Increasing the Activity of the High-Fidelity SpyCas9 Form in Yeast by Directed Mutagenesis of the PAM-Interacting Domain
Abstract
:1. Introduction
2. Results
2.1. Design of New Mutations within SpyCas9 PID with Potential Gain-of-Function Effect
2.2. Mutations E1341H and A1345L Increase the Activity of High-Specific SpyCas9 Forms SniperCas DE and iSniperCas DE, but Do Not Affect the Activity of Wild-Type SpyCas9 When Using the Most Active Spacer against ADE2 Gene
2.3. The E1341H and A1345L Mutations Do Not Affect the Specificity of SpyCas9 When an Imperfect Spacer Is Used
2.4. E1341H and A1345L Mutations Have a Weak Effect on the PAM Specificity of SpyCas9
2.5. The E1341H and A1345L Mutations Significantly Increase Activity of the Wild-Type SpyCas9 on Protospacers within Stable Nucleosomes
2.6. Molecular Dynamics Modeling Suggests a Molecular Mechanism for the Increased Activity of SpyCas9 Variants with EH and AL Mutations
3. Discussion
4. Materials and Methods
4.1. Yeast and Bacterial Strains
4.2. Bioinformatic and Statistical Analysis
4.3. SpyCas9 Mutagenesis and Assembly of SpyCas9 Expressing Plasmids
4.4. sgRNA Expressing Plasmids
4.5. Measurement of SpyCas9 Activity
4.6. Molecular Dynamics (MD) Simulations
- RMSD analysis of protein geometries concerning their initial structures (at the beginning of MD simulations).
- RMSD analysis of the positions of amino acids and Mg2+ in the HNH active center.
- RMSD analysis of the positions of amino acids and Mg2+ in the RuvC active center.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018, 9, 1911. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.Q.; Zheng, Z.; Nguyen, N.T.; Liebers, M.; Topkar, V.V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A.J.; Le, L.P.; et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015, 33, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Isaac, R.S.; Jiang, F.; Doudna, J.A.; Lim, W.A.; Narlikar, G.J.; Almeida, R. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. eLife 2016, 5, e13450. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, J.; Janssen, J.M.; Gonçalves, M.A. The chromatin structure differentially impacts high-specificity CRISPR-Cas9 nuclease strategies. Mol. Ther. Nucleic Acids 2017, 8, 558–563. [Google Scholar] [CrossRef]
- Verkuijl, S.A.; Rots, M.G. The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies. Curr. Opin. Biotechnol. 2019, 55, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Antony, J.S.; Hinz, J.M.; Wyrick, J.J. Tips, tricks, and potential pitfalls of CRISPR genome editing in Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. 2022, 10, 924914. [Google Scholar] [CrossRef] [PubMed]
- Yarrington, R.M.; Verma, S.; Schwartz, S.; Trautman, J.K.; Carroll, D. Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. Proc. Natl. Acad. Sci. USA 2018, 115, 9351–9358. [Google Scholar] [CrossRef]
- Liu, M.; Rehman, S.; Tang, X.; Gu, K.; Fan, Q.; Chen, D.; Ma, W. Methodologies for improving HDR efficiency. Front. Genet. 2019, 9, 691. [Google Scholar] [CrossRef]
- Singh, V.; Braddick, D.; Dhar, P.K. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 2017, 599, 1–18. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Zhao, H.; Sheng, G.; Wang, M.; Yin, M.; Wang, Y. Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 2015, 163, 840–853. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Taylor, D.W.; Chen, J.S.; Kornfeld, J.E.; Zhou, K.; Thompson, A.J.; Nogales, E.; Doudna, J.A. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 2016, 351, 867–871. [Google Scholar] [CrossRef]
- O’Geen, H.; Abigail, S.Y.; Segal, D.J. How specific is CRISPR/Cas9 really? Curr. Opin. Chem. Biol. 2015, 29, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Karvelis, T.; Gasiunas, G.; Young, J.; Bigelyte, G.; Silanskas, A.; Cigan, M.; Siksnys, V. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 2015, 16, 253. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.H.; Miller, S.M.; Geurts, M.H.; Tang, W.; Chen, L.; Sun, N.; Zeina, C.M.; Gao, X.; Rees, H.A.; Lin, Z.; et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018, 556, 57–63. [Google Scholar] [CrossRef]
- Zhong, Z.; Sretenovic, S.; Ren, Q.; Yang, L.; Bao, Y.; Qi, C.; Yuan, M.; He, Y.; Liu, S.; Liu, X.; et al. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol. Plant 2019, 12, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Kulcsar, P.I.; Tálas, A.; Huszár, K.; Ligeti, Z.; Tóth, E.; Weinhardt, N.; Fodor, E.; Welker, E. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 2017, 18, 190. [Google Scholar] [CrossRef]
- Bao, Z.; Xiao, H.; Liang, J.; Zhang, L.; Xiong, X.; Sun, N.; Si, T.; Zhao, H. Homology-integrated CRISPR–Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth. Biol. 2015, 4, 585–594. [Google Scholar] [CrossRef]
- Spasskaya, D.S.; Davletshin, A.I.; Bachurin, S.S.; Tutyaeva, V.V.; Garbuz, D.G.; Karpov, D.S. Improving the on-target activity of high-fidelity Cas9 editors by combining rational design and random mutagenesis. Appl. Microbiol. Biotechnol. 2023, 107, 2385–2401. [Google Scholar] [CrossRef]
- Anders, C.; Niewoehner, O.; Duerst, A.; Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 2014, 513, 569–573. [Google Scholar] [CrossRef]
- Jakočiūnas, T.; Bonde, I.; Herrgård, M.; Harrison, S.J.; Kristensen, M.; Pedersen, L.E.; Jensen, M.K.; Keasling, J.D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015, 28, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Jeong, E.; Lee, J.; Jung, M.; Shin, E.; Kim, Y.H.; Lee, K.; Jung, I.; Kim, D.; Kim, S.; et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat. Commun. 2018, 9, 3048. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Pugh, B.F. A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genomes. Genome Biol. 2009, 10, R109. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.P.; Hibshman, G.N.; Taylor, D.W. Constructing next-generation CRISPR–Cas tools from structural blueprints. Curr. Opin. Biotechnol. 2022, 78, 102839. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yang, D.; Zhang, J.; Xu, J.; Chen, Y.E. Recent advances in improving gene-editing specificity through CRISPR–Cas9 nuclease engineering. Cells 2022, 11, 2186. [Google Scholar] [CrossRef]
- Vakulskas, C.A.; Dever, D.P.; Rettig, G.R.; Turk, R.; Jacobi, A.M.; Collingwood, M.A.; Bode, N.M.; McNeill, M.S.; Yan, S.; Camarena, J. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 2018, 24, 1216–1224. [Google Scholar] [CrossRef]
- Kleinstiver, B.P.; Prew, M.S.; Tsai, S.Q.; Topkar, V.V.; Nguyen, N.T.; Zheng, Z.; Gonzales, A.P.; Li, Z.; Peterson, R.T.; Yeh, J.R.; et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015, 523, 481–485. [Google Scholar] [CrossRef]
- Hinz, J.M.; Laughery, M.F.; Wyrick, J.J. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 2015, 54, 7063–7066. [Google Scholar] [CrossRef]
- Handelmann, C.R.; Tsompana, M.; Samudrala, R.; Buck, M.J. The impact of nucleosome structure on CRISPR/Cas9 fidelity. Nucleic Acids Res. 2023, 51, 2333–2344. [Google Scholar] [CrossRef]
- Nishimasu, H.; Ran, F.A.; Hsu, P.D.; Konermann, S.; Shehata, S.I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156, 935–949. [Google Scholar] [CrossRef]
- Zhu, X.; Clarke, R.; Puppala, A.K.; Chittori, S.; Merk, A.; Merrill, B.J.; Simonović, M.; Subramaniam, S. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Nat. Struct. Mol. Biol. 2019, 26, 679–685. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, J.; Andrews, B.; Boone, C.; Tan, G. Rapid and efficient plasmid construction by homologous recombination in yeast. Cold Spring Harb. Protoc. 2015, 9, pdb-prot085100. [Google Scholar] [CrossRef]
- Gietz, R.D.; Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007, 2, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Farzadfard, F.; Perli, S.D.; Lu, T.K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2013, 2, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, S.; Bruschi, C.V. The red/white colony color assay in the yeast Saccharomyces cerevisiae: Epistatic growth advantage of white ade8-18, ade2 cells over red ade2 cells. Curr. Genet. 1996, 30, 485–492. [Google Scholar] [CrossRef]
- Niyazi, M.; Niyazi, I.; Belka, C. Counting colonies of clonogenic assays by using densitometric software. Radiat. Oncol. 2007, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Nierzwicki, Ł.; East, K.W.; Binz, J.M.; Hsu, R.V.; Ahsan, M.; Arantes, P.R.; Skeens, E.; Pacesa, M.; Jinek, M.; Lisi, G.P.; et al. Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR–Cas9. Nat. Catal. 2022, 5, 912–922. [Google Scholar] [CrossRef]
- Galindo-Murillo, R.; Robertson, J.C.; Zgarbova, M.; Sponer, J.; Otyepka, M.; Jurecka, P.; Cheatham III, T.E. Assessing the current state of amber force field modifications for DNA. J. Chem. Theory Comput. 2016, 12, 4114–4127. [Google Scholar] [CrossRef] [PubMed]
Cas9 Variant | Mutations | |
---|---|---|
1 | wt SpyCas9 | - |
2 | wt SpyCas9 EH | E1341H |
3 | wt SpyCas9 AL | A1345L |
4 | wt SpyCas9 EH/AL | E1341H, A1345L |
5 | SniperCas DE | F539S, M763I, K890N, D1135E |
6 | SniperCas DE ED | F539S, M763I, K890N, D1135E, E1341D |
7 | SniperCas DE EH | F539S, M763I, K890N, D1135E, E1341H |
8 | SniperCas DE AL | F539S, M763I, K890N, D1135E, A1345L |
9 | SniperCas DE AP | F539S, M763I, K890N, D1135E, A1345P |
10 | SniperCas DE EH/AL | F539S, M763I, K890N, D1135E, E1341H, A1345L |
11 | SniperCas DE LP | F539S, M763I, K890N, D1135E, L1206P |
12 | SniperCas DE LP ED | F539S, M763I, K890N, D1135E, L1206P, E1341D |
13 | SniperCas DE LP EH | F539S, M763I, K890N, D1135E, L1206P, E1341H |
14 | SniperCas DE LP AL | F539S, M763I, K890N, D1135E, L1206P, A1345L |
15 | SniperCas DE LP AP | F539S, M763I, K890N, D1135E, L1206P, A1345P |
16 | iSniperCas | D147Y, P411T, F539S, M763I, K890N |
17 | iSniperCas EH | D147Y, P411T, F539S, M763I, K890N, E1341H |
18 | iSniperCas EH/AL | D147Y, P411T, F539S, M763I, K890N, E1341H, A1345L |
19 | iSniperCas DE | D147Y, P411T, F539S, M763I, K890N, D1135E |
20 | iSniperCas DE EH | D147Y, P411T, F539S, M763I, K890N, D1135E, E1341H |
21 | iSniperCas DE EH/AL | D147Y, P411T, F539S, M763I, K890N, D1135E, E1341H, A1345L |
Name | Amino Acid Substitution | |
---|---|---|
1 | WT SpyCas9 | - |
2 | SniperCas | F539S, M763I, K890N |
3 | SniperCas DE | F539S, M763I, K890N, D1135E |
4 | SniperCas AL | F539S, M763I, K890N, A1345L |
5 | SniperCas EH | F539S, M763I, K890N, E1341H |
6 | SniperCas DE AL | F539S, M763I, K890N, D1135E, A1345L |
7 | SniperCas DE EH | F539S, M763I, K890N, D1135E, E1341H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davletshin, A.I.; Matveeva, A.A.; Bachurin, S.S.; Karpov, D.S.; Garbuz, D.G. Increasing the Activity of the High-Fidelity SpyCas9 Form in Yeast by Directed Mutagenesis of the PAM-Interacting Domain. Int. J. Mol. Sci. 2024, 25, 444. https://doi.org/10.3390/ijms25010444
Davletshin AI, Matveeva AA, Bachurin SS, Karpov DS, Garbuz DG. Increasing the Activity of the High-Fidelity SpyCas9 Form in Yeast by Directed Mutagenesis of the PAM-Interacting Domain. International Journal of Molecular Sciences. 2024; 25(1):444. https://doi.org/10.3390/ijms25010444
Chicago/Turabian StyleDavletshin, Artem I., Anna A. Matveeva, Stanislav S. Bachurin, Dmitry S. Karpov, and David G. Garbuz. 2024. "Increasing the Activity of the High-Fidelity SpyCas9 Form in Yeast by Directed Mutagenesis of the PAM-Interacting Domain" International Journal of Molecular Sciences 25, no. 1: 444. https://doi.org/10.3390/ijms25010444
APA StyleDavletshin, A. I., Matveeva, A. A., Bachurin, S. S., Karpov, D. S., & Garbuz, D. G. (2024). Increasing the Activity of the High-Fidelity SpyCas9 Form in Yeast by Directed Mutagenesis of the PAM-Interacting Domain. International Journal of Molecular Sciences, 25(1), 444. https://doi.org/10.3390/ijms25010444