Somatostatin and Somatostatin Receptors in Tumour Biology
Abstract
:1. Introduction
2. Somatostatin: Beyond Inhibition of Growth Hormone
3. Somatostatin Receptors: Therapeutic Implication and Clinical Significance
4. Somatostatin Receptors: Signaling Pathways and Cell Proliferation
5. Somatostatin Receptors: Tumour Prediction and Treatment
6. Somatostatin Receptors and Apoptosis: Suppression of Tumour Growth
7. Somatostatin Receptors and Angiogenesis
8. Inflammation, Pain and Cancer: Role of Somatostatin Receptors
9. Somatostatin, Somatostatin Receptors and Downstream Signaling Pathways: Mechanism of Cell Proliferation Inhibition
10. Somatostatin and Somatostatin Receptors in Brain Tumour
Brain Tumour
11. Glioma
12. Glioblastoma
13. Meningioma
14. Medulloblastoma
15. Somatostatin Receptors Expression and Brain Tumours
16. Brain Tumours and Therapeutic Alternatives
17. Role of Somatostatin and Somatostatin Receptors in Brain Cancer
18. Primary Central Nervous System Lymphoma
19. Blood–Brain Barrier Critical Determinant of Brain Tumour Treatment
20. Somatostatin Receptors and Breast Cancer
20.1. Breast Cancer
20.2. Expression of SST and SSTR Subtypes in Breast Cancer
20.3. Role of SST and SSTR in Breast Cancer: Possible Treatment Choice
21. Somatostatin, Somatostatin Receptors and Prostate Cancer
21.1. Prostate Cancer
21.2. Somatostatin and Prostate Cancer
22. Somatostatin Receptors and Prostate Cancer
23. Somatostatin Receptors and Pancreatic Cancer
23.1. Pancreatic Cancer
23.2. Pancreatic Cancer and Somatostatin
23.3. Pancreatic Cancer and Somatostatin Receptors
24. Somatostatin Receptors and Pituitary Tumour
24.1. Pituitary Tumour
24.2. Somatostatin Receptors and Pituitary Cancer
24.3. Pituitary Adenomas Secreting Adrenocorticotropin
24.4. TSH-Secreting Pituitary Adenomas
24.5. Prolactinomas
24.6. GH secreting Pituitary Adenomas: Acromegaly
24.7. Somatostatin Receptors and Acromegaly
24.8. Gonadotrophs: Non-Functioning Pituitary Adenomas
24.9. Somatostatin Receptor Expression in Non-Functioning Pituitary Adenomas
24.10. Non-Functioning Pituitary Adenomas and Treatment Preferences
24.11. Recent Developments of Chimeric Molecules in Treatment of Pituitary Tumour
25. Somatostatin and Lung Cancer
25.1. Lung Cancer
25.2. Somatostatin Receptors Expression and Role in Lung Cancer
26. Somatostatin and Liver Cancer
26.1. Liver Cancer
26.2. Somatostatin Analogues: Choice of Treatment for Hepatocellular Carcinoma
27. Somatostatin Receptors and Thyroid Cancer
27.1. Thyroid Tumour
27.2. Papillary Thyroid Cancer
27.3. Follicular Thyroid Cancer
27.4. Medullary Thyroid Cancer
27.5. Anaplastic Thyroid Cancer
27.6. Somatostatin Receptors Distribution in the Thyroid Gland
27.7. Role of Somatostatin and Somatostatin Receptors in Thyroid Tumour
28. Somatostatin, Somatostatin Receptors and Ovarian Tumour
28.1. Ovarian Cancer
28.2. Role of Somatostatin and Somatostatin Receptor Expression in Ovarian Cancer
29. Somatostatin, Somatostatin Receptors and Gastrointestinal Tumour
29.1. Gastrointestinal Tumour
29.2. Somatostatin and Somatostatin Receptors in Gastrointestinal Tumours
29.3. Therapeutic Approach and SST in Treatment of Gastrointestinal Tumours
30. Colorectal Carcinoma and Somatostatin
30.1. Expression of Somatostatin and Somatostatin Receptors in Colon Cancer
30.2. Role of Somatostatin in Treatment of Colorectal Carcinoids
31. Exploring the Concept of GPCRs Dimerization in Pathophysiology of Cancer: Synthesis of Chimeric Molecules
32. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer 2004, 4, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.A.; Beuvink, I.; Motoyama, A.B.; Daly, J.M.; Neve, R.M.; Hynes, N.E. ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: Receptor overexpression does not determine growth dependency. Mol. Cell Biol. 2000, 20, 3210–3223. [Google Scholar] [CrossRef]
- Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.; Guillemin, R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973, 179, 77–79. [Google Scholar] [CrossRef]
- Kumar, U.; Singh, S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int. J. Mol. Sci. 2020, 21, 2568. [Google Scholar] [CrossRef] [PubMed]
- Patel, Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol. 1999, 20, 157–198. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Somvanshi, R.K.; Kumar, U. Somatostatin-Mediated Regulation of Retinoic Acid-Induced Differentiation of SH-SY5Y Cells: Neurotransmitters Phenotype Characterization. Biomedicines 2022, 10, 337. [Google Scholar] [CrossRef]
- Lamberts, S.W.J.; Krenning, E.P.; Reubi, J.C. The Role of Somatostatin and Its Analogs in the Diagnosis and Treatment of Tumors. Endocr. Rev. 1991, 12, 450–482. [Google Scholar] [CrossRef]
- Lamberts, S.W.J.; vanderLely, A.J.; deHerder, W.W.; Hofland, L.J. Drug therapy—Octreotide. N. Engl. J. Med. 1996, 334, 246–254. [Google Scholar] [CrossRef]
- Weckbecker, G.; Raulf, F.; Stolz, B.; Bruns, C. Somatostatin Analogs for Diagnosis and Treatment of Cancer. Pharmacol. Ther. 1993, 60, 245–264. [Google Scholar] [CrossRef]
- Csaba, Z.; Dournaud, P. Cellular biology of somatostatin receptors. Neuropeptides 2001, 35, 1–23. [Google Scholar] [CrossRef]
- Lamberts, S.W.; de Herder, W.W.; Hofland, L.J. Somatostatin analogs in the diagnosis and treatment of cancer. Trends Endocrinol. Metab. 2002, 13, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Moller, L.N.; Stidsen, C.E.; Hartmann, B.; Holst, J.J. Somatostatin receptors. Biochim. Biophys. Acta 2003, 1616, 1–84. [Google Scholar] [CrossRef] [PubMed]
- Olias, G.; Viollet, C.; Kusserow, H.; Epelbaum, J.; Meyerhof, W. Regulation and function of somatostatin receptors. J. Neurochem. 2004, 89, 1057–1091. [Google Scholar] [CrossRef] [PubMed]
- Weckbecker, G.; Lewis, I.; Albert, R.; Schmid, H.A.; Hoyer, D.; Bruns, C. Opportunities in somatostatin research: Biological, chemical and therapeutic aspects. Nat. Rev. Drug Discov. 2003, 2, 999–1017. [Google Scholar] [CrossRef] [PubMed]
- Zatelli, M.C.; Piccin, D.; Ambrosio, M.R.; Bondanelli, M.; degli Uberti, E.C. Antiproliferative effects of somatostatin analogs in pituitary adenomas. Pituitary 2006, 9, 27–34. [Google Scholar] [CrossRef]
- Thapar, K.; Kovacs, K.T.; Stefaneanu, L.; Scheithauer, B.W.; Horvath, E.; Lloyd, R.V.; Li, J.; Laws, E.R., Jr. Antiproliferative effect of the somatostatin analogue octreotide on growth hormone-producing pituitary tumors: Results of a multicenter randomized trial. Mayo Clin. Proc. 1997, 72, 893–900. [Google Scholar]
- Losa, M.; Ciccarelli, E.; Mortini, P.; Barzaghi, R.; Gaia, D.; Faccani, G.; Papotti, M.; Mangili, F.; Terreni, M.R.; Camanni, F.; et al. Effects of octreotide treatment on the proliferation and apoptotic index of GH-secreting pituitary adenomas. J. Clin. Endocrinol. Metab. 2001, 86, 5194–5200. [Google Scholar] [CrossRef]
- Bevan, J.S. Clinical review: The antitumoral effects of somatostatin analog therapy in acromegaly. J. Clin. Endocrinol. Metab. 2005, 90, 1856–1863. [Google Scholar] [CrossRef]
- Melmed, S.; Sternberg, R.; Cook, D.; Klibanski, A.; Chanson, P.; Bonert, V.; Vance, M.L.; Rhew, D.; Kleinberg, D.; Barkan, A. A critical analysis of pituitary tumor shrinkage during primary medical therapy in acromegaly. J. Clin. Endocrinol. Metab. 2005, 90, 4405–4410. [Google Scholar] [CrossRef]
- Patel, Y.C. Molecular pharmacology of somatostatin receptor subtypes. J. Endocrinol. Investig. 1997, 20, 348–367. [Google Scholar] [CrossRef]
- Florio, T.; Yao, H.; Carey, K.D.; Dillon, T.J.; Stork, P.J. Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1). Mol. Endocrinol. 1999, 13, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Sellers, L.A.; Alderton, F.; Carruthers, A.M.; Schindler, M.; Humphrey, P.P. Receptor isoforms mediate opposing proliferative effects through gbetagamma-activated p38 or Akt pathways. Mol. Cell Biol. 2000, 20, 5974–5985. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, H.; Saint-Laurent, N.; Esteve, J.P.; Eychene, A.; Pradayrol, L.; Pyronnet, S.; Susini, C. sst2 Somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation. J. Biol. Chem. 2003, 278, 39356–39371. [Google Scholar] [CrossRef] [PubMed]
- Alderton, F.; Fan, T.P.; Humphrey, P.P. Somatostatin receptor-mediated arachidonic acid mobilization: Evidence for partial agonism of synthetic peptides. Br. J. Pharmacol. 2001, 132, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Cordelier, P.; Esteve, J.P.; Bousquet, C.; Delesque, N.; O’Carroll, A.M.; Schally, A.V.; Vaysse, N.; Susini, C.; Buscail, L. Characterization of the antiproliferative signal mediated by the somatostatin receptor subtype sst5. Proc. Natl. Acad. Sci. USA 1997, 94, 9343–9348. [Google Scholar] [CrossRef] [PubMed]
- Buscail, L.; Esteve, J.P.; Saint-Laurent, N.; Bertrand, V.; Reisine, T.; O’Carroll, A.M.; Bell, G.I.; Schally, A.V.; Vaysse, N.; Susini, C. Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms. Proc. Natl. Acad. Sci. USA 1995, 92, 1580–1584. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Patel, Y.C.; Srikant, C.B. C-terminal region of human somatostatin receptor 5 is required for induction of Rb and G1 cell cycle arrest. Mol. Endocrinol. 1999, 13, 82–90. [Google Scholar] [CrossRef]
- Buscail, L.; Vernejoul, F.; Faure, P.; Torrisani, J.; Susini, C. [Regulation of cell proliferation by somatostatin]. Ann. Endocrinol. 2002, 63, 2S13–2S18. [Google Scholar]
- Reardon, D.B.; Dent, P.; Wood, S.L.; Kong, T.; Sturgill, T.W. Activation in vitro of somatostatin receptor subtypes 2, 3, or 4 stimulates protein tyrosine phosphatase activity in membranes from transfected Ras-transformed NIH 3T3 cells: Coexpression with catalytically inactive SHP-2 blocks responsiveness. Mol. Endocrinol. 1997, 11, 1062–1069. [Google Scholar] [CrossRef]
- Held-Feindt, J.; Forstreuter, F.; Pufe, T.; Mentlein, R. Influence of the somatostatin receptor sst2 on growth factor signal cascades in human glioma cells. Brain Res. Mol. Brain Res. 2001, 87, 12–21. [Google Scholar] [CrossRef]
- Lopez, F.; Esteve, J.P.; Buscail, L.; Delesque, N.; Saint-Laurent, N.; Theveniau, M.; Nahmias, C.; Vaysse, N.; Susini, C. The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J. Biol. Chem. 1997, 272, 24448–24454. [Google Scholar] [CrossRef] [PubMed]
- Zapata, P.D.; Ropero, R.M.; Valencia, A.M.; Buscail, L.; Lopez, J.I.; Martin-Orozco, R.M.; Prieto, J.C.; Angulo, J.; Susini, C.; Lopez-Ruiz, P.; et al. Autocrine regulation of human prostate carcinoma cell proliferation by somatostatin through the modulation of the SH2 domain containing protein tyrosine phosphatase (SHP)-1. J. Clin. Endocrinol. Metab. 2002, 87, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, C.; Delesque, N.; Lopez, F.; Saint-Laurent, N.; Esteve, J.P.; Bedecs, K.; Buscail, L.; Vaysse, N.; Susini, C. sst2 somatostatin receptor mediates negative regulation of insulin receptor signaling through the tyrosine phosphatase SHP-1. J. Biol. Chem. 1998, 273, 7099–7106. [Google Scholar] [CrossRef] [PubMed]
- Pages, P.; Benali, N.; Saint-Laurent, N.; Esteve, J.P.; Schally, A.V.; Tkaczuk, J.; Vaysse, N.; Susini, C.; Buscail, L. sst2 somatostatin receptor mediates cell cycle arrest and induction of p27(Kip1). Evidence for the role of SHP-1. J. Biol. Chem. 1999, 274, 15186–15193. [Google Scholar] [CrossRef] [PubMed]
- Hortala, M.; Ferjoux, G.; Estival, A.; Bertrand, C.; Schulz, S.; Pradayrol, L.; Susini, C.; Clemente, F. Inhibitory role of the somatostatin receptor SST2 on the intracrine-regulated cell proliferation induced by the 210-amino acid fibroblast growth factor-2 isoform: Implication of JAK2. J. Biol. Chem. 2003, 278, 20574–20581. [Google Scholar] [CrossRef]
- Sharma, K.; Srikant, C.B. Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int. J. Cancer 1998, 76, 259–266. [Google Scholar] [CrossRef]
- Srikant, C.B. Cell cycle dependent induction of apoptosis by somatostatin analog SMS 201-995 in AtT-20 mouse pituitary cells. Biochem. Biophys. Res. Commun. 1995, 209, 400–406. [Google Scholar] [CrossRef]
- Pagliacci, M.C.; Tognellini, R.; Grignani, F.; Nicoletti, I. Inhibition of human breast cancer cell (MCF-7) growth in vitro by the somatostatin analog SMS 201-995: Effects on cell cycle parameters and apoptotic cell death. Endocrinology 1991, 129, 2555–2562. [Google Scholar] [CrossRef]
- Liu, D.; Martino, G.; Thangaraju, M.; Sharma, M.; Halwani, F.; Shen, S.H.; Patel, Y.C.; Srikant, C.B. Caspase-8-mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis. J. Biol. Chem. 2000, 275, 9244–9250. [Google Scholar] [CrossRef]
- Sharma, K.; Patel, Y.C.; Srikant, C.B. Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3. Mol. Endocrinol. 1996, 10, 1688–1696. [Google Scholar]
- Teijeiro, R.; Rios, R.; Costoya, J.A.; Castro, R.; Bello, J.L.; Devesa, J.; Arce, V.M. Activation of human somatostatin receptor 2 promotes apoptosis through a mechanism that is independent from induction of p53. Cell Physiol. Biochem. 2002, 12, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Guillermet, J.; Saint-Laurent, N.; Rochaix, P.; Cuvillier, O.; Levade, T.; Schally, A.V.; Pradayrol, L.; Buscail, L.; Susini, C.; Bousquet, C. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis. Proc. Natl. Acad. Sci. USA 2003, 100, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, E.; Pellegrini, C.; Bondioni, S.; Peverelli, E.; Locatelli, M.; Gelmini, P.; Luciani, P.; Peri, A.; Mantovani, G.; Bosari, S.; et al. Octreotide promotes apoptosis in human somatotroph tumor cells by activating somatostatin receptor type 2. Endocr. Relat. Cancer 2006, 13, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Florio, T.; Morini, M.; Villa, V.; Arena, S.; Corsaro, A.; Thellung, S.; Culler, M.D.; Pfeffer, U.; Noonan, D.M.; Schettini, G.; et al. Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. Endocrinology 2003, 144, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef]
- Chao, D.T.; Korsmeyer, S.J. BCL-2 family: Regulators of cell death. Annu. Rev. Immunol. 1998, 16, 395–419. [Google Scholar] [CrossRef] [PubMed]
- Nunez, G.; Clarke, M.F. The Bcl-2 family of proteins: Regulators of cell death and survival. Trends Cell Biol. 1994, 4, 399–403. [Google Scholar] [CrossRef]
- Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S.M.; Ahmad, M.; Alnemri, E.S.; Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997, 91, 479–489. [Google Scholar] [CrossRef]
- Nijhawan, D.; Fang, M.; Traer, E.; Zhong, Q.; Gao, W.H.; Du, F.H.; Wang, X.D. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Gene Dev. 2003, 17, 1475–1486. [Google Scholar] [CrossRef]
- War, S.A.; Kumar, U. Coexpression of human somatostatin receptor-2 (SSTR2) and SSTR3 modulates antiproliferative signaling and apoptosis. J. Mol. Signal. 2012, 7, 5. [Google Scholar] [CrossRef]
- War, S.A.; Somvanshi, R.K.; Kumar, U. Somatostatin receptor-3 mediated intracellular signaling and apoptosis is regulated by its cytoplasmic terminal. Biochim. Biophys. Acta 2011, 1813, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Watt, H.L.; Kharmate, G.D.; Kumar, U. Somatostatin receptors 1 and 5 heterodimerize with epidermal growth factor receptor: Agonist-dependent modulation of the downstream MAPK signalling pathway in breast cancer cells. Cell. Signal. 2009, 21, 428–439. [Google Scholar] [CrossRef] [PubMed]
- War, S.A.; Kim, B.; Kumar, U. Human somatostatin receptor-3 distinctively induces apoptosis in MCF-7 and cell cycle arrest in MDA-MB-231 breast cancer cells. Mol. Cell. Endocrinol. 2015, 413, 129–144. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yuan, X.M.; Lei, P.; Wu, S.; Xing, W.; Lan, X.L.; Zhu, H.F.; Huang, T.; Wang, G.B.; An, R.; et al. The antiproliferative effects of somatostatin receptor subtype 2 in breast cancer cells. Acta Pharmacol. Sin. 2009, 30, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Huo, L.; Wang, L. Octreotide inhibits proliferation and induces apoptosis of hepatocellular carcinoma cells. Acta Pharmacol. Sin. 2004, 25, 1380–1386. [Google Scholar]
- Guillermet-Guibert, J.; Saint-Laurent, N.; Davenne, L.; Rochaix, P.; Cuvillier, O.; Culler, M.D.; Pradayrol, L.; Buscail, L.; Susini, C.; Bousquet, C. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: Crosstalk between NF-kappaB and JNK pathways. Cell Death Differ. 2007, 14, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Buscail, L.; Saint-Laurent, N.; Chastre, E.; Vaillant, J.C.; Gespach, C.; Capella, G.; Kalthoff, H.; Lluis, F.; Vaysse, N.; Susini, C. Loss of sst2 somatostatin receptor gene expression in human pancreatic and colorectal cancer. Cancer Res. 1996, 56, 1823–1827. [Google Scholar]
- Lattuada, D.; Casnici, C.; Venuto, A.; Marelli, O. The apoptotic effect of somatostatin analogue SMS 201-995 on human lymphocytes. J. Neuroimmunol. 2002, 133, 211–216. [Google Scholar] [CrossRef]
- Griffioen, A.W.; Molema, G. Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol. Rev. 2000, 52, 237–268. [Google Scholar]
- Zetter, B.R. Angiogenesis and tumor metastasis. Annu. Rev. Med. 1998, 49, 407–424. [Google Scholar] [CrossRef]
- Haibe, Y.; Kreidieh, M.; El Hajj, H.; Khalifeh, I.; Mukherji, D.; Temraz, S.; Shamseddine, A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front. Oncol. 2020, 10, 221. [Google Scholar] [CrossRef]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Yehya, A.H.S.; Asif, M.; Petersen, S.H.; Subramaniam, A.V.; Kono, K.; Majid, A.; Oon, C.E. Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis. Medicina 2018, 54, 8. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J. Angiogenesis in Cancer, Vascular, Rheumatoid and Other Disease. Nat. Med. 1995, 1, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Parangi, S.; OReilly, M.; Christofori, G.; Holmgren, L.; Grosfeld, J.; Folkman, J.; Hanahan, D. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc. Natl. Acad. Sci. USA 1996, 93, 2002–2007. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.S.; Boehm, T.; Shing, Y.; Fukai, N.; Vasios, G.; Lane, W.S.; Flynn, E.; Birkhead, J.R.; Olsen, B.R.; Folkman, J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997, 88, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.C.; Barrie, R.; Hill, N.; Landeck, S.; Kurozawa, D.; Woltering, E.A. Postreceptor signal transduction mechanisms involved in octreotide-induced inhibition of angiogenesis. Surgery 1994, 116, 1148–1152. [Google Scholar] [PubMed]
- Woltering, E.A.; Watson, J.C.; Alperin-Lea, R.C.; Sharma, C.; Keenan, E.; Kurozawa, D.; Barrie, R. Somatostatin analogs: Angiogenesis inhibitors with novel mechanisms of action. Investig. New Drugs 1997, 15, 77–86. [Google Scholar] [CrossRef]
- Albini, A.; Florio, T.; Giunciuglio, D.; Masiello, L.; Carlone, S.; Corsaro, A.; Thellung, S.; Cai, T.; Noonan, D.M.; Schettini, G. Somatostatin controls Kaposi’s sarcoma tumor growth through inhibition of angiogenesis. FASEB J. 1999, 13, 647–655. [Google Scholar] [CrossRef]
- Cattaneo, M.G.; Gentilini, D.; Vicentini, L.M. Deregulated human glioma cell motility: Inhibitory effect of somatostatin. Mol. Cell. Endocrinol. 2006, 256, 34–39. [Google Scholar] [CrossRef]
- Pola, S.; Cattaneo, M.G.; Vicentini, L.M. Anti-migratory and anti-invasive effect of somatostatin in human neuroblastoma cells: Involvement of Rac and MAP kinase activity. J. Biol. Chem. 2003, 278, 40601–40606. [Google Scholar] [CrossRef] [PubMed]
- Gahete, M.D.; Rincon-Fernandez, D.; Duran-Prado, M.; Hergueta-Redondo, M.; Ibanez-Costa, A.; Rojo-Sebastian, A.; Gracia-Navarro, F.; Culler, M.D.; Casanovas, O.; Moreno-Bueno, G.; et al. The truncated somatostatin receptor sst5TMD4 stimulates the angiogenic process and is associated to lymphatic metastasis and disease-free survival in breast cancer patients. Oncotarget 2016, 7, 60110–60122. [Google Scholar] [CrossRef] [PubMed]
- Duran-Prado, M.; Gahete, M.D.; Martinez-Fuentes, A.J.; Luque, R.M.; Quintero, A.; Webb, S.M.; Benito-Lopez, P.; Leal, A.; Schulz, S.; Gracia-Navarro, F.; et al. Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. J. Clin. Endocrinol. Metab. 2009, 94, 2634–2643. [Google Scholar] [CrossRef] [PubMed]
- Duran-Prado, M.; Saveanu, A.; Luque, R.M.; Gahete, M.D.; Gracia-Navarro, F.; Jaquet, P.; Dufour, H.; Malagon, M.M.; Culler, M.D.; Barlier, A.; et al. A potential inhibitory role for the new truncated variant of somatostatin receptor 5, sst5TMD4, in pituitary adenomas poorly responsive to somatostatin analogs. J. Clin. Endocrinol. Metab. 2010, 95, 2497–2502. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Virchow, R. Aetologie der neoplastichen Geschwulste/Pathogenie der neoplastischen Geschwulste. In Die Krankhaften Geschwulste; Verlag von August Hirschwald: Berlin, Germany, 1863; pp. 57–101. [Google Scholar]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Taniyama, Y.; Suzuki, T.; Mikami, Y.; Moriya, T.; Satomi, S.; Sasano, H. Systemic distribution of somatostatin receptor subtypes in human: An immunohistochemical study. Endocr. J. 2005, 52, 605–611. [Google Scholar] [CrossRef]
- Pinter, E.; Helyes, Z.; Szolcsanyi, J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol. Ther. 2006, 112, 440–456. [Google Scholar] [CrossRef]
- Weinstock, J.V. Production of Neuropeptides by Inflammatory Cells within the Granulomas of Murine Schistosomiasis-Mansoni. Eur. J. Clin. Investig. 1991, 21, 145–153. [Google Scholar] [CrossRef]
- Helyes, Z.; Pinter, E.; Sandor, K.; Elekes, K.; Banvolgyi, A.; Keszthelyi, D.; Szoke, E.; Toth, D.M.; Sandor, Z.; Kereskaid, L.; et al. Impaired defense mechanism against inflammation, hyperalgesia, and airway hyperreactivity in somatostatin 4 receptor gene-deleted mice. Proc. Natl. Acad. Sci. USA 2009, 106, 13088–13093. [Google Scholar] [CrossRef]
- Merrell, R.T. Brain tumors. Dis. Mon. DM 2012, 58, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Park, E.S.; Kim, S.J.; Kim, S.W.; Yoon, S.L.; Leem, S.H.; Kim, S.B.; Kim, S.M.; Park, Y.Y.; Cheong, J.H.; Woo, H.G.; et al. Cross-species hybridization of microarrays for studying tumor transcriptome of brain metastasis. Proc. Natl. Acad. Sci. USA 2011, 108, 17456–17461. [Google Scholar] [CrossRef] [PubMed]
- Neman, J.; Termini, J.; Wilczynski, S.; Vaidehi, N.; Choy, C.; Kowolik, C.M.; Li, H.; Hambrecht, A.C.; Roberts, E.; Jandial, R. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc. Natl. Acad. Sci. USA 2014, 111, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Kramer, K.; Kushner, B.; Heller, G.; Cheung, N.K.V. Neuroblastoma metastatic to the central nervous system—he Memorial Sloan-Kettering Cancer Center experience and a literature review. Cancer 2001, 91, 1510–1519. [Google Scholar] [CrossRef]
- Lin, N.U.; Bellon, J.R.; Winer, E.P. CNS metastases in breast cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 3608–3617. [Google Scholar] [CrossRef] [PubMed]
- Aoki, H.; Takada, Y.; Kondo, S.; Sawaya, R.; Aggarwal, B.B.; Kondo, Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: Role of Akt and extracellular signal-regulated kinase signaling pathways. Mol. Pharmacol. 2007, 72, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, M.; Lotti, L.V.; Martino, S.; Alessio, M.; Conti, A.; Bachi, A.; Mariani-Costantini, R.; Biunno, I. Secretion of Novel SEL1L Endogenous Variants Is Promoted by ER Stress/UPR via Endosomes and Shed Vesicles in Human Cancer Cells. PLoS ONE 2011, 6, e17206. [Google Scholar] [CrossRef]
- Iwamaru, A.; Szymanski, S.; Iwado, E.; Aoki, H.; Yokoyama, T.; Fokt, I.; Hess, K.; Conrad, C.; Madden, T.; Sawaya, R.; et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 2007, 26, 2435–2444. [Google Scholar] [CrossRef]
- Barria, A. Dangerous liaisons as tumours form synapses. Nature 2019, 573, 499–501. [Google Scholar] [CrossRef]
- Venkataramani, V.; Tanev, D.I.; Strahle, C.; Studier-Fischer, A.; Fankhauser, L.; Kessler, T.; Korber, C.; Kardorff, M.; Ratliff, M.; Xie, R.F.; et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 2019, 573, 532–538. [Google Scholar] [CrossRef]
- Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L.J.; et al. Electrical and synaptic integration of glioma into neural circuits. Nature 2019, 573, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.Q.; Michael, I.P.; Zhang, P.; Saghafinia, S.; Knott, G.; Jiao, W.; McCabe, B.D.; Galvan, J.A.; Robinson, H.P.C.; Zlobec, I.; et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 2019, 573, 526–531. [Google Scholar] [CrossRef]
- Louis, D.N.; Gusella, J.F. A Tiger Behind Many Doors—Multiple Genetic Pathways to Malignant Glioma. Trends Genet. 1995, 11, 412–415. [Google Scholar] [CrossRef]
- Martuza, R.L. Act locally, think globally. Nat. Med. 1997, 3, 1323. [Google Scholar] [CrossRef]
- Osswald, M.; Jung, E.; Sahm, F.; Solecki, G.; Venkataramani, V.; Blaes, J.; Weil, S.; Horstmann, H.; Wiestler, B.; Syed, M.; et al. Brain tumour cells interconnect to a functional and resistant network. Nature 2015, 528, 93–98. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.W.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006–2010. Neuro-Oncology 2013, 15, i1–i56. [Google Scholar] [CrossRef]
- Tamimi, A.F.; Juweid, M. Epidemiology and Outcome of Glioblastoma. In Glioblastoma; De Vleeschouwer, S., Ed.; Exon Publications: Brisbane, Australia, 2017. [Google Scholar]
- Shashidhar, S.; Lorente, G.; Nagavarapu, U.; Nelson, A.; Kuo, J.; Cummins, J.; Nikolich, K.; Urfer, R.; Foehr, E.D. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 2005, 24, 1673–1682. [Google Scholar] [CrossRef]
- Allen, N.J. Brain tumours manipulate neighbouring synapses. Nature 2020, 578, 46–47. [Google Scholar] [CrossRef]
- Simo, M.; Argyriou, A.A.; Macia, M.; Plans, G.; Majos, C.; Vidal, N.; Gil, M.; Bruna, J. Recurrent high-grade meningioma: A phase II trial with somatostatin analogue therapy. Cancer Chemother. Pharmacol. 2014, 73, 919–923. [Google Scholar] [CrossRef]
- Simpson, D. The Recurrence of Intracranial Meningiomas after Surgical Treatment. J. Neurol. Neurosurg. Psychiatry 1957, 20, 22–39. [Google Scholar] [CrossRef]
- Liang, R.F.; Xiu, Y.J.; Wang, X.; Li, M.; Yang, Y.; Mao, Q.; Liu, Y.H. The potential risk factors for atypical and anaplastic meningiomas: Clinical series of 1,239 cases. Int. J. Clin. Exp. Med. 2014, 7, 5696–5700. [Google Scholar]
- Durand, A.; Champier, J.; Jouvet, A.; Labrousse, F.; Honnorat, J.; Guyotat, J.; Fevre-Montange, M. Expression of c-Myc, neurofibromatosis Type 2, somatostatin receptor 2 and erb-B2 in human meningiomas: Relation to grades or histotypes. Clin. Neuropathol. 2008, 27, 334–345. [Google Scholar] [CrossRef]
- Mawrin, C.; Perry, A. Pathological classification and molecular genetics of meningiomas. J. Neuro-Oncol. 2010, 99, 379–391. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, Y.X.; Wang, Y.L.; Liu, L.H.; Lou, J.Y.; Deng, Y.C.; Zhao, P.; Shao, A.W. Clinical Significance of Somatostatin Receptor (SSTR) 2 in Meningioma. Front. Oncol. 2020, 10, 1633. [Google Scholar] [CrossRef]
- Whittle, I.R.; Smith, C.; Navoo, P.; Collie, D. Meningiomas. Lancet 2004, 8, 1535–1543. [Google Scholar] [CrossRef]
- Gibson, P.; Tong, Y.A.; Robinson, G.; Thompson, M.C.; Currle, D.S.; Eden, C.; Kranenburg, T.A.; Hogg, T.; Poppleton, H.; Martin, J.; et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 2010, 468, 1095–1099. [Google Scholar] [CrossRef]
- Kool, M.; Koster, J.; Bunt, J.; Hasselt, N.E.; Lakeman, A.; van Sluis, P.; Troost, D.; Schouten-van Meeteren, N.; Caron, H.N.; Cloos, J.; et al. Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features. PLoS ONE 2008, 3, e3088. [Google Scholar] [CrossRef]
- Gajjar, A.; Chintagumpala, M.; Ashley, D.; Kellie, S.; Kun, L.E.; Merchant, T.E.; Woo, S.; Wheeler, G.; Ahern, V.; Krasin, M.J.; et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): Long-term results from a prospective, multicentre trial. Lancet Oncol. 2006, 7, 813–820. [Google Scholar] [CrossRef]
- Brandes, A.A.; Bartolotti, M.; Marucci, G.; Ghimenton, C.; Agati, R.; Fioravanti, A.; Mascarin, M.; Volpin, L.; Ammannati, F.; Masotto, B.; et al. New perspectives in the treatment of adult medulloblastoma in the era of molecular oncology. Crit. Rev. Oncol. /Hematol. 2015, 94, 348–359. [Google Scholar] [CrossRef]
- Galvis, L.; Gonzalez, D.; Bonilla, C. Relapsed High-Risk Medulloblastoma: Stable Disease after Two Years of Treatment with Somatostatin Analog—Case Report. Cureus 2016, 8, e446. [Google Scholar] [CrossRef]
- Menon, G.; Krishnakumar, K.; Nair, S. Adult medulloblastoma: Clinical profile and treatment results of 18 patients. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2008, 15, 122–126. [Google Scholar] [CrossRef]
- Huse, J.T.; Holland, E.C. Targeting brain cancer: Advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer 2010, 10, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Northcott, P.A.; Korshunov, A.; Pfister, S.M.; Taylor, M.D. The clinical implications of medulloblastoma subgroups. Nat. Rev. Neurol. 2012, 8, 340–351. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, T.; Waha, A.; Koch, A.; Kraus, J.; Albrecht, S.; Tonn, J.; Sorensen, N.; Berthold, F.; Henk, B.; Schmandt, N.; et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res. 1997, 57, 2085–2088. [Google Scholar] [PubMed]
- Raffel, C.; Jenkins, R.B.; Frederick, L.; Hebrink, D.; Alderete, B.; Fults, D.W.; James, C.D. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 1997, 57, 842–845. [Google Scholar]
- Reifenberger, J.; Wolter, M.; Weber, R.G.; Megahed, M.; Ruzicka, T.; Lichter, P.; Reifenberger, G. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 1998, 58, 1798–1803. [Google Scholar] [PubMed]
- Taylor, M.D.; Liu, L.; Raffel, C.; Hui, C.C.; Mainprize, T.G.; Zhang, X.; Agatep, R.; Chiappa, S.; Gao, L.; Lowrance, A.; et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet. 2002, 31, 306–310. [Google Scholar] [CrossRef]
- Al-Sharydah, A.M.; Al-Abdulwahhab, A.H.; Al-Suhibani, S.S.; Al-Issawi, W.M.; Al-Zahrani, F.; Katbi, F.A.; Al-Thuneyyan, M.A.; Jallul, T.; Alabbas, F.M. Posterior fossa extra-axial variations of medulloblastoma: A pictorial review as a primer for radiologists. Insights Imaging 2021, 12, 43. [Google Scholar] [CrossRef]
- Cervera, P.; Videau, C.; Viollet, C.; Petrucci, C.; Lacombe, J.; Winsky-Sommerer, R.; Csaba, Z.; Helboe, L.; Daumas-Duport, C.; Reubi, J.C.; et al. Comparison of somatostatin receptor expression in human gliomas and medulloblastomas. J. Neuroendocrinol. 2002, 14, 458–471. [Google Scholar] [CrossRef]
- Dutour, A.; Kumar, U.; Panetta, R.; Ouafik, L.; Fina, F.; Sasi, R.; Patel, Y.C. Expression of somatostatin receptor subtypes in human brain tumors. Int. J. Cancer 1998, 76, 620–627. [Google Scholar] [CrossRef]
- Reubi, J.C.; Waser, B.; Lamberts, S.W.; Mengod, G. Somatostatin (SRIH) messenger ribonucleic acid expression in human neuroendocrine and brain tumors using in situ hybridization histochemistry: Comparison with SRIH receptor content. J. Clin. Endocrinol. Metab. 1993, 76, 642–647. [Google Scholar] [PubMed]
- Reubi, J.C.; Schaer, J.C.; Waser, B.; Mengod, G. Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res. 1994, 54, 3455–3459. [Google Scholar]
- Reubi, J.C.; Maurer, R.; Klijn, J.G.; Stefanko, S.Z.; Foekens, J.A.; Blaauw, G.; Blankenstein, M.A.; Lamberts, S.W. High incidence of somatostatin receptors in human meningiomas: Biochemical characterization. J. Clin. Endocrinol. Metab. 1986, 63, 433–438. [Google Scholar] [CrossRef]
- Reubi, J.C.; Lang, W.; Maurer, R.; Koper, J.W.; Lamberts, S.W. Distribution and biochemical characterization of somatostatin receptors in tumors of the human central nervous system. Cancer Res. 1987, 47, 5758–5764. [Google Scholar] [PubMed]
- Reubi, J.C.; Krenning, E.; Lamberts, S.W.; Kvols, L. In vitro detection of somatostatin receptors in human tumors. Digestion 1993, 54 (Suppl. 1), 76–83. [Google Scholar] [CrossRef] [PubMed]
- Haldemann, A.R.; Rosler, H.; Barth, A.; Waser, B.; Geiger, L.; Godoy, N.; Markwalder, R.V.; Seiler, R.W.; Sulzer, M.; Reubi, J.C. Somatostatin receptor scintigraphy in central nervous system tumors: Role of blood-brain barrier permeability. J. Nucl. Med. 1995, 36, 403–410. [Google Scholar]
- Held-Feindt, J.; Krisch, B.; Mentlein, R. Molecular analysis of the somatostatin receptor subtype 2 in human glioma cells. Brain Res. Mol. Brain Res. 1999, 64, 101–107. [Google Scholar] [CrossRef]
- Held-Feindt, J.; Krisch, B.; Forstreuter, F.; Mentlein, R. Somatostatin receptors in gliomas. J. Physiol. 2000, 94, 251–258. [Google Scholar] [CrossRef]
- Lamszus, K.; Meyerhof, W.; Westphal, M. Somatostatin and somatostatin receptors in the diagnosis and treatment of gliomas. J. Neurooncol. 1997, 35, 353–364. [Google Scholar] [CrossRef]
- Luyken, C.; Hildebrandt, G.; Scheidhauer, K.; Krisch, B.; Schicha, H.; Klug, N. 111Indium (DTPA-octreotide) scintigraphy in patients with cerebral gliomas. Acta Neurochir. 1994, 127, 60–64. [Google Scholar] [CrossRef]
- Silva, C.B.; Ongaratti, B.R.; Trott, G.; Haag, T.; Ferreira, N.P.; Leaes, C.G.; Pereira-Lima, J.F.; Oliveira Mda, C. Expression of somatostatin receptors (SSTR1-SSTR5) in meningiomas and its clinicopathological significance. Int. J. Clin. Exp. Pathol. 2015, 8, 13185–13192. [Google Scholar] [PubMed]
- Wahab, M.; Al-Azzawi, F. Meningioma and hormonal influences. Climacteric 2003, 6, 285–292. [Google Scholar] [CrossRef]
- Leaes, C.G.S.; Meurer, R.T.; Coutinho, L.B.; Ferreira, N.P.; Pereira-Lima, J.F.S.; Oliveira, M.D. Immunohistochemical expression of aromatase and estrogen, androgen and progesterone receptors in normal and neoplastic human meningeal cells. Neuropathology 2010, 30, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Carroll, R.S.; Zhang, J.P.; Dashner, K.; Black, P.M. Progesterone and Glucocorticoid Receptor Activation in Meningiomas. Neurosurgery 1995, 37, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Boccardo, F.; Amoroso, D. Management of Breast Cancer: Is There a Role for Somatostatin and Its Analogs? Chemotherapy 2001, 47, 62–77. [Google Scholar] [CrossRef]
- Massa, A.; Barbieri, F.; Aiello, C.; Arena, S.; Pattarozzi, A.; Pirani, P.; Corsaro, A.; Iuliano, R.; Fusco, A.; Zona, G.; et al. The expression of the phosphotyrosine phosphatase DEP-1/PTPeta dictates the responsivity of glioma cells to somatostatin inhibition of cell proliferation. J. Biol. Chem. 2004, 279, 29004–29012. [Google Scholar] [CrossRef]
- Fruhwald, M.C.; Rickert, C.H.; O’Dorisio, M.S.; Madsen, M.; Warmuth-Metz, M.; Khanna, G.; Paulus, W.; Kuhl, J.; Jurgens, H.; Schneider, P.; et al. Somatostatin receptor subtype 2 is expressed by supratentorial primitive neuroectodermal tumors of childhood and can be targeted for somatostatin receptor imaging. Clin. Cancer Res. 2004, 10, 2997–3006. [Google Scholar] [CrossRef]
- Guyotat, J.; Champier, J.; Pierre, G.S.; Jouvet, A.; Bret, P.; Brisson, C.; Belin, M.F.; Signorelli, F.; Montange, M.F. Differential expression of somatostatin receptors in medulloblastoma. J. Neurooncol. 2001, 51, 93–103. [Google Scholar] [CrossRef]
- Muller, H.L.; Fruhwald, M.C.; Scheubeck, M.; Rendl, J.; Warmuth-Metz, M.; Sorensen, N.; Kuhl, J.; Reubi, J.C. A possible role for somatostatin receptor scintigraphy in the diagnosis and follow-up of children with medulloblastoma. J. Neuro-Oncol. 1998, 38, 27–40. [Google Scholar] [CrossRef]
- Hauser, P.; Hanzely, Z.; Mathe, D.; Szabo, E.; Barna, G.; Sebestyen, A.; Jeney, A.; Schuler, D.; Fekete, G.; Garami, M. Effect of somatostatin analogue octreotide in medulloblastoma in xenograft and cell culture study. Pediatr. Hematol. Oncol. 2009, 26, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Lamberts, S.W.J.; Reubi, J.C.; Krenning, E.P. Somatostatin Receptor Imaging in the Diagnosis and Treatment of Neuroendocrine Tumors. J. Steroid Biochem. 1992, 43, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Horisberger, U.; Lang, W.; Koper, J.W.; Braakman, R.; Lamberts, S.W. Coincidence of EGF receptors and somatostatin receptors in meningiomas but inverse, differentiation-dependent relationship in glial tumors. Am. J. Pathol. 1989, 134, 337–344. [Google Scholar] [PubMed]
- Beutler, D.; Avoledo, P.; Reubi, J.C.; Macke, H.R.; Muller-Brand, J.; Merlo, A.; Kuhne, T. Three-year recurrence-free survival in a patient with recurrent medulloblastoma after resection, high-dose chemotherapy, and intrathecal Yttrium-90-labeled DOTA0-D-Phe1-Tyr3-octreotide radiopeptide brachytherapy. Cancer 2005, 103, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Mawrin, C.; Schulz, S.; Pauli, S.U.; Treuheit, T.; Diete, S.; Dietzmann, K.; Firsching, R.; Schulz, S.; Hollt, V. Differential expression of sst1, sst2A, and sst3 somatostatin receptor proteins in low-grade and high-grade astrocytomas. J. Neuropathol. Exp. Neurol. 2004, 63, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.O.; Smith, K.S.; Kumar, R.; Paul, L.; Bihannic, L.; Lin, T.; Maass, K.K.; Pajtler, K.W.; Chintagumpala, M.; Su, J.M.; et al. Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell 2021, 39, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.H.; Jackson, E.; Woerner, B.M.; Perry, A.; Piwnica-Worms, D.; Rubin, J.B. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res. 2007, 67, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Furman, M.A.; Shulman, K. Cyclic-Amp and Adenyl-Cyclase in Brain Tumors. J. Neurosurg. 1977, 46, 477–483. [Google Scholar] [CrossRef]
- Reginato, M.J.; Mills, K.R.; Paulus, J.K.; Lynch, D.K.; Sgroi, D.C.; Debnath, J.; Muthuswamy, S.K.; Brugge, J.S. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat. Cell Biol. 2003, 5, 733–740. [Google Scholar] [CrossRef]
- Balmanno, K.; Millar, T.; McMahon, M.; Cook, S.J. DeltaRaf-1:ER* bypasses the cyclic AMP block of extracellular signal-regulated kinase 1 and 2 activation but not CDK2 activation or cell cycle reentry. Mol. Cell Biol. 2003, 23, 9303–9317. [Google Scholar] [CrossRef]
- Ramirez, J.L.; Gracia-Navarro, F.; Garcia-Navarro, S.; Torronteras, R.; Malagon, M.M.; Castano, J.P. Somatostatin stimulates GH secretion in two porcine somatotrope subpopulations through a cAMP-dependent pathway. Endocrinology 2002, 143, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Menke, J.R.; Raleigh, D.R.; Gown, A.M.; Thomas, S.; Perry, A.; Tihan, T. Somatostatin receptor 2a is a more sensitive diagnostic marker of meningioma than epithelial membrane antigen. Acta Neuropathol. 2015, 130, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Anis, S.E.; Lotfalla, M.; Zain, M.; Kamel, N.N.; Soliman, A.A. Value of SSTR2A and Claudin-1 in Differentiating Meningioma from Schwannoma and Hemangiopericytoma. Open Access Maced. J. Med. Sci. 2018, 6, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Boulagnon-Rombi, C.; Fleury, C.; Fichel, C.; Lefour, S.; Bressenot, A.M.; Gauchotte, G. Immunohistochemical Approach to the Differential Diagnosis of Meningiomas and Their Mimics. J. Neuropathol. Exp. Neurol. 2017, 76, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, G.; Scheidhauer, K.; Luyken, C.; Schicha, H.; Klug, N.; Dahms, P.; Krisch, B. High-Sensitivity of the in-Vivo Detection of Somatostatin Receptors by in-111 (Dtpa-Octreotide)-Scintigraphy in Meningioma Patients. Acta Neurochir. 1994, 126, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.; Haldemann, A.R.; Reubi, J.C.; Godoy, N.; Rosler, H.; Kinser, J.A.; Seiler, R.W. Noninvasive differentiation of meningiomas from other brain tumours using combined (111)indium-octreotide/(99m)technetium-DTPA brain scintigraphy. Acta Neurochir. 1996, 138, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Bohuslavizki, K.H.; Brenner, W.; Braunsdorf, W.E.K.; Behnke, A.; Tinnemeyer, S.; Hugo, H.H.; Jahn, N.; Wolf, H.; Sippel, C.; Clausen, M.; et al. Somatostatin receptor scintigraphy in the differential diagnosis of meningioma. Nucl. Med. Commun. 1996, 17, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Klutmann, S.; Bohuslavizki, K.H.; Brenner, W.; Behnke, A.; Tietje, N.; Kroger, S.; Hugo, H.H.; Mehdorn, H.M.; Clausen, M.; Henze, E. Somatostatin receptor scintigraphy in postsurgical follow-up examinations of meningioma. J. Nucl. Med. 1998, 39, 1913–1917. [Google Scholar]
- Schulz, S.; Pauli, S.U.; Schulz, S.; Handel, M.; Dietzmann, K.; Firsching, R.; Hollt, V. Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent overexpression of somatostatin receptor subtype sst(2A). Clin. Cancer Res. 2000, 6, 1865–1874. [Google Scholar]
- García-Luna, P.P.; Relimpio, F.; Pumar, A.; Pereira, J.L.; Leal-Cerro, A.; Trujillo, F.; Cortés, A.; Astorga, R. Clinical use of octreotide in unresectable meningiomas. A report of three cases. J. Neurosurg. Sci. 1993, 37, 237–241. [Google Scholar]
- Jaffrain-Rea, M.L.; Minniti, G.; Santoro, A.; Bastianello, S.; Tamburrano, G.; Gulino, A.; Cantore, G. Visual improvement during octreotide therapy in a case of episellar meningioma. Clin. Neurol. Neurosurg. 1998, 100, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Runzi, M.W.; Jaspers, C.; Windeck, R.; Benker, G.; Mehdorn, H.M.; Reinhardt, V.; Reinwein, D. Successful Treatment of Meningioma with Octreotide. Lancet 1989, 1, 1074. [Google Scholar] [CrossRef]
- Seystahl, K.; Stoecklein, V.; Schuller, U.; Rushing, E.; Nicolas, G.; Schafer, N.; Ilhan, H.; Pangalu, A.; Weller, M.; Tonn, J.C.; et al. Somatostatin-receptor-targeted radionuclide therapy for progressive meningioma: Benefit linked to Ga-68-DOTATATE/-TOC uptake. Neuro-Oncology 2016, 18, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Mengod, G.; Palacios, J.M.; Horisberger, U.; Hackeng, W.H.L.; Lamberts, S.W.J. Lack of Evidence for Autocrine Feedback-Regulation by Somatostatin in Somatostatin Receptor-Containing Meningiomas. Cell Growth Differ. 1990, 1, 299–303. [Google Scholar]
- Koper, J.W.; Markstein, R.; Kohler, C.; Kwekkeboom, D.J.; Avezaat, C.J.J.; Lamberts, S.W.J.; Reubi, J.C. Somatostatin Inhibits the Activity of Adenylate-Cyclase in Cultured Human Meningioma Cells and Stimulates Their Growth. J. Clin. Endocr. Metab. 1992, 74, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Graillon, T.; Romano, D.; Defilles, C.; Saveanu, A.; Mohamed, A.; Figarella-Branger, D.; Roche, P.H.; Fuentes, S.; Chinot, O.; Dufour, H.; et al. Octreotide therapy in meningiomas: In vitro study, clinical correlation, and literature review. J. Neurosurg. 2017, 127, 660–669. [Google Scholar] [CrossRef]
- Liebow, C.; Reilly, C.; Serrano, M.; Schally, A.V. Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase. Proc. Natl. Acad. Sci. USA 1989, 86, 2003–2007. [Google Scholar] [CrossRef]
- Buscail, L.; Delesque, N.; Esteve, J.P.; Saint-Laurent, N.; Prats, H.; Clerc, P.; Robberecht, P.; Bell, G.I.; Liebow, C.; Schally, A.V.; et al. Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: Mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc. Natl. Acad. Sci. USA 1994, 91, 2315–2319. [Google Scholar] [CrossRef]
- Stefanović Ivan, S.N.; Dragan, S.; Dragan, D. Octreotide in the therapy of recurrent medulloblastomas. Arch. Oncol. 2006, 14, 26–29. [Google Scholar] [CrossRef]
- Fruhwald, M.C.; O’Dorisio, M.S.; Pietsch, T.; Reubi, J.C. High expression of somatostatin receptor subtype 2 (sst2) in medulloblastoma: Implications for diagnosis and therapy. Pediatr. Res. 1999, 45, 697–708. [Google Scholar] [CrossRef]
- Dalm, V.A.; Hofland, L.J.; Mooy, C.M.; Waaijers, M.A.; van Koetsveld, P.M.; Langerak, A.W.; Staal, F.T.; van der Lely, A.J.; Lamberts, S.W.; van Hagen, M.P. Somatostatin receptors in malignant lymphomas: Targets for radiotherapy? J. Nucl. Med. 2004, 45, 8–16. [Google Scholar] [PubMed]
- van der Sanden, G.A.; Schouten, L.J.; van Dijck, J.A.; van Andel, J.P.; van der Maazen, R.W.; Coebergh, J.W.; Working Group of Specialists in Neuro-Oncology in the Southern and Eastern of Netherlands. Primary central nervous system lymphomas: Incidence and survival in the Southern and Eastern Netherlands. Cancer 2002, 94, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Sozen, M.; Yaprak Bayrak, B.; Selek, A.; Canturk, Z.; Cetinarslan, B.; Gezer, E. Primary hypothalamic lymphoma with clinical findings mimicking pituitary apoplexy: A case report. J. Med. Case Rep. 2021, 15, 293. [Google Scholar] [CrossRef] [PubMed]
- Erdag, N.; Bhorade, R.M.; Alberico, R.A.; Yousuf, N.; Patel, M.R. Primary lymphoma of the central nervous system: Typical and atypical CT and MR imaging appearances. AJR Am. J. Roentgenol. 2001, 176, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Maher, E.A.; Fine, H.A. Primary CNS lymphoma. Semin. Oncol. 1999, 26, 346–356. [Google Scholar] [PubMed]
- Tanki, H.N.; Malik, K.N.; Makhdoomi, R.; Feroz, S.; Ramzan, A.U. Primary Hypothalamic Lymphoma in an Adult Male: A Case Report and Literature Review. Oman Med. J. 2018, 33, 346–351. [Google Scholar] [CrossRef]
- Freeman, L.M.; Blaufox, M.D. Letter from the editors: Brain imaging update. Semin. Nucl. Med. 2012, 42, 353. [Google Scholar] [CrossRef]
- Dickson, R.B.; Lippman, M.E. Molecular determinants of growth, angiogenesis, and metastases in breast cancer. Semin. Oncol. 1992, 19, 286–298. [Google Scholar]
- Dolan, J.T.; Miltenburg, D.M.; Granchi, T.S.; Miller, C.C.; Brunicardi, F.C. Treatment of metastatic breast cancer with somatostatin analogues—A meta-analysis. Ann. Surg. Oncol. 2001, 8, 227–233. [Google Scholar] [CrossRef]
- Baek, A.E.; Krawczynska, N.; Das Gupta, A.; Dvoretskiy, S.V.; You, S.; Park, J.; Deng, Y.H.; Sorrells, J.E.; Smith, B.P.; Ma, L.; et al. The Cholesterol Metabolite 27HC Increases Secretion of Extracellular Vesicles Which Promote Breast Cancer Progression. Endocrinology 2021, 162, bqab095. [Google Scholar] [CrossRef]
- Murtola, T.J.; Visvanathan, K.; Artama, M.; Vainio, H.; Pukkala, E. Statin use and breast cancer survival: A nationwide cohort study from Finland. PLoS ONE 2014, 9, e110231. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.R. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol. Cell. Endocrinol. 2018, 466, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Baek, A.E.; Yu, Y.R.A.; He, S.S.; Wardell, S.E.; Chang, C.Y.; Kwon, S.; Pillai, R.V.; McDowell, H.B.; Thompson, J.W.; Dubois, L.G.; et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat. Commun. 2017, 8, 864. [Google Scholar] [CrossRef]
- DuSell, C.D.; Umetani, M.; Shaul, P.W.; Mangelsdorf, D.J.; McDonnell, D.P. 27-hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol. Endocrinol. 2008, 22, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.R.; Wardell, S.E.; Jasper, J.S.; Park, S.; Suchindran, S.; Howe, M.K.; Carver, N.J.; Pillai, R.V.; Sullivan, P.M.; Sondhi, V.; et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 2013, 342, 1094–1098. [Google Scholar] [CrossRef]
- Wu, Q.; Ishikawa, T.; Sirianni, R.; Tang, H.; McDonald, J.G.; Yuhanna, I.S.; Thompson, B.; Girard, L.; Mineo, C.; Brekken, R.A.; et al. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep. 2013, 5, 637–645. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Nelson, A.T.; Han, C.; He, S.; Henn, M.A.; Menon, K.; Chen, J.J.; Baek, A.E.; Vardanyan, A.; et al. 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett. 2020, 493, 266–283. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Laskar-Levy, O.; Koch, Y. Selective expression of neuropeptides in the rat mammary gland: Somatostatin gene is expressed during lactation. Endocrinology 1999, 140, 5915–5921. [Google Scholar] [CrossRef]
- Murray, R.D.; Kim, K.; Ren, S.G.; Chelly, M.; Umehara, Y.; Melmed, S. Central and peripheral actions of somatostatin on the growth hormone—IGF-I axis. J. Clin. Investig. 2004, 114, 349–356. [Google Scholar] [CrossRef]
- Kumar, U.; Grigorakis, S.I.; Watt, H.L.; Sasi, R.; Snell, L.; Watson, P.; Chaudhari, S. Somatostatin receptors in primary human breast cancer: Quantitative analysis of mRNA for subtypes 1-5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res. Treat. 2005, 92, 175–186. [Google Scholar] [CrossRef]
- Prevost, G.; Hosford, D.; Thomas, F. Receptors for Somatostatin and Somatostatin Analogs in Human Breast-Tumors. Ann. N. Y. Acad. Sci. 1994, 733, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, M.; Koch, T.; Schroder, H.; Laugsch, M.; Hollt, V.; Schulz, S. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J. Biol. Chem. 2002, 277, 19762–19772. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.A.; Alturaihi, H.; Kumar, U. Differential regulation of somatostatin receptors 1 and 2 mRNA and protein expression by tamoxifen and estradiol in breast cancer cells. J. Carcinog. 2005, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.A.; Crook, T.; Laws, S.A.M.; Gough, A.C.; Royle, G.T.; Primrose, J.N. Analysis of somatostatin receptor subtype mRNA expression in human breast cancer. Br. J. Cancer 1997, 75, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Waser, B.; Foekens, J.A.; Klijn, J.G.M.; Lamberts, S.W.J.; Laissue, J. Somatostatin Receptor Incidence and Distribution in Breast-Cancer Using Receptor Autoradiography—Relationship to Egf Receptors. Int. J. Cancer 1990, 46, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Watt, H.L.; Kharmate, G.; Kumar, U. Biology of somatostatin in breast cancer. Mol. Cell. Endocrinol. 2008, 286, 251–261. [Google Scholar] [CrossRef]
- Vikictopic, S.; Raisch, K.P.; Kvols, L.K.; Vukpavlovic, S. Expression of Somatostatin Receptor Subtypes in Breast-Carcinoma, Carcinoid-Tumor, and Renal-Cell Carcinoma. J. Clin. Endocr. Metab. 1995, 80, 2974–2979. [Google Scholar] [CrossRef]
- Zou, Y.; Tan, H.P.; Zhao, Y.F.; Zhou, Y.; Cao, L. Expression and selective activation of somatostatin receptor subtypes induces cell cycle arrest in cancer cells. Oncol. Lett. 2019, 17, 1723–1731. [Google Scholar] [CrossRef]
- Bajetta, E.; Procopio, G.; Ferrari, L.; Martinetti, A.; Zilembo, N.; Catena, L.; Alu, M.; Della Torre, S.; Alberti, D.; Buzzoni, R. A randomized, multicenter prospective trial assessing long-acting release octreotide pamoate plus tamoxifen as a first line therapy for advanced breast carcinoma. Cancer 2002, 94, 299–304. [Google Scholar] [CrossRef]
- Pollak, M.N.; Schally, A.V. Mechanisms of antineoplastic action of somatostatin analogs. Proc. Soc. Exp. Biol. Med. 1998, 217, 143–152. [Google Scholar] [CrossRef]
- Krantic, S.; Goddard, I.; Saveanu, A.; Giannetti, N.; Fombonne, J.; Cardoso, A.; Jaquet, P.; Enjalbert, A. Novel modalities of somatostatin actions. Eur. J. Endocrinol. 2004, 151, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Longnecker, S.M. Somatostatin and octreotide: Literature review and description of therapeutic activity in pancreatic neoplasia. Drug Intell. Clin. Pharm. 1988, 22, 99–106. [Google Scholar] [CrossRef]
- Schally, A.V. Oncological applications of somatostatin analogues. Cancer Res. 1988, 48, 6977–6985. [Google Scholar] [PubMed]
- Lamberts, S.W.; Koper, J.W.; Reubi, J.C. Potential role of somatostatin analogues in the treatment of cancer. Eur. J. Clin. Investig. 1987, 17, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Setyono-Han, B.; Henkelman, M.S.; Foekens, J.A.; Klijn, G.M. Direct inhibitory effects of somatostatin (analogues) on the growth of human breast cancer cells. Cancer Res. 1987, 47, 1566–1570. [Google Scholar] [PubMed]
- O’Byrne, K.J.; Dobbs, N.; Propper, D.J.; Braybrooke, J.P.; Koukourakis, M.I.; Mitchell, K.; Woodhull, J.; Talbot, D.C.; Schally, A.V.; Harris, A.L. Phase II study of RC-160 (vapreotide), an octapeptide analogue of somatostatin, in the treatment of metastatic breast cancer. Br. J. Cancer 1999, 79, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Canobbio, L.; Cannata, D.; Miglietta, L.; Boccardo, F. Somatuline (BIM 23014) and tamoxifen treatment of postmenopausal breast cancer patients: Clinical activity and effect on insulin-like growth factor-I (IGF-I) levels. Anticancer Res. 1995, 15, 2687–2690. [Google Scholar] [PubMed]
- Weckbecker, G.; Tolcsvai, L.; Stolz, B.; Pollak, M.; Bruns, C. Somatostatin analogue octreotide enhances the antineoplastic effects of tamoxifen and ovariectomy on 7,12-dimethylbenz(alpha)anthracene-induced rat mammary carcinomas. Cancer Res. 1994, 54, 6334–6337. [Google Scholar]
- Huang, C.M.; Wu, Y.T.; Chen, S.T. Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem. Biol. 2000, 7, 453–461. [Google Scholar] [CrossRef]
- Ju, R.J.; Cheng, L.; Peng, X.M.; Wang, T.; Li, C.Q.; Song, X.L.; Liu, S.; Chao, J.P.; Li, X.T. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. Artif. Cell Nanomed. B 2018, 46, S616–S628. [Google Scholar] [CrossRef]
- Watt, H.L.; Kumar, U. Colocalization of somatostatin receptors and epidermal growth factor receptors in breast cancer cells. Cancer Cell Int. 2006, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Klijn, J.G.M.; Berns, P.M.J.J.; Schmitz, P.I.M.; Foekens, J.A. The Clinical-Significance of Epidermal Growth-Factor Receptor (Egf-R) in Human Breast-Cancer—A Review on 5232 Patients. Endocr. Rev. 1992, 13, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Kraus, M.H.; Popescu, N.C.; Amsbaugh, S.C.; King, C.R. Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J. 1987, 6, 605–610. [Google Scholar] [CrossRef] [PubMed]
- DiGiovanna, M.P.; Stern, D.F.; Edgerton, S.M.; Whalen, S.G.; Moore, D.; Thor, A.D. Relationship of epidermal growth factor receptor expression to ErbB-2 signaling activity and prognosis in breast cancer patients. J. Clin. Oncol. 2005, 23, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Ferjoux, G.; Lopez, F.; Esteve, J.P.; Ferrand, A.; Vivier, E.; Vely, F.; Saint-Laurent, N.; Pradayrol, L.; Buscail, L.; Susini, C. Critical role of Src and SHP-2 in sst2 somatostatin receptor-mediated activation of SHP-1 and inhibition of cell proliferation. Mol. Biol. Cell 2003, 14, 3911–3928. [Google Scholar] [CrossRef] [PubMed]
- Srikant, C.B.; Shen, S.H. Octapeptide somatostatin analog SMS 201-995 induces translocation of intracellular PTP1C to membranes in MCF-7 human breast adenocarcinoma cells. Endocrinology 1996, 137, 3461–3468. [Google Scholar] [CrossRef] [PubMed]
- Bharti, R.; Dey, G.; Banerjee, I.; Dey, K.K.; Parida, S.; Kumar, B.N.P.; Das, C.K.; Pal, I.; Mukherjee, M.; Misra, M.; et al. Somatostatin receptor targeted liposomes with Diacerein inhibit IL-6 for breast cancer therapy. Cancer Lett. 2017, 388, 292–302. [Google Scholar] [CrossRef]
- Rocheville, M.; Lange, D.C.; Kumar, U.; Patel, S.C.; Patel, R.C.; Patel, Y.C. Receptors for dopamine and somatostatin: Formation of hetero-oligomers with enhanced functional activity. Science 2000, 288, 154–157. [Google Scholar] [CrossRef]
- Grant, M.; Alturaihi, H.; Jaquet, P.; Collier, B.; Kumar, U. Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor heterodimerization. Mol. Endocrinol. 2008, 22, 2278–2292. [Google Scholar] [CrossRef]
- Seitz, S.; Buchholz, S.; Schally, A.V.; Jayakumar, A.R.; Weber, F.; Papadia, A.; Rick, F.G.; Szalontay, L.; Treszl, A.; Koster, F.; et al. Targeting triple-negative breast cancer through the somatostatin receptor with the new cytotoxic somatostatin analogue AN-162 [AEZS-124]. Anticancer Drugs 2013, 24, 150–157. [Google Scholar] [CrossRef]
- Dalm, S.U.; Haeck, J.; Doeswijk, G.N.; de Blois, E.; de Jong, M.; van Deurzen, C.H.M. SSTR-Mediated Imaging in Breast Cancer: Is There a Role for Radiolabeled Somatostatin Receptor Antagonists? J. Nucl. Med. 2017, 58, 1609–1614. [Google Scholar] [CrossRef] [PubMed]
- Dalm, S.U.; Melis, M.; Emmering, J.; Kwekkeboom, D.J.; de Jong, M. Breast cancer imaging using radiolabelled somatostatin analogues. Nucl. Med. Biol. 2016, 43, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsson, P.A. Epidemiology and Natural History of Prostate Cancer. In Fundamental Approaches to the Diagnosis & Treatment for Prostate Cancer and Bph, Proceedings of the Fifth Tokyo Symposium on Prostate Cancer, Tokyo, Japan, 16–17 December 1993; Adenine Press: Schenectady, NY, USA, 1994; pp. 49–56. [Google Scholar]
- Hayakawa, Y.; Sakitani, K.; Konishi, M.; Asfaha, S.; Niikura, R.; Tomita, H.; Renz, B.W.; Tailor, Y.; Macchini, M.; Middelhoff, M.; et al. Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell 2017, 31, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Magnone, P.; Tonini, D.; De Rose, R.; Frei, M.; Crupi, F.; Lanuzza, M.; Sangiorgi, E.; Fiegna, C. A comparative study of MWT architectures by means of numerical simulations. Energy Proc. 2013, 38, 131–136. [Google Scholar] [CrossRef]
- Mauffrey, P.; Tchitchek, N.; Barroca, V.; Bemelmans, A.; Firlej, V.; Allory, Y.; Romeo, P.H.; Magnon, C. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 2019, 569, 672–678. [Google Scholar] [CrossRef]
- Kath, R.; Hoffken, K. The significance of somatostatin analogues in the antiproliferative treatment of carcinomas. In Peptides in Oncology III; Recent Results in Cancer Research; Springer: Berlin/Heidelberg, Germany, 2000; Volume 153, pp. 23–43. [Google Scholar] [CrossRef]
- Georgii-Hemming, P.; Stromberg, T.; Janson, E.T.; Stridsberg, M.; Wiklund, H.J.; Nilsson, K. The somatostatin analog octreotide inhibits growth of interleukin-6 (IL-6)-dependent and IL-6-independent human multiple myeloma cell lines. Blood 1999, 93, 1724–1731. [Google Scholar] [CrossRef] [PubMed]
- Pinski, J.; Schally, A.V.; Halmos, G.; Szepeshazi, K. Effect of Somatostatin Analog. Rc-160 and Bombesin Gastrin-Releasing Peptide Antagonist Rc-3095 on Growth of Pc-3 Human Prostate-Cancer Xenografts in Nude-Mice. Int. J. Cancer 1993, 55, 963–967. [Google Scholar] [CrossRef]
- Reubi, J.C.; Waser, B.; Schaer, J.C.; Markwalder, R. Somatostatin receptors in human prostate and prostate cancer. J. Clin. Endocrinol. Metab. 1995, 80, 2806–2814. [Google Scholar] [CrossRef]
- Brevini, T.A.L.; Bianchi, R.; Motta, M. Direct Inhibitory Effect of Somatostatin on the Growth of the Human Prostatic-Cancer Cell-Line Lncap—Possible Mechanism of Action. J. Clin. Endocr. Metab. 1993, 77, 626–631. [Google Scholar] [CrossRef]
- Plonowski, A.; Schally, A.V.; Nagy, A.; Sun, B.D.; Szepeshazi, K. Inhibition of PC-3 human androgen-independent prostate cancer and its metastases by cytotoxic somatostatin analogue AN-238. Cancer Res. 1999, 59, 1947–1953. [Google Scholar]
- Thakur, M.L.; Kolan, H.; Li, J.; Wiaderkiewicz, R.; Pallela, V.R.; Duggaraju, R.; Schally, A.V. Radiolabeled somatostatin analogs in prostate cancer. Nucl. Med. Biol. 1997, 24, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Sciarra, A.; Bosman, C.; Monti, G.; Gentile, V.; Gomez, A.M.A.; Ciccariello, M.; Pastore, A.; Salvatori, G.; Fattore, F.; Di Silverio, F. Somatostatin analogues and estrogens in the treatment of androgen ablation refractory prostate adenocarcinoma. J. Urol. 2004, 172, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, C.J.; Hossan, E.A.; Smith, T.L. Sms-201-995 in the Treatment of Refractory Prostatic-Carcinoma. Anticancer Res. 1994, 14, 2731–2734. [Google Scholar] [PubMed]
- Schally, A.V.; Redding, T.W. Somatostatin Analogs as Adjuncts to Agonists of Luteinizing-Hormone-Releasing Hormone in the Treatment of Experimental Prostate-Cancer. Proc. Natl. Acad. Sci. USA 1987, 84, 7275–7279. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.A.; Tolcsvai, L.; Rudin, M. Partial Inhibition of the Growth of Transplanted Dunning Rat Prostate Tumors with the Long-Acting Somatostatin Analog Sandostatin (Sms 201-995). Cancer Res. 1988, 48, 4651–4655. [Google Scholar] [PubMed]
- Zalatnai, A.; Paz-Bouza, J.I.; Redding, T.W.; Schally, A.V. Histologic changes in the rat prostate cancer model after treatment with somatostatin analogs and D-Trp-6-LH-RH. Prostate 1988, 12, 85–98. [Google Scholar] [CrossRef]
- Ambrosini, V.; Campana, D.; Tomassetti, P.; Grassetto, G.; Rubello, D.; Fanti, S. PET/CT with 68Gallium-DOTA-peptides in NET: An overview. Eur. J. Radiol. 2011, 80, e116–e119. [Google Scholar] [CrossRef] [PubMed]
- Dizeyi, N.; Konrad, L.; Bjartell, A.; Wu, H.; Gadaleanu, V.; Hansson, J.; Helboe, L.; Abrahamsson, P.A. Localization and mRNA expression of somatostatin receptor subtypes in human prostatic tissue and prostate cancer cell lines. Urol. Oncol. 2002, 7, 91–98. [Google Scholar] [CrossRef]
- Montironi, R.; Cheng, L.; Mazzucchelli, R.; Morichetti, D.; Stramazzotti, D.; Santinelli, A.; Moroncini, G.; Galosi, A.B.; Muzzonigro, G.; Comeri, G.; et al. Immunohistochemical detection and localization of somatostatin receptor subtypes in prostate tissue from patients with bladder outlet obstruction. Cell Oncol. 2008, 30, 473–482. [Google Scholar] [CrossRef]
- Hansson, J.; Bjartell, A.; Gadaleanu, V.; Dizeyi, N.; Abrahamsson, P.A. Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer. Prostate 2002, 53, 330, Erratum in Prostate 2002, 53, 50–59. [Google Scholar] [CrossRef]
- Hennigs, J.K.; Muller, J.; Adam, M.; Spin, J.M.; Riedel, E.; Graefen, M.; Bokemeyer, C.; Sauter, G.; Huland, H.; Schlomm, T.; et al. Loss of Somatostatin Receptor Subtype 2 in Prostate Cancer Is Linked to an Aggressive Cancer Phenotype, High Tumor Cell Proliferation and Predicts Early Metastatic and Biochemical Relapse. PLoS ONE 2014, 9, e100469. [Google Scholar] [CrossRef] [PubMed]
- Halmos, G.; Schally, A.V.; Sun, B.D.; Davis, R.; Bostwick, D.G.; Plonowski, A. High expression of somatostatin receptors and messenger ribonucleic acid for its receptor subtypes in organ-confined and locally advanced human prostate cancers. J. Clin. Endocr. Metab. 2000, 85, 2564–2571. [Google Scholar] [CrossRef] [PubMed]
- Pedraza-Arevalo, S.; Hormaechea-Agulla, D.; Gomez-Gomez, E.; Requena, M.J.; Selth, L.A.; Gahete, M.D.; Castano, J.P.; Luque, R.M. Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer. Prostate 2017, 77, 1499–1511. [Google Scholar] [CrossRef] [PubMed]
- Cariaga-Martinez, A.E.; Lorenzati, M.A.; Riera, M.A.; Cubilla, M.A.; De La Rossa, A.; Giorgio, E.M.; Tiscornia, M.M.; Gimenez, E.M.; Rojas, M.E.; Chaneton, B.J.; et al. Tumoral prostate shows different expression pattern of somatostatin receptor 2 (SSTR2) and phosphotyrosine phosphatase SHP-1 (PTPN6) according to tumor progression. Adv. Urol. 2009, 2009, 723831. [Google Scholar] [CrossRef] [PubMed]
- Hormaechea-Agulla, D.; Jimenez-Vacas, J.M.; Gomez-Gomez, E.; Lopez, F.L.; Carrasco-Valiente, J.; Valero-Rosa, J.; Moreno, M.M.; Sanchez-Sanchez, R.; Ortega-Salas, R.; Gracia-Navarro, F.; et al. The oncogenic role of the spliced somatostatin receptor sst5TMD4 variant in prostate cancer. FASEB J. 2017, 31, 4682–4696. [Google Scholar] [CrossRef]
- Thakur, M.K.; Heilbrun, L.; Dobson, K.; Boerner, J.; Stark, K.; Li, J.; Smith, D.; Heath, E.; Fontana, J.; Vaishampayan, U. Phase I Trial of the Combination of Docetaxel Prednisone, and Pasireotide in Metastatic Castrate-Resistant Prostate Cancer. Clin. Genitourin. Cancer 2018, 16, E695–E703. [Google Scholar] [CrossRef]
- Karaca, B.; Degirmenci, M.; Ozveren, A.; Atmaca, H.; Bozkurt, E.; Karabulut, B.; Sanli, U.A.; Uslu, R. Docetaxel in combination with octreotide shows synergistic apoptotic effect by increasing SSTR2 and SSTR5 expression levels in prostate and breast cancer cell lines. Cancer Chemother. Pharmacol. 2015, 75, 1273–1280. [Google Scholar] [CrossRef]
- Mori, H.; Nakajima, K.; Kadomoto, S.; Mizokami, A.; Ikeda, H.; Wakabayashi, H.; Kinuya, S. Imaging Somatostatin Receptor Activity in Neuroendocrine-differentiated Prostate Cancer. Intern. Med. 2018, 57, 3123–3128. [Google Scholar] [CrossRef]
- Landis, S.H.; Murray, T.; Bolden, S.; Wingo, P.A. Cancer statistics, 1999. CA Cancer J. Clin. 1999, 49, 8–31. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, D.; Huang, C.; Guo, Y.; Yang, Z.; Yao, N.; Dong, X.; Cheng, R.; Zhao, N.; Meng, J.; et al. Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol. Med. 2021, 18, 616–630. [Google Scholar] [CrossRef]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic Adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Kajtazi, Y.; Kaemmerer, D.; Sanger, J.; Schulz, S.; Lupp, A. Somatostatin and chemokine CXCR4 receptor expression in pancreatic adenocarcinoma relative to pancreatic neuroendocrine tumours. J. Cancer Res. Clin. 2019, 145, 2481–2493. [Google Scholar] [CrossRef] [PubMed]
- Ballian, N.; Brunicardi, F.C.; Wang, X.P. Somatostatin and its receptors in the development of the endocrine pancreas. Pancreas 2006, 33, 1–12. [Google Scholar] [CrossRef]
- Brunicardi, F.C.; Kleinman, R.; Moldovan, S.; Nguyen, T.H.L.; Watt, P.C.; Walsh, J.; Gingerich, R. Immunoneutralization of somatostatin, insulin, and glucagon causes alterations in islet cell secretion in the isolated perfused human pancreas. Pancreas 2001, 23, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Brunicardi, F.C.; Wen, D.; Bradley, J.C.; Elahi, D.; Miller, C.; Hanks, J. The effect of intraislet somatostatin immunoneutralization on insulin secretion in the isolated perfused rat pancreas. Int. J. Surg. Investig. 2000, 1, 381–388. [Google Scholar]
- Kleinman, R.M.; Gingerich, R.; Ohning, G.; Bradley, J.C.; Wong, H.; Livingston, E.H.; Walsh, J.; Brunicardi, F.C. Intraislet regulation of pancreatic polypeptide secretion in the isolated perfused rat pancreas. Pancreas 1997, 15, 384–391. [Google Scholar] [CrossRef]
- Kleinman, R.M.; Fagan, S.P.; Ray, M.K.; Adrian, T.E.; Wong, H.; Imagawa, D.; Walsh, J.H.; Brunicardi, F.C. Differential inhibition of insulin and islet amyloid polypeptide secretion by intraislet somatostatin in the isolated perfused human pancreas. Pancreas 1999, 19, 346–352. [Google Scholar] [CrossRef]
- Mandarino, L.; Stenner, D.; Blanchard, W.; Nissen, S.; Gerich, J.; Ling, N.; Brazeau, P.; Bohlen, P.; Esch, F.; Guillemin, R. Selective effects of somatostatin-14, -25 and -28 on in vitro insulin and glucagon secretion. Nature 1981, 291, 76–77. [Google Scholar] [CrossRef] [PubMed]
- Frankel, B.J.; Heldt, A.M.; Grodsky, G.M. Effects of K+ and arginine on insulin, glucagon, and somatostatin release from the in vitro perfused rat pancreas. Endocrinology 1982, 110, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Montminy, M.R.; Low, M.J.; Tapia-Arancibia, L.; Reichlin, S.; Mandel, G.; Goodman, R.H. Cyclic AMP regulates somatostatin mRNA accumulation in primary diencephalic cultures and in transfected fibroblast cells. J. Neurosci. Off. J. Soc. Neurosci. 1986, 6, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, D.N.; Liu, J.L.; Patel, Y.C. Glucocorticoids regulate somatostatin peptide and steady state messenger ribonucleic acid levels in normal rat tissues and in a somatostatin-producing islet tumor cell line (1027B2). Endocrinology 1994, 134, 2259–2266. [Google Scholar] [CrossRef]
- Bell, G.I.; Yasuda, K.; Kong, H.; Law, S.F.; Raynor, K.; Reisine, T. Molecular biology of somatostatin receptors. Ciba Found. Symp. 1995, 190, 65–79, discussion 80–68. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Min, H.J.; Yao, Q.Z.; Chen, C.Y.; Fisher, W.E. Characterization of somatostatin receptor expression in human pancreatic cancer using real-time RT-PCR. J. Surg. Res. 2004, 119, 130–137. [Google Scholar] [CrossRef]
- Ludvigsen, E.; Olsson, R.; Stridsberg, M.; Janson, E.T.; Sandler, S. Expression and distribution of somatostatin receptor subtypes in the pancreatic islets of mice and rats. J. Histochem. Cytochem. 2004, 52, 391–400. [Google Scholar] [CrossRef]
- Kumar, U.; Sasi, R.; Suresh, S.; Patel, A.; Thangaraju, M.; Metrakos, P.; Patel, S.C.; Patel, Y.C. Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells—A quantitative double-label immunohistochemical analysis. Diabetes 1999, 48, 77–85. [Google Scholar] [CrossRef]
- Patel, Y.; Liu, J.-L.; Galanopoulou, A.; Papachristou, D.N. Production, action, and degradation of somatostatin. In Handbook of Physiology; Section 7: The Endocrine System; Jefferson, L.S., Cherrington, A.D., Goodman, H.M., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 267–302. [Google Scholar]
- Liu, A.M.; Wong, Y.H. Activation of nuclear factor {kappa}B by somatostatin type 2 receptor in pancreatic acinar AR42J cells involves G{alpha}14 and multiple signaling components: A mechanism requiring protein kinase C, calmodulin-dependent kinase II, ERK, and c-Src. J. Biol. Chem. 2005, 280, 34617–34625. [Google Scholar] [CrossRef]
- Paran, D.; Paran, H. Somatostatin analogs in rheumatoid arthritis and other inflammatory and immune-mediated conditions. Curr. Opin. Investig. Drugs 2003, 4, 578–582. [Google Scholar]
- Reubi, J.C.; Kappeler, A.; Waser, B.; Laissue, J.; Hipkin, R.W.; Schonbrunn, A. Immunohistochemical localization of somatostatin receptors sst2A in human tumors. Am. J. Pathol. 1998, 153, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, M.; Naruse, S.; Ishiguro, H.; Hayakawa, T. Pharmaceutical development for treating pancreatic diseases. Pancreas 1998, 16, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, L.; Lipsett, M. Biotherapeutic approaches to pancreatic cancer. Expert. Opin. Biol. Ther. 2003, 3, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Fisher, W.E.; Wu, Y.Q.; Amaya, F.; Berger, D.H. Somatostatin receptor subtype 2 gene therapy inhibits pancreatic cancer in vitro. J. Surg. Res. 2002, 105, 58–64. [Google Scholar] [CrossRef]
- Rochaix, P.; Delesque, N.; Esteve, J.P.; Saint-Laurent, N.; Voigt, J.J.; Vaysse, N.; Susini, C.; Buscail, L. Gene therapy for pancreatic carcinoma: Local and distant antitumor effects after somatostatin receptor sst2 gene transfer. Hum. Gene Ther. 1999, 10, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.L.; Ezzat, S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr. Rev. 1998, 19, 798–827. [Google Scholar] [CrossRef] [PubMed]
- Krulich, L.; Dhariwal, A.P.; Mccann, S.M. Stimulatory and Inhibitory Effects of Purified Hypothalamic Extracts on Growth Hormone Release from Rat Pituitary in Vitro. Endocrinology 1968, 83, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Shimon, I. Growth hormone replacement for adult growth hormone deficiency. Expert. Opin. Pharmacol. 2003, 4, 1977–1983. [Google Scholar] [CrossRef]
- Reubi, J.C.; Heitz, P.U.; Landolt, A.M. Visualization of Somatostatin Receptors and Correlation with Immunoreactive Growth-Hormone and Prolactin in Human Pituitary-Adenomas—Evidence for Different Tumor Subclasses. J. Clin. Endocrinol. Metab. 1987, 65, 65–73. [Google Scholar] [CrossRef]
- Reubi, J.C.; Landolt, A.M. High-Density of Somatostatin Receptors in Pituitary-Tumors from Acromegalic Patients. J. Clin. Endocrinol. Metab. 1984, 59, 1148–1151. [Google Scholar] [CrossRef]
- Ocarroll, A.M.; Krempels, K. Widespread Distribution of Somatostatin Receptor Messenger Ribonucleic-Acids in Rat Pituitary. Endocrinology 1995, 136, 5224–5227. [Google Scholar] [CrossRef] [PubMed]
- Stafford, P.J.; Kopelman, P.G.; Davidson, K.; Mcloughlin, L.; White, A.; Rees, L.H.; Besser, G.M.; Coy, D.H.; Grossman, A. The Pituitary-Adrenal Response to Crf-41 Is Unaltered by Intravenous Somatostatin in Normal Subjects. Clin. Endocrinol. 1989, 30, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Volpi, R.; Chiodera, P.; Capretti, L.; Caiazza, A.; Caffarri, G.; Magotti, M.G.; Boni, S.; Coiro, V. Inhibition by somatostatin of the growth hormone, but not corticotropin response to angiotensin II in normal men. Horm. Res. 1996, 45, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Schonbrunn, A. Glucocorticoids down-Regulate Somatostatin Receptors on Pituitary-Cells in Culture. Endocrinology 1982, 110, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Bertherat, J.; Brue, T.; Enjalbert, A.; Gunz, G.; Rasolonjanahary, R.; Warnet, A.; Jaquet, P.; Epelbaum, J. Somatostatin receptors on thyrotropin-secreting pituitary adenomas: Comparison with the inhibitory effects of octreotide upon in vivo and in vitro hormonal secretions. J. Clin. Endocrinol. Metab. 1992, 75, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Chanson, P.; Weintraub, B.D.; Harris, A.G. Octreotide Therapy for Thyroid-Stimulating Hormone-Secreting Pituitary-Adenomas—A Follow-up of 52 Patients. Ann. Intern. Med. 1993, 119, 236–240. [Google Scholar] [CrossRef]
- Beck-Peccoz, P.; Brucker-Davis, F.; Persani, L.; Smallridge, R.C.; Weintraub, B.D. Thyrotropin-secreting pituitary tumors. Endocr. Rev. 1996, 17, 610–638. [Google Scholar] [CrossRef]
- Socin, H.V.; Chanson, P.; Delemer, B.; Tabarin, A.; Rohmer, V.; Mockel, J.; Stevenaert, A.; Beckers, A. The changing spectrum of TSH-secreting pituitary adenomas: Diagnosis and management in 43 patients. Eur. J. Endocrinol. 2003, 148, 433–442. [Google Scholar] [CrossRef]
- Colao, A.; Ferone, D.; Lastoria, S.; Marzullo, P.; Cerbone, G.; DiSarno, A.; Longobardi, S.; Merola, B.; Salvatore, M.; Lombardi, G. Prediction of efficacy of octreotide therapy in patients with acromegaly. J. Clin. Endocrinol. Metab. 1996, 81, 2356–2362. [Google Scholar] [CrossRef]
- Colao, A.; di Sarno, A.; Pivonello, R.; di Somma, C.; Lombardi, G. Dopamine receptor agonists for treating prolactinomas. Expert. Opin. Investig. Drug 2002, 11, 787–800. [Google Scholar] [CrossRef]
- Cuny, T.; Mohamed, A.; Graillon, T.; Roche, C.; Defiles, C.; Germanetti, A.L.; Couderc, B.; Figarella-Branger, D.; Enjalbert, A.; Barlier, A.; et al. Somatostatin receptor sst2 gene transfer in human prolactinomas in vitro: Impact on sensitivity to dopamine, somatostatin and dopastatin, in the control of prolactin secretion. Mol. Cell. Endocrinol. 2012, 355, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Melmed, S.; Casanueva, F.F.; Hoffman, A.R.; Kleinberg, D.L.; Montori, V.M.; Schlechte, J.A.; Wass, J.A.H. Diagnosis and Treatment of Hyperprolactinemia: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 273–288. [Google Scholar] [CrossRef] [PubMed]
- Jaquet, P.; Ouafik, L.; Saveanu, A.; Gunz, G.; Fina, F.; Dufour, H.; Culler, M.D.; Moreau, J.P.; Enjalbert, A. Quantitative and functional expression of somatostatin receptor subtypes in human prolactinomas. J. Clin. Endocrinol. Metab. 1999, 84, 3268–3276. [Google Scholar] [CrossRef] [PubMed]
- Copinschi, G.; Leclercq-Meyer, V.; Virasoro, E.; L’Hermite, M.; Vanhaelst, L.; Golstein, J.; Leclercq, R.; Fery, F.; Robyn, C. Pituitary and extrapituitary effects of somatostatin in normal man. Horm. Metab. Res. 1976, 8, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Lightman, S.L.; Fox, P.; Dunne, M.J. The effect of SMS 201-995, a long-acting somatostatin analogue, on anterior pituitary function in healthy male volunteers. Scand. J. Gastroenterol. Suppl. 1986, 119, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Gooren, L.J.; Harmsen-Louman, W.; van Kessel, H. Somatostatin inhibits prolactin release from the lactotroph primed with oestrogen and cyproterone acetate in man. J. Endocrinol. 1984, 103, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Grasso, L.F.S.; Giustina, A.; Melmed, S.; Chanson, P.; Pereira, A.M.; Pivonello, R. Acromegaly. Nat. Rev. Dis. Primers 2019, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Vortmeyer, A.O.; Glasker, S.; Mehta, G.U.; Abu-Asab, M.S.; Smith, J.H.; Zhuang, Z.; Collins, M.T.; Oldfield, E.H. Somatic GNAS mutation causes widespread and diffuse pituitary disease in acromegalic patients with McCune-Albright syndrome. J. Clin. Endocrinol. Metab. 2012, 97, 2404–2413. [Google Scholar] [CrossRef]
- Vierimaa, O.; Georgitsi, M.; Lehtonen, R.; Vahteristo, P.; Kokko, A.; Raitila, A.; Tuppurainen, K.; Ebeling, T.M.; Salmela, P.I.; Paschke, R.; et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006, 312, 1228–1230. [Google Scholar] [CrossRef]
- Trivellin, G.; Daly, A.F.; Faucz, F.R.; Yuan, B.; Rostomyan, L.; Larco, D.O.; Schernthaner-Reiter, M.H.; Szarek, E.; Leal, L.F.; Caberg, J.H.; et al. Gigantism and Acromegaly Due to Xq26 Microduplications and GPR101 Mutation. N. Engl. J. Med. 2014, 371, 2363–2374. [Google Scholar] [CrossRef]
- Daly, A.F.; Tichomirowa, M.A.; Petrossians, P.; Heliovaara, E.; Jaffrain-Rea, M.L.; Barlier, A.; Naves, L.A.; Ebeling, T.; Karhu, A.; Raappana, A.; et al. Clinical Characteristics and Therapeutic Responses in Patients with Germ-Line AIP Mutations and Pituitary Adenomas: An International Collaborative Study. J. Clin. Endocrinol. Metab. 2010, 95, E373–E383. [Google Scholar] [CrossRef] [PubMed]
- Regazzo, D.; Losa, M.; Albiger, N.M.; Terreni, M.R.; Vazza, G.; Ceccato, F.; Emanuelli, E.; Denaro, L.; Scaroni, C.; Occhi, G. The GIP/GIPR axis is functionally linked to GH-secretion increase in a significant proportion of gsp(-) somatotropinomas. Eur. J. Endocrinol. 2017, 176, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Moyse, E.; Ledafniet, M.; Epelbaum, J.; Pagesy, P.; Peillon, F.; Kordon, C.; Enjalbert, A. Somatostatin Receptors in Human Growth-Hormone and Prolactin-Secreting Pituitary-Adenomas. J. Clin. Endocrinol. Metab. 1985, 61, 98–103. [Google Scholar] [CrossRef]
- Jaquet, P.; Saveanu, A.; Gunz, G.; Fina, F.; Zamora, A.J.; Grino, M.; Culler, M.D.; Moreau, J.P.; Enjalbert, A.; Ouafik, L.H. Human somatostatin receptor subtypes in acromegaly: Distinct patterns of messenger ribonucleic acid expression and hormone suppression identify different tumoral phenotypes. J. Clin. Endocrinol. Metab. 2000, 85, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Katznelson, L.; Laws, E.R., Jr.; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J.A.; Endocrine, S. Acromegaly: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014, 99, 3933–3951. [Google Scholar] [CrossRef] [PubMed]
- Freda, P.U. Somatostatin analogs in acromegaly. J. Clin. Endocrinol. Metab. 2002, 87, 3013–3018. [Google Scholar] [CrossRef]
- Melmed, S.; Jackson, I.; Kleinberg, D.; Klibanski, A. Current treatment guidelines for acromegaly. J. Clin. Endocrinol. Metab. 1998, 83, 2646–2652. [Google Scholar] [CrossRef] [PubMed]
- Shimon, I.; Taylor, J.E.; Dong, J.Z.; Bitonte, R.A.; Kim, S.; Morgan, B.; Coy, D.H.; Culler, M.D.; Melmed, S. Somatostatin receptor subtype specificity in human fetal pituitary cultures—Differential role of SSTR2 and SSTR5 for growth hormone, thyroid-stimulating hormone, and prolactin regulation. J. Clin. Investig. 1997, 99, 789–798. [Google Scholar] [CrossRef]
- Martin-Rodriguez, J.F.; Madrazo-Atutxa, A.; Venegas-Moreno, E.; Benito-Lopez, P.; Galvez, M.A.; Cano, D.A.; Tinahones, F.J.; Torres-Vela, E.; Soto-Moreno, A.; Leal-Cerro, A. Neurocognitive Function in Acromegaly after Surgical Resection of GH-Secreting Adenoma versus Naive Acromegaly. PLoS ONE 2013, 8, e60041. [Google Scholar] [CrossRef]
- Oberg, K.; Lamberts, S.W.J. Somatostatin analogues in acromegaly and gastroenteropancreatic neuroendocrine tumours: Past, present and future. Endocr.-Relat. Cancer 2016, 23, R551–R566. [Google Scholar] [CrossRef]
- Biermasz, N.R.; van Thiel, S.W.; Pereira, A.M.; Hoftijzer, H.C.; van Hemert, A.M.; Smit, J.W.A.; Romijn, J.A.; Roelfsema, F. Decreased quality of life in patients with acromegaly despite long-term cure of growth hormone excess. J. Clin. Endocrinol. Metab. 2004, 89, 5369–5376. [Google Scholar] [CrossRef] [PubMed]
- van der Klaauw, A.A.; Kars, M.; Biermasz, N.R.; Roelfsema, F.; Dekkers, O.M.; Corssmit, E.P.; van Aken, M.O.; Havekes, B.; Pereira, A.M.; Pijl, H.; et al. Disease-specific impairments in quality of life during long-term follow-up of patients with different pituitary adenomas. Clin. Endocrinol. 2008, 69, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Chanson, P.; Raverot, G.; Castinetti, F.; Cortet-Rudelli, C.; Galland, F.; Salenave, S.; French Endocrinology Society non-functioning pituitary adenoma work-group. Management of clinically non-functioning pituitary adenoma. Ann. Endocrinol. 2015, 76, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Flores-Martinez, A.; Venegas-Moreno, E.; Dios, E.; Remon-Ruiz, P.; Gros-Herguido, N.; Vazquez-Borrego, M.C.; Madrazo-Atutxa, A.; Japon, M.A.; Kaen, A.; Cardenas-Valdepenas, E.; et al. Quantitative Analysis of Somatostatin and Dopamine Receptors Gene Expression Levels in Non-functioning Pituitary Tumors and Association with Clinical and Molecular Aggressiveness Features. J. Clin. Med. 2020, 9, 3052. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, E.; Ferraroni, M.; Castrignano, T.; Menicatti, L.; Anagni, M.; Reimondo, G.; Del Monte, P.; Bernasconi, D.; Loli, P.; Faustini-Fustini, M.; et al. Non-functioning pituitary adenoma database: A useful resource to improve the clinical management of pituitary tumors. Eur. J. Endocrinol. 2006, 155, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Ikuyama, S.; Nawata, H.; Kato, K.I.; Ibayashi, H.; Nakagaki, H. Plasma Growth-Hormone Responses to Somatostatin (Srih) and Srih Receptors in Pituitary-Adenomas in Acromegalic Patients. J. Clin. Endocrinol. Metab. 1986, 62, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Debruin, T.W.A.; Kwekkeboom, D.J.; Vantverlaat, J.W.; Reubi, J.C.; Krenning, E.P.; Lamberts, S.W.J.; Croughs, R.J.M. Clinically Nonfunctioning Pituitary-Adenoma and Octreotide Response to Long-Term High-Dose Treatment, and Studies Invitro. J. Clin. Endocrinol. Metab. 1992, 75, 1310–1317. [Google Scholar] [CrossRef]
- Lee, M.; Lupp, A.; Mendoza, N.; Martin, N.; Beschorner, R.; Honegger, J.; Schlegel, J.; Shively, T.; Pulz, E.; Schulz, S.; et al. SSTR3 is a putative target for the medical treatment of gonadotroph adenomas of the pituitary. Endocr. Relat. Cancer 2015, 22, 111–119. [Google Scholar] [CrossRef]
- Ramirez, C.; Cheng, S.; Vargas, G.; Asa, S.L.; Ezzat, S.; Gonzalez, B.; Cabrera, L.; Guinto, G.; Mercado, M. Expression of Ki-67, PTTG1, FGFR4, and SSTR 2, 3, and 5 in nonfunctioning pituitary adenomas: A high throughput TMA, immunohistochemical study. J. Clin. Endocrinol. Metab. 2012, 97, 1745–1751. [Google Scholar] [CrossRef]
- Tateno, T.; Kato, M.; Tani, Y.; Oyama, K.; Yamada, S.; Hirata, Y. Differential expression of somatostatin and dopamine receptor subtype genes in adrenocorticotropin (ACTH)-secreting pituitary tumors and silent corticotroph adenomas. Endocr. J. 2009, 56, 579–584. [Google Scholar] [CrossRef]
- Cano Gonzales, D.; Flores-Martinez, A.; Venegas Moreno, E.; Dios, E.; Remon, P.; Deniz-Ruiz, A.; Madrazo-Atutxa, A.; Luque, R.M.; Castaño, J.P.; Soto-Moreno, A. Evaluation of somatostatin and dopamine receptor expression in nonfunctioning pituitary adenomas. Endocr. Abstr. 2020, 70, AEP684. [Google Scholar]
- Zawada, N.B.; Kunert-Radek, J. The expression of somatostatin receptor subtypes in immunohistochemistry and the response to somatostatin analogue therapy in non-functioning pituitary adenomas. Endocr. Abstr. 2019, 63, P1059. [Google Scholar] [CrossRef]
- Taboada, G.F.; Luque, R.M.; Bastos, W.; Guimaraes, R.F.; Marcondes, J.B.; Chimelli, L.M.; Fontes, R.; Mata, P.J.; Filho, P.N.; Carvalho, D.P.; et al. Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur. J. Endocrinol. 2007, 156, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Gabalec, F.; Drastikova, M.; Cesak, T.; Netuka, D.; Masopust, V.; Machac, J.; Marek, J.; Cap, J.; Beranek, M. Dopamine 2 and somatostatin 1-5 receptors coexpression in clinically non-functioning pituitary adenomas. Physiol. Res. 2015, 64, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Wang, C.; Wu, J.; Jiang, X.; Chen, Y.; Chen, Y.; Zheng, W.; Zhuge, Q.; Wu, Z.; Zeng, Y. Expression of dopamine 2 receptor subtype mRNA in clinically nonfunctioning pituitary adenomas. Neurol. Sci. 2012, 33, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; White, W.L.; Spetzler, R.F.; Xu, B. A prospective study of nonfunctioning pituitary adenomas: Presentation, management, and clinical outcome. J. Neurooncol 2011, 102, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Korbonits, M.; Carlsen, E. Recent clinical and pathophysiological advances in non-functioning pituitary adenomas. Horm. Res. 2009, 71 (Suppl. 2), 123–130. [Google Scholar] [CrossRef] [PubMed]
- Klibanski, A.; Alexander, J.M.; Bikkal, H.A.; Hsu, D.W.; Swearingen, B.; Zervas, N.T. Somatostatin Regulation of Glycoprotein Hormone and Free Subunit Secretion in Clinically Nonfunctioning and Somatotroph Adenomas Invitro. J. Clin. Endocrinol. Metab. 1991, 73, 1248–1255. [Google Scholar] [CrossRef]
- Florio, T.; Thellung, S.; Arena, S.; Corsaro, A.; Spaziante, R.; Gussoni, G.; Acuto, G.; Giusti, M.; Giordano, G.; Schettini, G. Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human non-functioning pituitary adenoma cells in vitro. Eur. J. Endocrinol. 1999, 141, 396–408. [Google Scholar] [CrossRef]
- Hofland, L.J.; DeHerder, W.W.; VisserWisselaar, H.A.; VanUffelen, C.; Waaijers, M.; Zuyderwijk, J.; Uitterlinden, P.; Kros, M.J.M.; VanKoetsveld, P.M.; Lamberts, S.W.J. Dissociation between the effects of somatostatin (SS) and octapeptide SS-analogs on hormone release in a small subgroup of pituitary- and islet cell tumors. J. Clin. Endocrinol. Metab. 1997, 82, 3011–3018. [Google Scholar] [CrossRef]
- Fusco, A.; Giampietro, A.; Bianchi, A.; Cimino, V.; Lugli, F.; Piacentini, S.; Lorusso, M.; Tofani, A.; Perotti, G.; Lauriola, L.; et al. Treatment with octreotide LAR in clinically non-functioning pituitary adenoma: Results from a case-control study. Pituitary 2012, 15, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Padova, H.; Rubinfeld, H.; Hadani, M.; Cohen, Z.R.; Nass, D.; Taylor, J.E.; Culler, M.D.; Shimon, I. Effects of selective somatostatin analogs and cortistatin on cell viability in cultured human non-functioning pituitary adenomas. Mol. Cell. Endocrinol. 2008, 286, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Zatelli, M.C.; Piccin, D.; Vignali, C.; Tagliati, F.; Ambrosio, M.R.; Bondanelli, M.; Cimino, V.; Bianchi, A.; Schmid, H.A.; Scanarini, M.; et al. Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr. Relat. Cancer 2007, 14, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Zawada, N.B.; Kunert-Radek, J.; Pawlikowski, M.; Pisarek, H.; Radek, M. An evaluation of the effects of somatostatin analogue therapy in non-functioning pituitary adenomas in comparison to acromegaly. Endokrynol. Pol. 2016, 67, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Modena, D.; Moras, M.L.; Sandrone, G.; Stevenazzi, A.; Vergani, B.; Dasgupta, P.; Kliever, A.; Gulde, S.; Marangelo, A.; Schillmaier, M.; et al. Identification of a Novel SSTR3 Full Agonist for the Treatment of Nonfunctioning Pituitary Adenomas. Cancers 2023, 15, 3453. [Google Scholar] [CrossRef]
- Gagliano, T.; Filieri, C.; Minoia, M.; Buratto, M.; Tagliati, F.; Ambrosio, M.R.; Lapparelli, M.; Zoli, M.; Frank, G.; degli Uberti, E.; et al. Cabergoline reduces cell viability in non functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Pituitary 2013, 16, 91–100. [Google Scholar] [CrossRef]
- Pawlikowski, M. Immunohistochemical detection of dopamine D2 receptors in human pituitary adenomas. Folia Histochem. Cytobiol. 2010, 48, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Baragli, A.; Alturaihi, H.; Watt, H.L.; Abdallah, A.; Kumar, U. Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2 Co-immunoprecipitation and fluorescence resonance energy transfer analysis. Cell. Signal. 2007, 19, 2304–2316. [Google Scholar] [CrossRef]
- Colao, A.; Di Somma, C.; Pivonello, R.; Faggiano, A.; Lombardi, G.; Savastano, S. Medical therapy for clinically non-functioning pituitary adenomas. Endocr. Relat. Cancer 2008, 15, 905–915. [Google Scholar] [CrossRef]
- Florio, T.; Barbieri, F.; Spaziante, R.; Zona, G.; Hofland, L.J.; van Koetsveld, P.M.; Feelders, R.A.; Stalla, G.K.; Theodoropoulou, M.; Culler, M.D.; et al. Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: A multi-center study. Endocr. Relat. Cancer 2008, 15, 583–596. [Google Scholar] [CrossRef]
- Neto, L.V.; Machado Ede, O.; Luque, R.M.; Taboada, G.F.; Marcondes, J.B.; Chimelli, L.M.; Quintella, L.P.; Niemeyer, P., Jr.; de Carvalho, D.P.; Kineman, R.D.; et al. Expression analysis of dopamine receptor subtypes in normal human pituitaries, nonfunctioning pituitary adenomas and somatotropinomas, and the association between dopamine and somatostatin receptors with clinical response to octreotide-LAR in acromegaly. J. Clin. Endocrinol. Metab. 2009, 94, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Gruszka, A.; Kunert-Radek, J.; Radek, A.; Pisarek, H.; Taylor, J.; Dong, J.Z.; Culler, M.D.; Pawlikowski, M. The effect of selective sst1, sst2, sst5 somatostatin receptors agonists, a somatostatin/dopamine (SST/DA) chimera and bromocriptine on the “clinically non-functioning” pituitary adenomas in vitro. Life Sci. 2006, 78, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Saveanu, A.; Gunz, G.; Guillen, S.; Dufour, H.; Culler, M.D.; Jaquet, P. Somatostatin and dopamine-somatostatin multiple ligands directed towards somatostatin and dopamine receptors in pituitary adenomas. Neuroendocrinology 2006, 83, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Grant, M. Somatostatin and somatostatin receptors. Results Probl. Cell Differ. 2010, 50, 137–184. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Wildemberg, L.E.; Bronstein, M.D.; Gatto, F.; Ferone, D. Somatostatin receptor ligands in the treatment of acromegaly. Pituitary 2017, 20, 100–108. [Google Scholar] [CrossRef]
- Taboada, G.F.; Luque, R.M.; Neto, L.V.; Machado Ede, O.; Sbaffi, B.C.; Domingues, R.C.; Marcondes, J.B.; Chimelli, L.M.; Fontes, R.; Niemeyer, P.; et al. Quantitative analysis of somatostatin receptor subtypes (1-5) gene expression levels in somatotropinomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR. Eur. J. Endocrinol. 2008, 158, 295–303. [Google Scholar] [CrossRef]
- Luque, R.M.; Ibanez-Costa, A.; Neto, L.V.; Taboada, G.F.; Hormaechea-Agulla, D.; Kasuki, L.; Venegas-Moreno, E.; Moreno-Carazo, A.; Galvez, M.A.; Soto-Moreno, A.; et al. Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation, invasion and reduced octreotide response) to somatotropinomas. Cancer Lett. 2015, 359, 299–306. [Google Scholar] [CrossRef]
- Colao, A.; Filippella, M.; Pivonello, R.; Di Somma, C.; Faggiano, A.; Lombardi, G. Combined therapy of somatostatin analogues and dopamine agonists in the treatment of pituitary tumours. Eur. J. Endocrinol. 2007, 156, S57–S63. [Google Scholar] [CrossRef]
- Jaquet, P.; Gunz, G.; Saveanu, A.; Barlier, A.; Dufour, H.; Taylor, J.; Dong, J.; Kim, S.; Moreau, J.P.; Culler, M.D. BIM-23A760, a chimeric molecule directed towards somatostatin and dopamine receptors, vs universal somatostatin receptors ligands in GH-secreting pituitary adenomas partial responders to octreotide. J. Endocrinol. Investig. 2005, 28, 21–27. [Google Scholar]
- Saveanu, A.; Lavaque, E.; Gunz, G.; Barlier, A.; Kim, S.; Taylor, J.E.; Culler, M.D.; Enjalbert, A.; Jaquet, P. Demonstration of enhanced potency of a chimeric somatostatin-dopamine molecule, BIM-23A387, in suppressing growth hormone and prolactin secretion from human pituitary somatotroph adenoma cells. J. Clin. Endocrinol. Metab. 2002, 87, 5545–5552. [Google Scholar] [CrossRef]
- Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005, 55, 74–108. [Google Scholar] [CrossRef] [PubMed]
- Minna, J.D. Summary of the role of dominant and recessive oncogenes in the pathogenesis of lung cancer and the application of this knowledge in translational research. In Lung Cancer: Principles and Practice; Pass, H., Carbone, D.R., Johnson, D.H., Minna, J.D., Turrisi, A.T., III, Eds.; JB Lippincott: Philadelphia, PA, USA, 1994. [Google Scholar]
- Catane, R.; Lichter, A.; Lee, Y.J.; Brereton, H.D.; Schwade, J.G.; Glatstein, E. Small Cell Lung-Cancer—Analysis of Treatment Factors Contributing to Prolonged Survival. Cancer 1981, 48, 1936–1943. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Schiller, J.H.; Spinola, M.; Minna, J.D. New molecularly targeted therapies for lung cancer. J. Clin. Investig. 2007, 117, 2740–2750. [Google Scholar] [CrossRef] [PubMed]
- Lehman, J.M.; Hoeksema, M.D.; Staub, J.; Qian, J.; Harris, B.; Callison, J.C.; Miao, J.; Shi, C.J.; Eisenberg, R.; Chen, H.D.; et al. Somatostatin receptor 2 signaling promotes growth and tumor survival in small-cell lung cancer. Int. J. Cancer 2019, 144, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Hankus, J.; Tomaszewska, R. Neuroendocrine neoplasms and somatostatin receptor subtypes expression. Nucl. Med. Rev. 2016, 19, 111–117. [Google Scholar] [CrossRef]
- Taylor, J.E.; Bogden, A.E.; Moreau, J.P.; Coy, D.H. In vitro and in vivo inhibition of human small cell lung carcinoma (NCI-H69) growth by a somatostatin analogue. Biochem. Biophys. Res. Commun. 1988, 153, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Waser, B.; Schaer, J.C.; Laissue, J.A. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med. 2001, 28, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Righi, L.; Volante, M.; Tavaglione, V.; Bille, A.; Daniele, L.; Angusti, T.; Inzani, F.; Pelosi, G.; Rindi, G.; Papotti, M. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: A clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann. Oncol. 2010, 21, 548–555. [Google Scholar] [CrossRef]
- Tartarone, A.; Lerose, R.; Aieta, M. Somatostatin Analog Therapy in Small Cell Lung Cancer. Semin. Nucl. Med. 2016, 46, 239–242. [Google Scholar] [CrossRef]
- Milhoan, R.A.; Trudel, J.L.; Lawrence, J.P.; Townsend, C.M.; Thompson, J.C. Somatostatin inhibits growth of human small cell lung carcinoma in vivo. Surg. Forum 1988, 39, 438–440. [Google Scholar]
- Cuttitta, F.; Carney, D.N.; Mulshine, J.; Moody, T.W.; Fedorko, J.; Fischler, A.; Minna, J.D. Bombesin-Like Peptides Can Function as Autocrine Growth-Factors in Human Small-Cell Lung-Cancer. Nature 1985, 316, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Zuckerman, J.E.; Bostwick, D.G.; Bensch, K.G.; Sikic, B.I.; Raffin, T.A. Gastrin releasing peptide is a selective mitogen for small cell lung carcinoma in vitro. J. Clin. Investig. 1985, 75, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Moody, T.W.; Russell, E.K.; Odonohue, T.L.; Linden, C.D.; Gazdar, A.F. Bombesin-Like Peptides in Small Cell Lung-Cancer—Biochemical-Characterization and Secretion from a Cell-Line. Life Sci. 1983, 32, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Kiaris, H.; Schally, A.V.; Nagy, A.; Szepeshazi, K.; Hebert, F.; Halmos, G. A targeted cytotoxic somatostatin (SST) analogue, AN-238, inhibits the growth of H-69 small-cell lung carcinoma (SCLC) and H-157 non-SCLC in nude mice. Eur. J. Cancer 2001, 37, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Domvri, K.; Bougiouklis, D.; Zarogoulidis, P.; Porpodis, K.; Xristoforidis, M.; Liaka, A.; Eleutheriadou, E.; Lampaki, S.; Lazaridis, G.; Organtzis, J.; et al. Could Somatostatin Enhance the Outcomes of Chemotherapeutic Treatment in SCLC? J. Cancer 2015, 6, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Schally, A.V. Targeted cytotoxic somatostatin analogs: A modern approach to the therapy of various cancers. Drug Future 2001, 26, 261–270. [Google Scholar] [CrossRef]
- O’Byrne, K.J.; Schally, A.V.; Thomas, A.; Carney, D.N.; Steward, W.P. Somatostatin, its receptors and analogs, in lung cancer. Chemotherapy 2001, 47, 78–108. [Google Scholar] [CrossRef]
- Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev. 2003, 24, 389–427. [Google Scholar] [CrossRef]
- Schally, A.V.; Nagy, A. New approaches to treatment of various cancers based on cytotoxic analogs of LHRH, somatostatin and bombesin. Life Sci. 2003, 72, 2305–2320. [Google Scholar] [CrossRef]
- Shen, H.C.; Hu, D.Y.; Du, J.J.; Wang, X.W.; Liu, Y.G.; Wang, Y.W.; Wei, J.M.; Ma, D.X.; Wang, P.; Li, L. Paclitaxel-octreotide conjugates in tumor growth inhibition of A549 human non-small cell lung cancer xenografted into nude mice. Eur. J. Pharmacol. 2008, 601, 23–29. [Google Scholar] [CrossRef]
- Chu, J.J.; Chen, K.D.; Lin, Y.L.; Fei, C.Y.; Chiang, A.S.; Chiang, C.D.; Lai, Y.K. Taxol induces concomitant hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells. J. Cell Biochem. 1998, 68, 472–483. [Google Scholar] [CrossRef]
- Horwitz, S.B. Mechanism of Action of Taxol. Trends Pharmacol. Sci. 1992, 13, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.L.; Wei, J.M.; Wang, X.W.; Li, L.; Wang, P.; Li, M.; Yi, C.H. Paclitaxel-octreotide conjugates inhibit growth of human non-small cell lung cancer cells in vitro. Exp. Oncol. 2007, 29, 186–191. [Google Scholar] [PubMed]
- Kidd, M.; Drozdov, I.; Joseph, R.; Pfragner, R.; Culler, M.; Modlin, I. Differential cytotoxicity of novel somatostatin and dopamine chimeric compounds on bronchopulmonary and small intestinal neuroendocrine tumor cell lines. Cancer 2008, 113, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Ferone, D.; Arvigo, M.; Semino, C.; Jaquet, P.; Saveanu, A.; Taylor, J.E.; Moreau, J.P.; Culler, M.D.; Albertelli, M.; Minuto, F.; et al. Somatostatin and dopamine receptor expression in lung carcinoma cells and effects of chimeric somatostatin-dopamine molecules on cell proliferation. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E1044–E1050. [Google Scholar] [CrossRef] [PubMed]
- Pivonello, C.; Rousaki, P.; Negri, M.; Sarnataro, M.; Napolitano, M.; Zito Marino, F.; Patalano, R.; De Martino, M.C.; Sciammarella, C.; Faggiano, A.; et al. Effects of the single and combined treatment with dopamine agonist, somatostatin analog and mTOR inhibitors in a human lung carcinoid cell line: An in vitro study. Endocrine 2017, 56, 603–620. [Google Scholar] [CrossRef] [PubMed]
- Holmboe, S.; Hansen, P.L.; Thisgaard, H.; Block, I.; Muller, C.; Langkjaer, N.; Hoilund-Carlsen, P.F.; Olsen, B.B.; Mollenhauer, J. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411. PLoS ONE 2017, 12, e0178286. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersson, A.; Olsson, T.; Bjornebrink, J.; Hagg, E. Diagnosis of ectopic ACTH production from a bronchial carcinoid by imaging with octreotide scintigraphy. Eur. J. Surg. 1996, 162, 515–518. [Google Scholar]
- Kwekkeboom, D.J.; Krenning, E.P.; Bakker, W.H.; Oei, H.Y.; Kooij, P.P.M.; Lamberts, S.W.J. Somatostatin Analog Scintigraphy in Carcinoid-Tumors. Eur. J. Nucl. Med. 1993, 20, 283–292. [Google Scholar] [CrossRef]
- Musi, M.; Carbone, R.G.; Bertocchi, C.; Cantalupi, D.P.; Michetti, G.; Pugliese, C.; Virotta, G. Bronchial carcinoid tumours: A study on clinicopathological features and role of octreotide scintigraphy. Lung Cancer 1998, 22, 97–102. [Google Scholar] [CrossRef]
- Borbath, I.; Leclercq, I.A.; Abarca-Quinones, J.; Desaeger, C.; Lebrun, V.; Moulin, P.; Sempoux, C.; Horsmans, Y. Inhibition of early preneoplastic events in the rat liver by the somatostatin analog lanreotide. Cancer Sci. 2007, 98, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B. Hepatocellular carcinoma—An epidemiologic view. J. Clin. Gastroenterol. 2002, 35, S72–S78. [Google Scholar] [CrossRef]
- Reynaert, H.; Colle, I. Treatment of Advanced Hepatocellular Carcinoma with Somatostatin Analogues: A Review of the Literature. Int. J. Mol. Sci. 2019, 20, 4811. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Palmer, D.; Johnson, P. New medical options for liver tumours. Clin. Med. 2007, 7, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, A.; Patt, Y.Z. Nonsurgical treatment of hepatocellular carcinoma. Semin. Oncol. 2001, 28, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Kuyvenhoven, J.P.; Lamers, C.B.H.W.; van Hoek, B. Practical management of hepatocellular carcinoma. Scand. J. Gastroenterol. 2001, 36, 82–87. [Google Scholar] [CrossRef]
- Leung, T.W.T.; Johnson, P.J. Systemic therapy for hepatocellular carcinoma. Semin. Oncol. 2001, 28, 514–520. [Google Scholar] [CrossRef]
- Leung, T.W.T.; Patt, Y.Z.; Lau, W.Y.; Ho, S.K.W.; Yu, S.C.H.; Chan, A.T.C.; Mok, T.S.K.; Yeo, W.; Liew, C.T.; Leung, N.W.Y.; et al. Complete pathological remission is possible with systemic combination chemotherapy for inoperable hepatocellular carcinoma. Clin. Cancer Res. 1999, 5, 1676–1681. [Google Scholar]
- Cebon, J. Somatostatin receptor expression, tumour response, and quality of life in patients with advanced hepatocellular carcinoma treated with long-acting octreotide. Br. J. Cancer 2006, 95, 853–861. [Google Scholar] [CrossRef]
- Thomas, M.B.; Abbruzzese, J.L. Opportunities for targeted therapies in hepatocellular carcinoma. J. Clin. Oncol. 2005, 23, 8093–8108. [Google Scholar] [CrossRef]
- Yuen, M.F.; Cheng, C.C.; Lauder, I.J.; Lam, S.K.; Ooi, C.G.C.; Lai, C.L. Early detection of hepatocellular carcinoma increases the chance of treatment: Hong Kong experience. Hepatology 2000, 31, 330–335. [Google Scholar] [CrossRef]
- Reynaert, H.; Rombouts, K.; Vandermonde, A.; Urbain, D.; Kumar, U.; Bioulac-Sage, P.; Pinzani, M.; Rosenbaum, J.; Geerts, A. Expression of somatostatin receptors in normal and cirrhotic human liver and in hepatocellular carcinoma. Gut 2004, 53, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Zimmermann, A.; Jonas, S.; Waser, B.; Neuhaus, P.; Laderach, U.; Wiedenmann, B. Regulatory peptide receptors in human hepatocellular carcinomas. Gut 1999, 45, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Lequoy, M.; Desbois-Mouthon, C.; Wendum, D.; Gupta, V.; Blachon, J.L.; Scatton, O.; Dumont, S.; Bonnemaire, M.; Schmidlin, F.; Rosmorduc, O.; et al. Somatostatin receptors in resected hepatocellular carcinoma: Status and correlation with markers of poor prognosis. Histopathology 2017, 70, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Koc, E.U.; Ozgur, T.; Yerci, O.; Gurel, S. Somatostatin Receptor 1 (SSTR1) and Somatostatin Receptor 5 (SSTR5) Expressions in Hepatocellular Carcinoma. Hepato-Gastroenterology 2013, 60, 1693–1697. [Google Scholar] [PubMed]
- Kaemmerer, D.; Schindler, R.; Mussbach, F.; Dahmen, U.; Altendorf-Hofmann, A.; Dirsch, O.; Sanger, J.; Schulz, S.; Lupp, A. Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: Tumor capillaries as promising targets. BMC Cancer 2017, 17, 896. [Google Scholar] [CrossRef] [PubMed]
- Blaker, M.; Schmitz, M.; Gocht, A.; Burghardt, S.; Schulz, M.; Broring, D.C.; Pace, A.; Greten, H.; de Weerth, A. Differential expression of somatostatin receptor subtypes in hepatocellular carcinomas. J. Hepatol. 2004, 41, 112–118. [Google Scholar] [CrossRef]
- Oh, S.H.; Hatch, H.M.; Petersen, B.E. Hepatic oval ‘stem’ cell in liver regeneration. Semin. Cell Dev. Biol. 2002, 13, 405–409. [Google Scholar] [CrossRef]
- Jung, Y.M.; Oh, S.H.; Zheng, D.H.; Shupe, T.D.; Witek, R.P.; Petersen, B.E. A potential role of somatostatin and its receptor SSTR4 in the migration of hepatic oval cells. Lab. Investig. 2006, 86, 477–489. [Google Scholar] [CrossRef]
- Dimitroulopoulos, D.; Xinopoulos, D.; Tsamakidis, K.; Zisimopoulos, A.; Andriotis, E.; Panagiotakos, D.; Fotopoulou, A.; Chrysohoou, C.; Bazinis, A.; Daskalopoulou, D.; et al. Long acting octreotide in the treatment of advanced hepatocellular cancer and overexpression of somatostatin receptors: Randomized placebo-controlled trial. World J. Gastroenterol. 2007, 13, 3164–3170. [Google Scholar] [CrossRef]
- Samonakis, D.N.; Moschandreas, J.; Arnaoutis, T.; Skordilis, P.; Leontidis, C.; Vafiades, I.; Kouroumalis, E. Treatment of hepatocellular carcinoma with long acting somatostatin analogues. Oncol. Rep. 2002, 9, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Kouroumalis, E.; Skordilis, P.; Thermos, K.; Vasilaki, A.; Moschandrea, J.; Manousos, O.N. Treatment of hepatocellular carcinoma with octreotide: A randomised controlled study. Gut 1998, 42, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Notas, G.; Kolios, G.; Mastrodimou, N.; Kampa, M.; Vasilaki, A.; Xidakis, C.; Castanas, E.; Thermos, K.; Kouroumalis, E. Cortistatin production by HepG2 human hepatocellular carcinoma cell line and distribution of somatostatin receptors. J. Hepatol. 2004, 40, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Z.; Huang, A.M.; Liu, J.F.; Wang, B.; Lin, K.C.; Ye, Y.B. Somatostatin Octapeptide Inhibits Cell Invasion and Metastasis in Hepatocellular Carcinoma Through PEBP1. Cell. Physiol. Biochem. 2018, 47, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Notas, G.; Kampa, M.; Nifli, A.P.; Xidakis, K.; Papasava, D.; Thermos, K.; Kouroumalis, E.; Castanas, E. The inhibitory effect of opioids on HepG2 cells is mediated via interaction with somatostatin receptors. Eur. J. Pharmacol. 2007, 555, 1–7. [Google Scholar] [CrossRef]
- Lasfer, M.; Vadrot, N.; Schally, A.V.; Nagy, A.; Halmos, G.; Pessayre, D.; Feldmann, G.; Reyl-Desmars, F.J. Potent induction of apoptosis in human hepatoma cell lines by targeted cytotoxic somatostatin analogue AN-238. J. Hepatol. 2005, 42, 230–237. [Google Scholar] [CrossRef]
- Cives, M.; Kunz, P.L.; Morse, B.; Coppola, D.; Schell, M.J.; Campos, T.; Nguyen, P.T.; Nandoskar, P.; Khandelwal, V.; Strosberg, J.R. Phase II clinical trial of pasireotide long-acting repeatable in patients with metastatic neuroendocrine tumors. Endocr.-Relat. Cancer 2015, 22, 1–9. [Google Scholar] [CrossRef]
- Feun, L.G.; Wangpaichitr, M.; Li, Y.Y.; Kwon, D.; Richman, S.P.; Hosein, P.J.; Savaraj, N. Phase II trial of SOM230 (pasireotide LAR) in patients with unresectable hepatocellular carcinoma. J. Hepatocell. Carcinoma 2018, 5, 9–15. [Google Scholar] [CrossRef]
- Scopa, C.D. Histopathology of thyroid tumors. An overview. Hormones 2004, 3, 100–110. [Google Scholar] [CrossRef]
- Rosai, J.; Carcangiu, M.L.; DeLellis, R.A. Tumors of the Thyroid Gland, Atlas of Tumor Pathology; Armed Forces Institute of Pathology: Washington, DC, USA, 1992. [Google Scholar]
- Va, L. Surgical Pathology of the Thyroid. In Major Problems in Pathology; Bennington, J.L., Ed.; WB Saunders Co.: Philadelphia, PA, USA, 1990; p. 22. [Google Scholar]
- Wolf, B.C.; Sheahan, K.; DeCoste, D.; Variakojis, D.; Alpern, H.D.; Haselow, R.E. Immunohistochemical analysis of small cell tumors of the thyroid gland: An Eastern Cooperative Oncology Group study. Hum. Pathol. 1992, 23, 1252–1261. [Google Scholar] [CrossRef]
- Zedenius, J.; Auer, G.; Backdahl, M.; Falkmer, U.; Grimelius, L.; Lundell, G.; Wallin, G. Follicular tumors of the thyroid gland: Diagnosis, clinical aspects and nuclear DNA analysis. World J. Surg. 1992, 16, 589–594. [Google Scholar] [CrossRef]
- Papotti, M.; Torchio, B.; Grassi, L.; Favero, A.; Bussolati, G. Poorly differentiated oxyphilic (Hurthle cell) carcinomas of the thyroid. Am. J. Surg. Pathol. 1996, 20, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Herac, M.; Niederle, B.; Raderer, M.; Krebs, M.; Kaserer, K.; Koperek, O. Expression of somatostatin receptor 2A in medullary thyroid carcinoma is associated with lymph node metastasis. Apmis 2016, 124, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Prokopakis, E.; Doulaptsi, M.; Kaprana, A.; Velegrakis, S.; Vlastos, Y.; Velegrakis, G. Treating medullary thyroid carcinoma in a tertiary center. Current trends and review of the literature. Hippokratia 2014, 18, 130–134. [Google Scholar] [PubMed]
- Lam, K.Y.; Lo, C.Y.; Chan, K.W.; Wan, K.Y. Insular and anaplastic carcinoma of the thyroid—A 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann. Surg. 2000, 231, 329–338. [Google Scholar] [CrossRef]
- Preto, A.; Reis, J.S.; Ricardo, S.; Soares, P. P63 expression in papillary and anaplastic carcinomas of the thyroid gland: Lack of an oncogenetic role in tumorigenesis and progression. Pathol. Res. Pract. 2002, 198, 449–454. [Google Scholar] [CrossRef]
- Aldinger, K.A.; Samaan, N.A.; Ibanez, M.; Hill, C.S., Jr. Anaplastic carcinoma of the thyroid: A review of 84 cases of spindle and giant cell carcinoma of the thyroid. Cancer 1978, 41, 2267–2275. [Google Scholar] [CrossRef]
- Lo, C.Y.; Lam, K.Y.; Wan, K.Y. Anaplastic carcinoma of the thyroid. Am. J. Surg. 1999, 177, 337–339. [Google Scholar] [CrossRef]
- Soares, P.; Sobrinhosimoes, M. Recent Advances in Cytometry, Cytogenetics and Molecular-Genetics of Thyroid-Tumors and Tumor-Like Lesions. Pathol. Res. Pract. 1995, 191, 304–317. [Google Scholar] [CrossRef]
- Spires, J.R.; Schwartz, M.R.; Miller, R.H. Anaplastic Thyroid-Carcinoma—Association with Differentiated Thyroid-Cancer. Arch. Otolaryngol. 1988, 114, 40–44. [Google Scholar] [CrossRef]
- Salavati, A.; Puranik, A.; Kulkarni, H.R.; Budiawan, H.; Baum, R.P. Peptide Receptor Radionuclide Therapy (PRRT) of Medullary and Nonmedullary Thyroid Cancer Using Radiolabeled Somatostatin Analogues. Semin. Nucl. Med. 2016, 46, 215–224. [Google Scholar] [CrossRef]
- Druckenthaner, M.; Schwarzer, C.; Ensinger, C.; Gabriel, M.; Prommegger, R.; Riccabona, G.; Decristoforo, C. Evidence for Somatostatin receptor 2 in thyroid tissue. Regul. Pept. 2007, 138, 32–39. [Google Scholar] [CrossRef]
- Zatelli, M.C.; Tagliati, F.; Taylor, J.E.; Piccin, D.; Culler, M.D.; degli Uberti, E. Somatostatin, but not somatostatin receptor subtypes 2 and 5 selective agonists, inhibits calcitonin secretion and gene expression in the human medullary thyroid carcinoma cell line, TT. Horm. Metab. Res. 2002, 34, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Ain, K.B.; Taylor, K.D.; Tofiq, S.; Venkataraman, G. Somatostatin receptor subtype expression in human thyroid and thyroid carcinoma cell lines. J. Clin. Endocrinol. Metab. 1997, 82, 1857–1862. [Google Scholar] [CrossRef] [PubMed]
- Klagge, A.; Krause, K.; Schierle, K.; Steinert, F.; Dralle, H.; Fuhrer, D. Somatostatin Receptor Subtype Expression in Human Thyroid Tumours. Horm. Metab. Res. 2010, 42, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Bronstein, M.D.; Freda, P.; Gu, F.; Shen, C.C.; Gadelha, M.; Fleseriu, M.; van der Lely, A.J.; Farrall, A.J.; Hermosillo Resendiz, K.; et al. Pasireotide versus octreotide in acromegaly: A head-to-head superiority study. J. Clin. Endocrinol. Metab. 2014, 99, 791–799. [Google Scholar] [CrossRef]
- Colao, A.; Petersenn, S.; Newell-Price, J.; Findling, J.W.; Gu, F.; Maldonado, M.; Schoenherr, U.; Mills, D.; Salgado, L.R.; Biller, B.M.K.; et al. A 12-Month Phase 3 Study of Pasireotide in Cushing’s Disease. N. Engl. J. Med. 2012, 366, 914–924. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Bronstein, M.D.; Brue, T.; Coculescu, M.; Fleseriu, M.; Guitelman, M.; Pronin, V.; Raverot, G.; Shimon, I.; Lievre, K.K.; et al. Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): A randomised, phase 3 trial. Lancet. Diabetes Endocrinol. 2014, 2, 875–884. [Google Scholar] [CrossRef]
- Singh, S.; Somvanshi, R.K.; Panda, V.; Kumar, U. Comparative distribution of somatostatin and somatostatin receptors in PTU-induced hypothyroidism. Endocrine 2020, 70, 92–106. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Leonard, J.L.; Davis, P.J. Molecular Aspects of Thyroid Hormone Actions. Endocr. Rev. 2010, 31, 139–170. [Google Scholar] [CrossRef]
- Williams, G.R. Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocrinol. 2008, 20, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Brent, G.A. Mechanisms of thyroid hormone action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association Guidelines for the Management of Medullary Thyroid Carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef] [PubMed]
- Are, C.; Shaha, A.R. Anaplastic thyroid carcinoma: Biology, pathogenesis, prognostic factors, and treatment approaches. Ann. Surg. Oncol. 2006, 13, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Paunovic, I.R.; Sipetic, S.B.; Zoric, G.V.; Diklic, A.D.; Savic, D.V.; Marinkovic, J.; Zivaljevic, V.R. Survival and Prognostic Factors of Anaplastic Thyroid Carcinoma. Acta Chir. Belg. 2015, 115, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Jiang, X.D.; Chen, P.H.; Wu, X.B.; Duan, A.H.; Qin, Y.Y. Combined effects of octreotide and cisplatin on the proliferation of side population cells from anaplastic thyroid cancer cell lines. Oncol. Lett. 2018, 16, 4033–4042. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, J.J.; Kwekkeboom, D.J.; Krenning, E.P. Staging and treatment of differentiated thyroid carcinoma with radiolabeled somatostatin analogs. Trends Endocrinol. Metab. 2006, 17, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Iten, F.; Muller, B.; Schindler, C.; Rochlitz, C.; Oertli, D.; Macke, H.R.; Muller-Brand, J.; Walter, M.A. Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: A phase II clinical trial. Clin. Cancer Res. 2007, 13, 6696–6702. [Google Scholar] [CrossRef]
- Kendler, D.B.; Araujo, M.L.; Alencar, R.; Accioly, M.T.D.; Bulzico, D.A.; Pessoa, C.C.D.; Accioly, F.A.; Farias, T.P.; Lopes, F.P.P.L.; Corbo, R.; et al. Somatostatin receptor subtype 1 might be a predictor of better response to therapy in medullary thyroid carcinoma. Endocrine 2017, 58, 474–480. [Google Scholar] [CrossRef]
- de Vries, L.H.; Lodewijk, L.; Willems, S.M.; Dreijerink, K.M.A.; de Keizer, B.; van Diest, P.J.; Schepers, A.; Bonenkamp, H.J.; van Engen-van Grunsven, I.A.C.H.; Kruijff, S.; et al. SSTR2A expression in medullary thyroid carcinoma is correlated with longer survival. Endocrine 2018, 62, 639–647. [Google Scholar] [CrossRef]
- Baudin, E.; Schlumberger, M.; Lumbroso, J.; Travagli, J.P.; Caillou, B.; Parmentier, C. Octreotide scintigraphy in patients with differentiated thyroid carcinoma: Contribution for patients with negative radioiodine scan. J. Clin. Endocrinol. Metab. 1996, 81, 2541–2544. [Google Scholar] [CrossRef] [PubMed]
- Christian, J.A.; Cook, G.J.R.; Harmer, C. Indium-111-labelled octreotide scintigraphy in the diagnosis and management of non-iodine avid metastatic carcinoma of the thyroid. Br. J. Cancer 2003, 89, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Forssell-Aronsson, E.B.; Nilsson, O.; Benjegard, S.A.; Kolby, L.K.; Bernhardt, P.; Molne, J.; Hashemi, S.H.; Wangberg, B.; Tisell, L.E.; Ahlman, H. In-111-DTPA-D-Phe(1)-octreotide binding and somatostatin receptor subtypes in thyroid tumors. J. Nucl. Med. 2000, 41, 636–642. [Google Scholar] [PubMed]
- Gorges, R.; Kahaly, G.; Muller-Brand, J.; Macke, H.; Roser, H.W.; Bockisch, A. Radionuclide-labeled somatostatin analogues for diagnostic and therapeutic purposes in nonmedullary thyroid cancer. Thyroid 2001, 11, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Haslinghuis, L.M.; Krenning, E.P.; de Herder, W.W.; Reijs, A.E.M.; Kwekkeboom, D.J. Somatostatin receptor scintigraphy in the follow-up of patients with differentiated thyroid cancer. J. Endocrinol. Investig. 2001, 24, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Tenenbaum, F.; Lumbroso, J.; Schlumberger, M.; Caillou, B.; Fragu, P.; Parmentier, C. Radiolabeled Somatostatin Analog Scintigraphy in Differentiated Thyroid-Carcinoma. J. Nucl. Med. 1995, 36, 807–810. [Google Scholar] [PubMed]
- Bodei, L.; Handkiewicz-Junak, D.; Grana, C.; Mazzetta, C.; Rocca, P.; Bartolomei, M.; Lopera Sierra, M.; Cremonesi, M.; Chinol, M.; Macke, H.R.; et al. Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother. Radiopharm. 2004, 19, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Owonikoko, T.K.; Zhang, G.J.; Lallani, S.B.; Chen, Z.J.; Martinson, D.E.; Khuri, F.R.; Lonial, S.; Marcus, A.; Sun, S.Y. Evaluation of preclinical efficacy of everolimus and pasireotide in thyroid cancer cell lines and xenograft models. PLoS ONE 2019, 14, e0206309. [Google Scholar] [CrossRef]
- Czepczynski, R.; Wyszomirska, A.; Gryczynska, M.; Szczepanek-Parulska, E.; Ruchala, M. Cerebellar metastasis of papillary thyroid carcinoma detected with somatostatin receptor scintigraphy. Endokrynol. Pol. 2018, 69, 24–27. [Google Scholar] [CrossRef]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef]
- Lengyel, E. Ovarian cancer development and metastasis. Am. J. Pathol. 2010, 177, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research, N. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Marquez, R.T.; Baggerly, K.A.; Patterson, A.P.; Liu, J.S.; Broaddus, R.; Frumovitz, M.; Atkinson, E.N.; Smith, D.I.; Hartmann, L.; Fishman, D.; et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin. Cancer Res. 2005, 11, 6116–6126. [Google Scholar] [CrossRef]
- McCluggage, W.G. Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology 2011, 43, 420–432. [Google Scholar] [CrossRef]
- Prat, J. Ovarian carcinomas: Five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch. 2012, 460, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Gaitskell, K.; Garcia, M.J.; Albukhari, A.; Tsaltas, J.; Ahmed, A.A. Serous tubal intraepithelial carcinomas associated with high-grade serous ovarian carcinomas: A systematic review. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Oliva, E. Precursors and pathogenesis of ovarian carcinoma. Pathology 2013, 45, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Motohara, T.; Masuda, K.; Morotti, M.; Zheng, Y.; El-Sahhar, S.; Chong, K.Y.; Wietek, N.; Alsaadi, A.; Karaminejadranjbar, M.; Hu, Z.; et al. An evolving story of the metastatic voyage of ovarian cancer cells: Cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 2019, 38, 2885–2898. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Averette, H.E.; Janicek, M. Ovarian-Carcinoma—A Review of the Significance of Familial Risk-Factors and the Role of Prophylactic Oophorectomy in Cancer Prevention. Cancer 1994, 74, 545–555. [Google Scholar] [CrossRef]
- Shen, Y.; Ren, M.L.; Shi, Y.H.; Zhang, Y.X.; Cai, Y.L. Octreotide enhances the sensitivity of the SKOV3/DDP ovarian cancer cell line to cisplatin chemotherapy in vitro. Exp. Ther. Med. 2011, 2, 1171–1176. [Google Scholar] [CrossRef]
- Shen, Y.; Ren, M.L.; Shi, Y.H.; Zhang, Y.X.; Cai, Y.L. Octreotide is the favorable alternative for cisplatin resistance reversal of ovarian cancer in vitro and in nude mice in vivo. Eur. J. Gynaecol. Oncol. 2012, 33, 584–590. [Google Scholar]
- Shen, Y.; Zhang, X.Y.; Chen, X.; Ren, M.L.; Cai, Y.L. Octreotide reverses the resistance of A2780/Pacliaxel ovarian cancer cell line to paclitaxel chemotherapy in vitro. J. Cancer Res. Ther. 2016, 12, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Horisberger, U.; Klijn, J.G.; Foekens, J.A. Somatostatin receptors in differentiated ovarian tumors. Am. J. Pathol. 1991, 138, 1267–1272. [Google Scholar] [PubMed]
- Halmos, G.; Sun, B.; Schally, A.V.; Hebert, F.; Nagy, A. Human ovarian cancers express somatostatin receptors. J. Clin. Endocrinol. Metab. 2000, 85, 3509–3512. [Google Scholar] [CrossRef]
- Hall, G.H.; Turnbull, L.W.; Richmond, I.; Helboe, L.; Atkin, S.L. Localisation of somatostatin and somatostatin receptors in benign and malignant ovarian tumours. Br. J. Cancer 2002, 87, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Schmitt, J.; Quednow, C.; Roessner, A.; Weise, W. Immunohistochemical detection of somatostatin receptors in human ovarian tumors. Gynecol. Oncol. 2002, 84, 235–240. [Google Scholar] [CrossRef]
- Sugiyama, T.; Nakanishi, M.; Hoshimoto, K.; Uebanso, T.; Inoue, K.; Endo, H.; Minoura, S.; Yasuda, K.; Noda, M. Severely Fluctuating Blood Glucose Levels Associated with a Somatostatin-Producing Ovarian Neuroendocrine Tumor. J. Clin. Endocrinol. Metab. 2012, 97, 3845–3850. [Google Scholar] [CrossRef]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2016. Ca-Cancer J Clin 2016, 66, 7–30. [Google Scholar] [CrossRef]
- Mori, Y.; Cai, K.; Cheng, Y.L.; Wang, S.N.; Paun, B.; Hamilton, J.P.; Jin, Z.; Sato, F.; Berki, A.T.; Kan, T.; et al. A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology 2006, 131, 797–808. [Google Scholar] [CrossRef]
- Liddle, R.A.; Jirtle, R.L. Epigenetic silencing of genes in human colon cancer. Gastroenterology 2006, 131, 960–962. [Google Scholar] [CrossRef] [PubMed]
- Klijn, J.G.M.; Hoff, A.M.; Planting, A.S.T.; Verweij, J.; Kok, T.; Lamberts, S.W.J.; Portengen, H.; Foekens, J.A. Treatment of Patients with Metastatic Pancreatic and Gastrointestinal Tumors with the Somatostatin Analog Sandostatin—A Phase-Ii Study Including Endocrine Effects. Br. J. Cancer 1990, 62, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Szepeshazi, K.; Schally, A.V.; Nagy, A.; Wagner, B.W.; Bajo, A.M.; Halmos, G. Preclinical evaluation of therapeutic effects of targeted cytotoxic analogs of somatostatin and bombesin on human gastric carcinomas. Cancer 2003, 98, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.; Soutto, M.; Peng, D.F.; Hu, T.L.; Marshal, D.; El-Rifai, W. Epigenetic Silencing of Somatostatin in Gastric Cancer. Digest. Dis. Sci. 2011, 56, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yu, B.P.; Li, Y.; Dong, W.G.; Luo, H.S. Antiproliferative effect of octreotide on gastric cancer cells mediated by inhibition of Akt/PKB and telomerase. World J. Gastroenterol. 2003, 9, 2362–2365. [Google Scholar] [CrossRef] [PubMed]
- Froidevaux, S.; Eberle, A.N. Somatostatin analogs and radiopeptides in cancer therapy. Biopolymers 2002, 66, 161–183. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.T.; Chen, Z.X.; Wei, B.; Zhang, B.; Wang, C.H.; Huang, M.H.; Liu, R.; Tang, C.W. Preoperative growth inhibition of human gastric adenocarcinoma treated with a combination of celecoxib and octreotide. Acta Pharmacol. Sin. 2007, 28, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Yang, P.; Yang, J.; Cai, D. A randomized trial of somatostatin to regulate the VEGFs/VEGFRs in patients with gastric cancer. Hepatogastroenterology 2011, 58, 1425–1430. [Google Scholar] [CrossRef]
- O’Toole, D.; Saveanu, A.; Couvelard, A.; Gunz, G.; Enjalbert, A.; Jaquet, P.; Ruszniewski, P.; Barlier, A. The analysis of quantitative expression of somatostatin and dopamine receptors in gastro-entero-pancreatic tumours opens new therapeutic strategies. Eur. J. Endocrinol. 2006, 155, 849–857. [Google Scholar] [CrossRef]
- Oberg, K.E.; Reubi, J.C.; Kwekkeboom, D.J.; Krenning, E.P. Role of Somatostatins in Gastroenteropancreatic Neuroendocrine Tumor Development and Therapy. Gastroenterology 2010, 139, 742–753.E1. [Google Scholar] [CrossRef]
- Florio, T. Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors. Front. Biosci.-Landmrk. 2008, 13, 822–840. [Google Scholar] [CrossRef] [PubMed]
- Shojamanesh, H.; Gibril, F.; Louie, A.; Ojeaburu, J.V.; Bashir, S.; Abou-Saif, A.; Jensen, R.T. Prospective study of the antitumor efficacy of long-term octreotide treatment in patients with progressive metastatic gastrinoma. Cancer 2002, 94, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Panzuto, F.; Di Fonzo, M.; Iannicelli, E.; Sciuto, R.; Maini, C.L.; Capurso, G.; Milione, M.; Cattaruzza, M.S.; Falconi, M.; David, V.; et al. Long-term clinical outcome of somatostatin analogues for treatment of progressive, metastatic, well-differentiated entero-pancreatic endocrine carcinoma. Ann. Oncol. 2006, 17, 461–466. [Google Scholar] [CrossRef]
- Modlin, I.M.; Oberg, K.; Chung, D.C.; Jensen, R.T.; de Herder, W.W.; Thakker, R.V.; Caplin, M.; Delle Fave, G.; Kaltsas, G.A.; Krenning, E.P.; et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008, 9, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Rinke, A.; Muller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.F.; Blaker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 4656–4663. [Google Scholar] [CrossRef]
- Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M.J. Cancer statistics, 2007. CA Cancer J. Clin. 2007, 57, 43–66. [Google Scholar] [CrossRef] [PubMed]
- Kostenich, G.; Oron-Herman, M.; Kimel, S.; Livnah, N.; Tsarfaty, I.; Orenstein, A. Diagnostic targeting of colon cancer using a novel fluorescent somatostatin conjugate in a mouse xenograft model. Int. J. Cancer 2008, 122, 2044–2049. [Google Scholar] [CrossRef]
- Nojima, H.; Seike, K.; Kosugi, C.; Shida, T.; Koda, K.; Oda, K.; Kamata, S.; Ishikura, H.; Miyazaki, M. Advanced moderately differentiated neuroendocrine carcinoma of the rectum with favorable prognosis by postoperative chemoradiation. World J. Surg. Oncol. 2010, 8, 29. [Google Scholar] [CrossRef]
- Qiu, C.Z.; Wang, C.; Huang, Z.X.; Zhu, S.Z.; Wu, Y.Y.; Qiu, J.L. Relationship between somatostatin receptor subtype expression and clinicopathology, Ki-67, Bcl-2 and p53 in colorectal cancer. World J. Gastroenterol. 2006, 12, 2011–2015. [Google Scholar] [CrossRef]
- Colucci, R.; Blandizzi, C.; Ghisu, N.; Florio, T.; Del Tacca, M. Somatostatin inhibits colon cancer cell growth through cyclooxygenase-2 downregulation. Br. J. Pharmacol. 2008, 155, 198–209. [Google Scholar] [CrossRef]
- Modarai, S.R.; Opdenaker, L.M.; Viswanathan, V.; Fields, J.Z.; Boman, B.M. Somatostatin signaling via SSTR1 contributes to the quiescence of colon cancer stem cells. BMC Cancer 2016, 16, 941. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, A. Somatostatin and Its Receptor System in Colorectal Cancer. Biomedicines 2021, 9, 1743. [Google Scholar] [CrossRef] [PubMed]
- Leiszter, K.; Sipos, F.; Galamb, O.; Krenacs, T.; Veres, G.; Wichmann, B.; Furi, I.; Kalmar, A.; Patai, A.V.; Toth, K.; et al. Promoter hypermethylation-related reduced somatostatin production promotes uncontrolled cell proliferation in colorectal cancer. PLoS ONE 2015, 10, e0118332. [Google Scholar] [CrossRef] [PubMed]
- Laws, S.A.; Gough, A.C.; Evans, A.A.; Bains, M.A.; Primrose, J.N. Somatostatin receptor subtype mRNA expression in human colorectal cancer and normal colonic mucosae. Br. J. Cancer 1997, 75, 360–366. [Google Scholar] [CrossRef]
- Pinzani, P.; Orlando, C.; Raggi, C.C.; Distante, V.; Valanzano, R.; Tricarico, C.; Maggi, M.; Serio, M.; Pazzagli, M. Type-2 somatostatin receptor mRNA levels in breast and colon cancer determined by a quantitative RT-PCR assay based on dual label fluorogenic probe and the TaqMan technology. Regul. Pept. 2001, 99, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Raggi, C.C.; Cianchi, F.; Valanzano, R.; Smith, M.C.; Serio, M.; Maggi, M.; Orlando, C. Prognostic value of somatostatin receptor subtype 2 expression in colorectal cancer. Regul. Pept. 2005, 132, 23–26. [Google Scholar] [CrossRef]
- Vuaroqueaux, V.; Dutour, A.; Briard, N.; Monges, G.; Grino, M.; Oliver, C.; Ouafik, L. No loss of sst receptors gene expression in advanced stages of colorectal cancer. Eur. J. Endocrinol. 1999, 140, 362–366. [Google Scholar] [CrossRef]
- Reubi, J.C.; Mazzucchelli, L.; Hennig, I.; Laissue, J.A. Local up-regulation of neuropeptide receptors in host blood vessels around human colorectal cancers. Gastroenterology 1996, 110, 1719–1726. [Google Scholar] [CrossRef]
- Cascinu, S.; Del Ferro, E.; Catalano, G. A randomised trial of octreotide vs best supportive care only in advanced gastrointestinal cancer patients refractory to chemotherapy. Br. J. Cancer 1995, 71, 97–101. [Google Scholar] [CrossRef]
- Goldberg, R.M.; Moertel, C.G.; Wieand, H.S.; Krook, J.E.; Schutt, A.J.; Veeder, M.H.; Mailliard, J.A.; Dalton, R.J. A phase III evaluation of a somatostatin analogue (octreotide) in the treatment of patients with asymptomatic advanced colon carcinoma. North Central Cancer Treatment Group and the Mayo Clinic. Cancer 1995, 76, 961–966. [Google Scholar] [CrossRef]
- Schmoll, H.J.; Van Cutsem, E.; Stein, A.; Valentini, V.; Glimelius, B.; Haustermans, K.; Nordlinger, B.; van de Velde, C.J.; Balmana, J.; Regula, J.; et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann. Oncol. 2012, 23, 2479–2516. [Google Scholar] [CrossRef] [PubMed]
- Drewe, J.; Sieber, C.C.; Mottet, C.; Wullschleger, C.; Larsen, F.; Beglinger, C. Dose-dependent gastrointestinal effects of the somatostatin analog lanreotide in healthy volunteers. Clin. Pharmacol. Ther. 1999, 65, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.G. Somatostatin and somatostatin analogues: Pharmacokinetics and pharmacodynamic effects. Gut 1994, 35, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Lamrani, A.; Vidon, N.; Sogni, P.; Nepveux, P.; Catus, F.; Blumberg, J.; Chaussade, S. Effects of lanreotide, a somatostatin analogue, on postprandial gastric functions and biliopancreatic secretions in humans. Br. J. Clin. Pharmacol. 1997, 43, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, I.; Rene, E.; Ramdani, A.; Bayod, F.; Sabbagh, L.C.; Thomas, F.; Mignon, M. Lanreotide inhibits human jejunal secretion induced by prostaglandin E1 in healthy volunteers. Br. J. Clin. Pharmacol. 1996, 41, 109–114. [Google Scholar] [CrossRef]
- Kharmate, G.; Rajput, P.S.; Lin, Y.C.; Kumar, U. Inhibition of tumor promoting signals by activation of SSTR2 and opioid receptors in human breast cancer cells. Cancer Cell Int. 2013, 13, 93. [Google Scholar] [CrossRef]
- Lange, F.; Kaemmerer, D.; Behnke-Mursch, J.; Bruck, W.; Schulz, S.; Lupp, A. Differential somatostatin, CXCR4 chemokine and endothelin A receptor expression in WHO grade I-IV astrocytic brain tumors. J. Cancer Res. Clin. 2018, 144, 1227–1237. [Google Scholar] [CrossRef]
Somatostatin Analogues | Type of Cancer | Receptor Subtype Affinity |
---|---|---|
Octreotide (Sandostatin) | Breast cancer, prostrate cancer, gastrointestinal cancer, neuroendocrine tumors, exocrine pancreatic cancer, colorectal and hepatic cancer | SSTR2, SSTR5 |
Lanreotide (BIM23014) | Endocrine cancers, pituitary tumors, lung cancer, gut carcinoid, prostrate cancer, paraganglioma, pituitary adenoma, pheochromocytoma, meningioma | SSTR2, SSTR5 |
Pasireotide (SOM 230) | Breast cancer, lung cancer, colorectal cancer, hepatic cancer, endocrine cancers, gastrointestinal cancer | SSTR1–3, SSTR5 |
Vapreotide (RC-160) | Breast cancer, pancreatic cancer, lung cancer, ovarian cancer | SSTR2, SSTR5 |
Seglitide (MK 678) | GH-producing adenoma, gut carcinoid | SSTR2 |
CH-275 | Prostrate and colorectal cancer | SSTR1 |
TT2–32 | Prostrate and colon cancer | SSTR1 |
BIM23056 | Nonfunctioning pituitary adenoma | SSTR3 |
BIM23066 | GH-producing adenoma, gastrointestinal cancer, neuroblastoma, medulloblastoma, pheochromocytoma | SSTR2 |
Somatoprim (DG3173) | Pituitary adenomas | SSTR2, SSTR4, SSTR5 |
KE108 | Pancreatic cancer | All SSTRs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int. J. Mol. Sci. 2024, 25, 436. https://doi.org/10.3390/ijms25010436
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. International Journal of Molecular Sciences. 2024; 25(1):436. https://doi.org/10.3390/ijms25010436
Chicago/Turabian StyleKumar, Ujendra. 2024. "Somatostatin and Somatostatin Receptors in Tumour Biology" International Journal of Molecular Sciences 25, no. 1: 436. https://doi.org/10.3390/ijms25010436
APA StyleKumar, U. (2024). Somatostatin and Somatostatin Receptors in Tumour Biology. International Journal of Molecular Sciences, 25(1), 436. https://doi.org/10.3390/ijms25010436