H.W. The hydrophobic lock-and-key intersubunit motif of glutathione transferase A1-1: Implications for catalysis, ligandin function and stability. FEBS Lett. 2000, 465, 169–172. [Google Scholar] [CrossRef]
- Tew, K.D. Glutathione-associated Enzymes in Anticancer Drug Resistance. Cancer Res. 1994, 54, 4313. [Google Scholar] [CrossRef] [PubMed]
- Townsend, D.M.; Tew, K.D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003, 22, 7369–7375. [Google Scholar] [CrossRef] [PubMed]
- Hendsch, Z.S.; Tidor, B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. Publ. Protein Soc. 1994, 3, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lin, S.L.; Nussinov, R. Protein binding versus protein folding: The role of hydrophilic bridges in protein associations. J. Mol. Biol. 1997, 265, 68–84. [Google Scholar] [CrossRef] [PubMed]
- Sindelar, C.V.; Hendsch, Z.S.; Tidor, B. Effects of salt bridges on protein structure and design. Protein Sci. Publ. Protein Soc. 1998, 7, 1898–1914. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Wang, H.J.; Hwang, J.K.; Tseng, C.P. Protein thermal stability enhancement by designing salt bridges: A combined computational and experimental study. PLoS ONE 2014, 9, e112751. [Google Scholar] [CrossRef] [PubMed]
- Waldburger, C.D.; Schildbach, J.F.; Sauer, R.T. Are buried salt bridges important for protein stability and conformational specificity? Nat. Struct. Biol. 1995, 2, 122–128. [Google Scholar] [CrossRef]
- Wimley, W.C.; Gawrisch, K.; Creamer, T.P.; White, S.H. Direct measurement of salt-bridge solvation energies using a peptide model system: Implications for protein stability. Proc. Natl. Acad. Sci. USA 1996, 93, 2985–2990. [Google Scholar] [CrossRef]
- Stenberg, G.; Abdalla, A.M.; Mannervik, B. Tyrosine 50 at the subunit interface of dimeric human glutathione transferase P1-1 is a structural key residue for modulating protein stability and catalytic function. Biochem. Biophys. Res. Commun. 2000, 271, 59–63. [Google Scholar] [CrossRef]
- Thomas, H. BioEdit: A user-friendly biological sequence alignment program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Ho, S.N.; Hunt, H.D.; Horton, R.M.; Pullen, J.K.; Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989, 77, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ricci, G.; Caccuri, A.M.; Bello, M.L.; Pastore, A.; Piemonte, F.; Federici, G. Colorimetric and fluorometric assays of glutathione transferase based on 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Anal. Biochem. 1994, 218, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Edwards, R.; Dixon, D. Plant Glutathione Transferases. Methods Enzymol. 2005, 401, 169–186. [Google Scholar]
- Nijtmans, L.G.J.; Henderson, N.S.; Holt, I.J. Blue Native electrophoresis to study mitochondrial and other protein complexes. Methods 2002, 26, 327–334. [Google Scholar] [CrossRef]
Substrates | Specific Activity (μmol min−1 mg−1) | ||
---|---|---|---|
WT [21] | K64A | E78A | |
NBD-Cl | 0.203 ± 0.006 | 0.180 ± 0.001 | 0.087 ± 0.001 |
CDNB | 0.113 ± 0.019 | 0.158 ± 0.003 | 0.138 ± 0.007 |
NBC | 1.153 ± 0.046 | 0.044 ± 0.013 | 0.117 ± 0.005 |
Cum-OOH | 0.013 ± 0.002 | 0.030 ± 0.001 | 0.014 ± 0.001 |
DCNB | ND | ND | ND |
4-NPA | ND | ND | ND |
ECA | ND | ND | ND |
GSH | NBD-Cl | |||||||
---|---|---|---|---|---|---|---|---|
Km | Vmax | kcat | kcat/Km | Km | Vmax | kcat | kcat/Km | |
(mM) | (μM min−1 mg−1) | (S−1) | (mM−1S−1) | (mM) | (μM min−1 mg−1) | (S−1) | (mM−1S−1) | |
WT [21] | 0.058 ± 0.006 | 0.225 ± 0.011 | 0.264 | 4.552 | 0.324 ± 0.016 | 0.219 ± 0.006 | 0.257 | 0.793 |
K64A | 0.233 ± 0.001 | 0.226 ± 0.001 | 0.171 | 0.924 | 0.507 ± 0.025 | 0.287 ± 0.010 | 0.217 | 0.428 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhang, Z.; Wu, L.; Yang, M.; Li, S.; Gao, J. Conserved Residues Lys64 and Glu78 at the Subunit Surface of Tau Glutathione Transferase in Rice Affect Structure and Enzymatic Properties. Int. J. Mol. Sci. 2024, 25, 398. https://doi.org/10.3390/ijms25010398
Yang X, Zhang Z, Wu L, Yang M, Li S, Gao J. Conserved Residues Lys64 and Glu78 at the Subunit Surface of Tau Glutathione Transferase in Rice Affect Structure and Enzymatic Properties. International Journal of Molecular Sciences. 2024; 25(1):398. https://doi.org/10.3390/ijms25010398
Chicago/Turabian StyleYang, Xue, Zhe Zhang, Lei Wu, Meiying Yang, Siyuan Li, and Jie Gao. 2024. "Conserved Residues Lys64 and Glu78 at the Subunit Surface of Tau Glutathione Transferase in Rice Affect Structure and Enzymatic Properties" International Journal of Molecular Sciences 25, no. 1: 398. https://doi.org/10.3390/ijms25010398
APA StyleYang, X., Zhang, Z., Wu, L., Yang, M., Li, S., & Gao, J. (2024). Conserved Residues Lys64 and Glu78 at the Subunit Surface of Tau Glutathione Transferase in Rice Affect Structure and Enzymatic Properties. International Journal of Molecular Sciences, 25(1), 398. https://doi.org/10.3390/ijms25010398