The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation?
Abstract
:1. Introduction
2. The Characteristics of miRNAs
3. The Role of miRNAs in Spermatogenesis
microRNA | Cell Type | Function and/or Targeted Genes in Spermatogenesis | Model | References |
---|---|---|---|---|
miR-17-92 cluster | Primordial germ cells Undifferentiated spermatogonia | Promotes survival and proliferation of PGCs Promotes stem cell self-renewal Targets Stat3, Bim | Mouse | [43] [52] [53] |
miR-290-295 cluster | Primordial germ cells | Role in embryonic development Promotes germ cell migration | Mouse | [43] [54] |
Let-7 family (7a,7b,7c,7d and 7e) | Spermatogonia Spermatocytes | Promotes spermatogonial differentiation Targets Mycn, Col1a2, Ccnd1 | Mouse | [50] |
miR-125a | Primordial germ cells | Targets Lin28 | Mouse | [43] |
miR-9 | Primordial germ cells | Targets Lin28 | Mouse | [43] |
miR-26b | Undifferentiated spermatogonia | Promotes spermatogonial differentiation Targets Plzf | Mouse | [55] |
miR-135 | Undifferentiated spermatogonia | Controls stem cell self-renewal Targets FoxO1 | Mouse | [56] |
miR-146a | Undifferentiated spermatogonia | Promotes stem cell self-renewal, blocks the retinoic acid-induced differentiation of SSCs Targets Med1 | Mouse | [57] |
miR-21 | Undifferentiated spermatogonia | Promotes stem cell self-renewal GDNF pathway | Mouse | [58] |
miR-20 and miR-106a | Undifferentiated spermatogonia | Promotes stem cell self-renewal Targets Stat 3, Ccnd1 | Mouse | [59] |
miR-202 | Undifferentiated spermatogonia | Promotes stem cell self-renewal Targets Rbfox2, Stra8, Dmrt6 | Mouse | [60] [61] |
miR-100 | Undifferentiated spermatogonia | Promotes stem cell self-renewal Targets Stat3 (indirectly) | Mouse | [62] |
miR-221/222 | Undifferentiated spermatogonia | Promotes stem cell self-renewal Targets Kit | Mouse | [63] |
miR-224 | Undifferentiated spermatogonia | Promotes stem cell self-renewal +: Plzf, Gfrα1 −: Dmrt1 | Mouse | [64] |
miR-322 | Undifferentiated spermatogonia | Promotes stem cell self-renewal Targets Rassf8 +: Gfrα1, Etv5, Plzf −: Stra8, C-Kit, Bcl6 | Mouse | [39] |
miR-31-5p | Undifferentiated spermatogonia | Regulates proliferation and apoptosis of SSCs Targets Jazf1 | Human | [65] |
miR-122-5p | Undifferentiated spermatogonia | Stimulates proliferation, inhibits apoptosis | Human | [66] |
miR-34c | Undifferentiated spermatogonia Spermatocytes Round spermatids | Promotes differentiation Targets ATF1, Nanos2 | Mouse | [67] [68,69,70,71] |
miR-449 | Spermatocytes Spermatids | Promotes differentiation Targets E2F-pRb pathway | Mouse | [72] |
miR-469 | Spermatocytes Round spermatids | Chromatin compaction and condensation Targets mRNA Tnp2 and Prm2 | Mouse | [73] |
miR-122a | Round spermatids | Chromatin compaction and condensation Targets Tnp2 | Mouse | [74] |
miR-18a | Spermatocytes | Chromatin compaction and condensation Targets Hsf2 | Mouse | [75] |
miR-133b | Sertoli cells | Promotes proliferation of SCs Targets Gli3 | Human | [76] |
miR-202-3p | Sertoli cells | Regulates proliferation of SCs Targets Lrp6 and Ccnd1 | Human | [77] |
miR-471-5p miR-463 miR-201 | Sertoli cells | Hormone-responsive Regulates the expression of FoxD1 and Dsc1 Testis specific | Mouse | [78] [79] |
miR-181-c/d | Sertoli cells | Regulates proliferation of SCs Targets Pafah1b1 | Mouse | [80] |
miR-320-3p | Sertoli cells | Regulates germ cell support | Mouse | [81] |
miR-382-3p | Sertoli cells | Its decline at puberty is correlated with the onset of spermatogenesis | Mouse | [82] |
miR-140-3p/5p | Leydig cells | Differentiation of male gonads | Mouse | [83] |
miR-150 | Leydig cells | Regulation of steroidogenesis Targets Star | Mouse | [84] |
miR-300-3p | Leydig cells | LH regulation Targets Sf1, FoxO1 | Mouse | [85] |
4. MiRNAs in Male Infertility and Their Use as Biomarkers
5. Principles of miRNA-Based Therapeutics
6. MiRNAs in Fertility Preservation Strategies
6.1. Semen Cryopreservation
6.2. Stem Cell-Based Fertility Preservation
6.3. MiRNA-Based Pharmacoprotective Approaches
6.4. Limitations
7. miRNA Therapeutics: Limitations and Solutions
8. MiRNA Delivery to the Testis
9. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halpern, J.A.; Hill, R.; Brannigan, R.E. Guideline Based Approach to Male Fertility Preservation. Urol. Oncol. 2020, 38, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dong, Z.; Chen, X. Fertility Preservation in Pediatric Healthcare: A Review. Front. Endocrinol. 2023, 14, 1147898. [Google Scholar] [CrossRef] [PubMed]
- Jahnukainen, K.; Ehmcke, J.; Hou, M.; Schlatt, S. Testicular Function and Fertility Preservation in Male Cancer Patients. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Rastgar Rezaei, Y.; Zarezadeh, R.; Nikanfar, S.; Oghbaei, H.; Nazdikbin, N.; Bahrami-Asl, Z.; Zarghami, N.; Ahmadi, Y.; Fattahi, A.; Nouri, M.; et al. microRNAs in the Pathogenesis of Non-Obstructive Azoospermia: The Underlying Mechanisms and Therapeutic Potentials. Syst. Biol. Reprod. Med. 2021, 67, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Ntemou, E.; Alexandri, C.; Lybaert, P.; Goossens, E.; Demeestere, I. Oncofertility: Pharmacological Protection and Immature Testicular Tissue (ITT)-Based Strategies for Prepubertal and Adolescent Male Cancer Patients. Int. J. Mol. Sci. 2019, 20, 5223. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.H. Regulation of Mammalian Spermatogenesis by miRNAs. Semin. Cell Dev. Biol. 2022, 121, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, C.; Stamatopoulos, B.; Rothé, F.; Bareche, Y.; Devos, M.; Demeestere, I. microRNA Profiling and Identification of Let-7a as a Target to Prevent Chemotherapy-Induced Primordial Follicles Apoptosis in Mouse Ovaries. Sci. Rep. 2019, 9, 9636. [Google Scholar] [CrossRef]
- Alexandri, C.; Van Den Steen, G.; Demeestere, I. Let-7a Mimic Transfection Reduces Chemotherapy-Induced Damage in a Mouse Ovarian Transplantation Model. Sci. Rep. 2022, 12, 10863. [Google Scholar] [CrossRef]
- Schmidt, K.L.T.; Larsen, E.; Bangsbøll, S.; Meinertz, H.; Carlsen, E.; Andersen, A.N. Assisted Reproduction in Male Cancer Survivors: Fertility Treatment and Outcome in 67 Couples. Hum. Reprod. 2004, 19, 2806–2810. [Google Scholar] [CrossRef]
- Benedict, C.; Shuk, E.; Ford, J.S. Fertility Issues in Adolescent and Young Adult Cancer Survivors. J. Adolesc. Young Adult Oncol. 2016, 5, 48–57. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Hartmann, C.; Corre-Menguy, F.; Boualem, A.; Jovanovic, M.; Lelandais-Brière, C. Les microARN: Une nouvelle classe de régulateurs de l’expression génique. Med. Sci. 2004, 20, 894–898. [Google Scholar] [CrossRef]
- Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-Nucleotide Let-7 RNA Regulates Developmental Timing in Caenorhabditis Elegans. Nature 2000, 403, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Pasquinelli, A.E.; Reinhart, B.J.; Slack, F.; Martindale, M.Q.; Kuroda, M.I.; Maller, B.; Hayward, D.C.; Ball, E.E.; Degnan, B.; Müller, P.; et al. Conservation of the Sequence and Temporal Expression of Let-7 Heterochronic Regulatory RNA. Nature 2000, 408, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Wahid, F.; Shehzad, A.; Khan, T.; Kim, Y.Y. MicroRNAs: Synthesis, Mechanism, Function, and Recent Clinical Trials. Biochim. Biophys. Acta 2010, 1803, 1231–1243. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- McIver, S.C.; Roman, S.D.; Nixon, B.; McLaughlin, E.A. miRNA and Mammalian Male Germ Cells. Hum. Reprod. Update 2012, 18, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [Google Scholar]
- Lewis, B.P.; Shih, I.-H.; Jones-Rhoades, M.W.; Bartel, D.P.; Burge, C.B. Prediction of Mammalian MicroRNA Targets. Cell 2003, 115, 787–798. [Google Scholar] [CrossRef]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a Big Role in Gene Regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Gemeinhart, R.A. Progress in microRNA Delivery. J. Control Release 2013, 172, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, Q.; Zhang, R.; Dai, X.; Chen, W.; Xing, D. Circulating microRNAs: Biomarkers of Disease. Clin. Chim. Acta 2021, 516, 46–54. [Google Scholar] [CrossRef] [PubMed]
- De Rooij, L.A.; Mastebroek, D.J.; Ten Voorde, N.; Van Der Wall, E.; Van Diest, P.J.; Moelans, C.B. The microRNA Lifecycle in Health and Cancer. Cancers 2022, 14, 5748. [Google Scholar] [CrossRef] [PubMed]
- Denli, A.M.; Tops, B.B.J.; Plasterk, R.H.A.; Ketting, R.F.; Hannon, G.J. Processing of Primary microRNAs by the Microprocessor Complex. Nature 2004, 432, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.M. An Overview of microRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Pratt, A.J.; MacRae, I.J. The RNA-Induced Silencing Complex: A Versatile Gene-Silencing Machine. J. Biol. Chem. 2009, 284, 17897–17901. [Google Scholar] [CrossRef] [PubMed]
- Rand, T.A.; Petersen, S.; Du, F.; Wang, X. Argonaute2 Cleaves the Anti-Guide Strand of siRNA during RISC Activation. Cell 2005, 123, 621–629. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting Effective microRNA Target Sites in Mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Papaioannou, M.D.; Nef, S. microRNAs in the Testis: Building Up Male Fertility. J. Androl. 2010, 31, 26–33. [Google Scholar] [CrossRef]
- Laiho, A.; Kotaja, N.; Gyenesei, A.; Sironen, A. Transcriptome Profiling of the Murine Testis during the First Wave of Spermatogenesis. PLoS ONE 2013, 8, e61558. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Guo, J.; Zhang, P.; Zeng, W. The Roles of microRNAs in Regulation of Mammalian Spermatogenesis. J. Anim. Sci. Biotechnol. 2017, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Kokkinaki, M.; Pant, D.; Gallicano, G.I.; Dym, M. Small RNA Molecules in the Regulation of Spermatogenesis. Reproduction 2009, 137, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Han, C. In Vivo Functions of miRNAs in Mammalian Spermatogenesis. Front. Cell Dev. Biol. 2023, 11, 1154938. [Google Scholar] [CrossRef] [PubMed]
- Kotaja, N. microRNAs and Spermatogenesis. Fertil. Steril. 2014, 101, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Reza, A.M.M.T.; Choi, Y.-J.; Han, S.G.; Song, H.; Park, C.; Hong, K.; Kim, J.-H. Roles of microRNAs in Mammalian Reproduction: From the Commitment of Germ Cells to Peri-Implantation Embryos: miRNAs in Mammalian Reproduction. Biol. Rev. 2019, 94, 415–438. [Google Scholar] [CrossRef] [PubMed]
- Salas-Huetos, A.; James, E.R.; Aston, K.I.; Carrell, D.T.; Jenkins, T.G.; Yeste, M. The Role of miRNAs in Male Human Reproduction: A Systematic Review. Andrology 2020, 8, 7–26. [Google Scholar] [CrossRef] [PubMed]
- Barbu, M.G.; Thompson, D.C.; Suciu, N.; Voinea, S.C.; Cretoiu, D.; Predescu, D.V. The Roles of MicroRNAs in Male Infertility. Int. J. Mol. Sci. 2021, 22, 2910. [Google Scholar] [CrossRef]
- Asadpour, R.; Mofidi Chelan, E. Using microRNAs as Molecular Biomarkers for the Evaluation of Male Infertility. Andrology 2022, 54, e14298. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Gong, X.; Zhao, Y.; Wu, J. MicroRNA-322 Regulates Self-Renewal of Mouse Spermatogonial Stem Cells through Rassf8. Int. J. Biol. Sci. 2019, 15, 857–869. [Google Scholar] [CrossRef]
- Gan, H.; Lin, X.; Zhang, Z.; Zhang, W.; Liao, S.; Wang, L.; Han, C. piRNA Profiling during Specific Stages of Mouse Spermatogenesis. RNA 2011, 17, 1191–1203. [Google Scholar] [CrossRef]
- Ro, S.; Park, C.; Sanders, K.M.; McCarrey, J.R.; Yan, W. Cloning and Expression Profiling of Testis-Expressed microRNAs. Dev. Biol. 2007, 311, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Maatouk, D.M.; Loveland, K.L.; McManus, M.T.; Moore, K.; Harfe, B.D. Dicer1 Is Required for Differentiation of the Mouse Male Germline. Biol. Reprod. 2008, 79, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Chuva De Sousa Lopes, S.M.; Kaneda, M.; Tang, F.; Hajkova, P.; Lao, K.; O’Carroll, D.; Das, P.P.; Tarakhovsky, A.; Miska, E.A.; et al. MicroRNA Biogenesis Is Required for Mouse Primordial Germ Cell Development and Spermatogenesis. PLoS ONE 2008, 3, e1738. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, H.M.; Meikar, O.; Yadav, R.P.; Papaioannou, M.D.; Romero, Y.; Da Ros, M.; Herrera, P.L.; Toppari, J.; Nef, S.; Kotaja, N. Dicer Is Required for Haploid Male Germ Cell Differentiation in Mice. PLoS ONE 2011, 6, e24821. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Song, R.; Ortogero, N.; Zheng, H.; Evanoff, R.; Small, C.L.; Griswold, M.D.; Namekawa, S.H.; Royo, H.; Turner, J.M.; et al. The RNase III Enzyme DROSHA Is Essential for MicroRNA Production and Spermatogenesis. J. Biol. Chem. 2012, 287, 25173–25190. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-J.; Georg, I.; Scherthan, H.; Merkenschlager, M.; Guillou, F.; Scherer, G.; Barrionuevo, F. Dicer Is Required for Sertoli Cell Function and Survival. Int. J. Dev. Biol. 2010, 54, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, M.D.; Pitetti, J.-L.; Ro, S.; Park, C.; Aubry, F.; Schaad, O.; Vejnar, C.E.; Descombes, P.; Zdobnov, E.M.; McManus, M.T.; et al. Sertoli Cell Dicer Is Essential for Spermatogenesis in Mice. Dev. Biol. 2009, 326, 250–259. [Google Scholar] [CrossRef]
- De Rooij, D.G. The Spermatogonial Stem Cell Niche. Microsc. Res. Tech. 2009, 72, 580–585. [Google Scholar] [CrossRef]
- Kostereva, N.; Hofmann, M.-C. Regulation of the Spermatogonial Stem Cell Niche. Reprod. Domest. Anim. 2008, 43, 386–392. [Google Scholar] [CrossRef]
- Tong, M.-H.; Mitchell, D.; Evanoff, R.; Griswold, M.D. Expression of Mirlet7 Family MicroRNAs in Response to Retinoic Acid-Induced Spermatogonial Differentiation in Mice. Biol. Reprod. 2011, 85, 189–197. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, L.; Hogarth, C.; Wei, G.; Griswold, M.D.; Tong, M.-H. Retinoid Signaling Controls Spermatogonial Differentiation by Regulating Expression of Replication-Dependent Core Histone Genes. Development 2016, 143, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Tong, M.-H.; Mitchell, D.A.; McGowan, S.D.; Evanoff, R.; Griswold, M.D. Two miRNA Clusters, mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), Are Involved in the Regulation of Spermatogonial Differentiation in Mice. Biol. Reprod. 2012, 86, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Lin, X.; Du, T.; Xu, K.; Shen, H.; Wei, F.; Hao, W.; Lin, T.; Lin, X.; Qin, Y.; et al. Targeted Disruption of miR-17-92 Impairs Mouse Spermatogenesis by Activating mTOR Signaling Pathway. Medicine 2016, 95, e2713. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, L.A.; Dennis, L.M.; Gill, M.E.; Houbaviy, H.; Markoulaki, S.; Fu, D.; White, A.C.; Kirak, O.; Sharp, P.A.; Page, D.C.; et al. mir-290-295 Deficiency in Mice Results in Partially Penetrant Embryonic Lethality and Germ Cell Defects. Proc. Natl. Acad. Sci. USA 2011, 108, 14163–14168. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Zhang, P.; Shui Luk, A.C.; Liao, J.; Chan, W.-Y.; Qi, H.; Hoi-Hung, A.C.; Lee, T.-L. MicroRNA-26b Promotes Transition from Kit- to Kit+ Mouse Spermatogonia. Exp. Cell Res. 2018, 373, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Moritoki, Y.; Hayashi, Y.; Mizuno, K.; Kamisawa, H.; Nishio, H.; Kurokawa, S.; Ugawa, S.; Kojima, Y.; Kohri, K. Expression Profiling of microRNA in Cryptorchid Testes: miR-135a Contributes to the Maintenance of Spermatogonial Stem Cells by Regulating FoxO1. J. Urol. 2014, 191, 1174–1180. [Google Scholar] [CrossRef] [PubMed]
- Huszar, J.M.; Payne, C.J. MicroRNA 146 (Mir146) Modulates Spermatogonial Differentiation by Retinoic Acid in Mice. Biol. Reprod. 2013, 88, 1–10. [Google Scholar] [CrossRef]
- Niu, Z.; Goodyear, S.M.; Rao, S.; Wu, X.; Tobias, J.W.; Avarbock, M.R.; Brinster, R.L. MicroRNA-21 Regulates the Self-Renewal of Mouse Spermatogonial Stem Cells. Proc. Natl. Acad. Sci. USA 2011, 108, 12740–12745. [Google Scholar] [CrossRef]
- He, Z.; Jiang, J.; Kokkinaki, M.; Tang, L.; Zeng, W.; Gallicano, I.; Dobrinski, I.; Dym, M. miRNA-20 and miRNA-106a Regulate Spermatogonial Stem Cell Renewal at the Post-Transcriptional Level via Targeting STAT3 and Ccnd1. Stem Cells 2013, 31, 2205–2217. [Google Scholar] [CrossRef]
- Chen, J.; Gao, C.; Lin, X.; Ning, Y.; He, W.; Zheng, C.; Zhang, D.; Yan, L.; Jiang, B.; Zhao, Y.; et al. The microRNA miR-202 Prevents Precocious Spermatogonial Differentiation and Meiotic Initiation during Mouse Spermatogenesis. Development 2021, 148, dev199799. [Google Scholar] [CrossRef]
- Chen, J.; Cai, T.; Zheng, C.; Lin, X.; Wang, G.; Liao, S.; Wang, X.; Gan, H.; Zhang, D.; Hu, X.; et al. microRNA-202 Maintains Spermatogonial Stem Cells by Inhibiting Cell Cycle Regulators and RNA Binding Proteins. Nucleic Acids Res. 2017, 45, 4142–4157. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-L.; Huang, G.-Y.; Lv, J.; Pan, L.-N.; Luo, X.; Shen, J. miR-100 Promotes the Proliferation of Spermatogonial Stem Cells via Regulating Stat3. Mol. Reprod. Dev. 2017, 84, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.-E.; Racicot, K.E.; Kaucher, A.V.; Oatley, M.J.; Oatley, J.M. MicroRNAs 221 and 222 Regulate the Undifferentiated State in Mammalian Male Germ Cells. Development 2013, 140, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Hao, G.; Zhao, Z.; Wang, F.; Cao, J.; Yang, A. microRNA-224 Regulates Self-renewal of Mouse Spermatogonial Stem Cells via Targeting DMRT1. J. Cell Mol. Med. 2016, 20, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhou, F.; Yuan, Q.; Zhang, W.; Qiu, Q.; Yu, X.; He, Z. miRNA-31-5p Mediates the Proliferation and Apoptosis of Human Spermatogonial Stem Cells via Targeting JAZF1 and Cyclin A2. Mol. Ther. Nucleic Acids 2018, 14, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Chen, W.; Cui, Y.; Liu, B.; Yuan, Q.; Li, Z.; He, Z. miRNA-122-5p Stimulates the Proliferation and DNA Synthesis and Inhibits the Early Apoptosis of Human Spermatogonial Stem Cells by Targeting CBL and Competing with lncRNA CASC7. Aging 2020, 12, 25528–25546. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhou, D.; Wei, C.; Luo, H.; Liu, J.; Fu, R.; Cui, S. MicroRNA-34c Enhances Murine Male Germ Cell Apoptosis through Targeting ATF1. PLoS ONE 2012, 7, e33861. [Google Scholar] [CrossRef]
- Liu, W.-M.; Pang, R.T.K.; Chiu, P.C.N.; Wong, B.P.C.; Lao, K.; Lee, K.-F.; Yeung, W.S.B. Sperm-Borne microRNA-34c Is Required for the First Cleavage Division in Mouse. Proc. Natl. Acad. Sci. USA 2012, 109, 490–494. [Google Scholar] [CrossRef]
- Yuan, S.; Tang, C.; Zhang, Y.; Wu, J.; Bao, J.; Zheng, H.; Xu, C.; Yan, W. Mir-34b/c and Mir-449a/b/c Are Required for Spermatogenesis, but Not for the First Cleavage Division in Mice. Biol. Open 2015, 4, 212–223. [Google Scholar] [CrossRef]
- Yu, M.; Mu, H.; Niu, Z.; Chu, Z.; Zhu, H.; Hua, J. miR-34c Enhances Mouse Spermatogonial Stem Cells Differentiation by Targeting Nanos2. J. Cell Biochem. 2014, 115, 232–242. [Google Scholar] [CrossRef]
- Comazzetto, S.; Di Giacomo, M.; Rasmussen, K.D.; Much, C.; Azzi, C.; Perlas, E.; Morgan, M.; O’Carroll, D. Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 Loci. PLoS Genet. 2014, 10, e1004597. [Google Scholar] [CrossRef]
- Bao, J.; Li, D.; Wang, L.; Wu, J.; Hu, Y.; Wang, Z.; Chen, Y.; Cao, X.; Jiang, C.; Yan, W.; et al. microRNA-449 and microRNA-34b/c Function Redundantly in Murine Testes by Targeting E2F Transcription Factor-Retinoblastoma Protein (E2F-pRb) Pathway. J. Biol. Chem. 2012, 287, 21686–21698. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Tsai-Morris, C.-H.; Sato, H.; Villar, J.; Kang, J.-H.; Zhang, J.; Dufau, M.L. Testis-Specific miRNA-469 Up-Regulated in Gonadotropin-Regulated Testicular RNA Helicase (GRTH/DDX25)-Null Mice Silences Transition Protein 2 and Protamine 2 Messages at Sites within Coding Region. J. Biol. Chem. 2011, 286, 44306–44318. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Raabe, T.; Hecht, N.B. MicroRNA Mirn122a Reduces Expression of the Posttranscriptionally Regulated Germ Cell Transition Protein 2 (Tnp2) Messenger RNA (mRNA) by mRNA Cleavage. Biol. Reprod. 2005, 73, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Björk, J.K.; Sandqvist, A.; Elsing, A.N.; Kotaja, N.; Sistonen, L. miR-18, a Member of Oncomir-1, Targets Heat Shock Transcription Factor 2 in Spermatogenesis. Development 2010, 137, 3177–3184. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Sun, M.; Niu, M.; Chen, Z.; Hou, J.; Wang, H.; Wen, L.; Liu, Y.; Li, Z.; He, Z. miRNA-133b Promotes the Proliferation of Human Sertoli Cells through Targeting GLI3. Oncotarget 2016, 7, 2201–2219. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yao, C.; Tian, R.; Zhu, Z.; Zhao, L.; Li, P.; Chen, H.; Huang, Y.; Zhi, E.; Gong, Y.; et al. miR-202-3p Regulates Sertoli Cell Proliferation, Synthesis Function, and Apoptosis by Targeting LRP6 and Cyclin D1 of Wnt/β-Catenin Signaling. Mol. Ther. Nucleic Acids 2018, 14, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Panneerdoss, S.; Viswanadhapalli, S.; Abdelfattah, N.; Onyeagucha, B.C.; Timilsina, S.; Mohammad, T.A.; Chen, Y.; Drake, M.; Vuori, K.; Kumar, T.R.; et al. Cross-Talk between miR-471-5p and Autophagy Component Proteins Regulates LC3-Associated Phagocytosis (LAP) of Apoptotic Germ Cells. Nat. Commun. 2017, 8, 598. [Google Scholar] [CrossRef] [PubMed]
- Panneerdoss, S.; Chang, Y.-F.; Buddavarapu, K.C.; Chen, H.-I.H.; Shetty, G.; Wang, H.; Chen, Y.; Kumar, T.R.; Rao, M.K. Androgen-Responsive MicroRNAs in Mouse Sertoli Cells. PLoS ONE 2012, 7, e41146. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, D.; Wang, T.; Zhou, J.; Xu, W.; Xiong, H.; Bai, R.; Wu, S.; Li, J.; Li, F. Sertoli Cell Survival and Barrier Function Are Regulated by miR-181c/d-Pafah1b1 Axis during Mammalian Spermatogenesis. Cell Mol. Life Sci. 2022, 79, 498. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Ma, J.; Yang, B.; Zhao, J.; Yan, B.-Y.; Zhang, Y.-Q.; Li, W. Interference with Lactate Metabolism by Mmu-miR-320-3p via Negatively Regulating GLUT3 Signaling in Mouse Sertoli Cells. Cell Death Dis. 2018, 9, 964. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Mandal, K.; Singh, P.; Sarkar, R.; Majumdar, S.S. Declining Levels of miR-382-3p at Puberty Trigger the Onset of Spermatogenesis. Mol. Ther. Nucleic Acids 2021, 26, 192–207. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, J.; Fernandez-Valverde, S.L.; Glazov, E.A.; Wainwright, E.N.; Sato, T.; Takada, S.; Combes, A.N.; Korbie, D.J.; Miller, D.; Grimmond, S.M.; et al. MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis. Biol. Reprod. 2013, 88, 143. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.-J.; Zhao, D.-M.; Mao, G.-H.; Tan, L. MicroRNA-150 Regulates Steroidogenesis of Mouse Testicular Leydig Cells by Targeting STAR. Reproduction 2017, 154, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Chen, D.; Xiao, Z.; Wei, S.; Liu, Y.; Wang, C.; Wang, Z.; Feng, Y.; Lei, Y.; Hu, M.; et al. Role of miR-300-3p in Leydig Cell Function and Differentiation: A Therapeutic Target for Obesity-Related Testosterone Deficiency. Mol. Ther. Nucleic Acids 2023, 32, 879–895. [Google Scholar] [CrossRef] [PubMed]
- Zegers-Hochschild, F.; Adamson, G.D.; de Mouzon, J.; Ishihara, O.; Mansour, R.; Nygren, K.; Sullivan, E.; Vanderpoel, S.; International Committee for Monitoring Assisted Reproductive Technology; World Health Organization. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary of ART Terminology, 2009. Fertil. Steril. 2009, 92, 1520–1524. [Google Scholar] [CrossRef] [PubMed]
- Minhas, S.; Bettocchi, C.; Boeri, L.; Capogrosso, P.; Carvalho, J.; Cilesiz, N.C.; Cocci, A.; Corona, G.; Dimitropoulos, K.; Gül, M.; et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 Update on Male Infertility. Eur. Urol. 2021, 80, 603–620. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Maggi, M. Ultrasound of the Male Genital Tract in Relation to Male Reproductive Health. Hum. Reprod. Update 2015, 21, 56–83. [Google Scholar] [CrossRef]
- Daneshmandpour, Y.; Bahmanpour, Z.; Hamzeiy, H.; Mazaheri Moghaddam, M.; Mazaheri Moghaddam, M.; Khademi, B.; Sakhinia, E. microRNAs Association with Azoospermia, Oligospermia, Asthenozoospermia, and Teratozoospermia: A Systematic Review. J. Assist. Reprod. Genet. 2020, 37, 763–775. [Google Scholar] [CrossRef]
- Wu, W.; Hu, Z.; Qin, Y.; Dong, J.; Dai, J.; Lu, C.; Zhang, W.; Shen, H.; Xia, Y.; Wang, X. Seminal Plasma microRNAs: Potential Biomarkers for Spermatogenesis Status. Mol. Hum. Reprod. 2012, 18, 489–497. [Google Scholar] [CrossRef]
- Wang, C.; Yang, C.; Chen, X.; Yao, B.; Yang, C.; Zhu, C.; Li, L.; Wang, J.; Li, X.; Shao, Y.; et al. Altered Profile of Seminal Plasma MicroRNAs in the Molecular Diagnosis of Male Infertility. Clin. Chem. 2011, 57, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Abu-Halima, M.; Hammadeh, M.; Backes, C.; Fischer, U.; Leidinger, P.; Lubbad, A.M.; Keller, A.; Meese, E. Panel of Five microRNAs as Potential Biomarkers for the Diagnosis and Assessment of Male Infertility. Fertil. Steril. 2014, 102, 989–997.e1. [Google Scholar] [CrossRef]
- Eikmans, M.; Anholts, J.D.H.; Blijleven, L.; Meuleman, T.; Van Beelen, E.; Van Der Hoorn, M.-L.P.; Claas, F.H.J. Optimization of microRNA Acquirement from Seminal Plasma and Identification of Diminished Seminal microRNA-34b as Indicator of Low Semen Concentration. Int. J. Mol. Sci. 2020, 21, 4089. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Qin, Y.; Li, Z.; Dong, J.; Dai, J.; Lu, C.; Guo, X.; Zhao, Y.; Zhu, Y.; Zhang, W.; et al. Genome-Wide microRNA Expression Profiling in Idiopathic Non-Obstructive Azoospermia: Significant up-Regulation of miR-141, miR-429 and miR-7-1-3p. Hum. Reprod. 2013, 28, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Wang, Q.; Zhang, G.; Li, Z.; Wang, Q. Differentially Expressed miRNAs and Potential Therapeutic Targets for Asthenospermia. Andrology 2022, 54, e14265. [Google Scholar] [CrossRef] [PubMed]
- Willems, M.; Devriendt, C.; Olsen, C.; Caljon, B.; Janssen, T.; Gies, I.; Vloeberghs, V.; Tournaye, H.; Van Saen, D.; Goossens, E. Micro RNA in Semen/Urine from Non-Obstructive Azoospermia Patients as Biomarkers to Predict the Presence of Testicular Spermatozoa and Spermatogonia. Life 2023, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-T.; Zhang, Z.; Hong, K.; Tang, W.-H.; Liu, D.-F.; Mao, J.-M.; Yang, Y.-Z.; Lin, H.-C.; Jiang, H. Altered microRNA Profiles of Testicular Biopsies from Patients with Nonobstructive Azoospermia. Asian J. Androl. 2020, 22, 100. [Google Scholar] [CrossRef]
- Abu-Halima, M.; Hammadeh, M.; Schmitt, J.; Leidinger, P.; Keller, A.; Meese, E.; Backes, C. Altered microRNA Expression Profiles of Human Spermatozoa in Patients with Different Spermatogenic Impairments. Fertil. Steril. 2013, 99, 1249–1255.e16. [Google Scholar] [CrossRef]
- Voorhoeve, P.M.; le Sage, C.; Schrier, M.; Gillis, A.J.M.; Stoop, H.; Nagel, R.; Liu, Y.-P.; van Duijse, J.; Drost, J.; Griekspoor, A.; et al. A Genetic Screen Implicates miRNA-372 and miRNA-373 as Oncogenes in Testicular Germ Cell Tumors. In Advances in Molecular Oncology; Fagagna, F.d.A.d., Chiocca, S., McBlane, F., Cavallaro, U., Eds.; Springer: Boston, MA, USA, 2007; pp. 17–46. [Google Scholar]
- Gillis, A.; Stoop, H.; Hersmus, R.; Oosterhuis, J.; Sun, Y.; Chen, C.; Guenther, S.; Sherlock, J.; Veltman, I.; Baeten, J.; et al. High-Throughput microRNAome Analysis in Human Germ Cell Tumours. J. Pathol. 2007, 213, 319–328. [Google Scholar] [CrossRef]
- Vashisht, A.; Gahlay, G.K. Using miRNAs as Diagnostic Biomarkers for Male Infertility: Opportunities and Challenges. Mol. Hum. Reprod. 2020, 26, 199–214. [Google Scholar] [CrossRef]
- Khawar, M.B.; Mehmood, R.; Roohi, N. microRNAs: Recent Insights towards Their Role in Male Infertility and Reproductive Cancers. Bosn. J. Basic Med. Sci. 2019, 19, 31–42. [Google Scholar] [CrossRef]
- Sita-Lumsden, A.; Dart, D.A.; Waxman, J.; Bevan, C.L. Circulating microRNAs as Potential New Biomarkers for Prostate Cancer. Br. J. Cancer 2013, 108, 1925–1930. [Google Scholar] [CrossRef] [PubMed]
- Ditonno, F.; Franco, A.; Manfredi, C.; Fasanella, D.; Abate, M.; La Rocca, R.; Crocerossa, F.; Iossa, V.; Falagario, U.G.; Cirillo, L.; et al. The Role of miRNA in Testicular Cancer: Current Insights and Future Perspectives. Medicina 2023, 59, 2033. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Sharma, A.R.; Sharma, G.; Sarkar, B.K.; Lee, S.-S. The Novel Strategies for Next-Generation Cancer Treatment: miRNA Combined with Chemotherapeutic Agents for the Treatment of Cancer. Oncotarget 2018, 9, 10164–10174. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.I.; Palladino, M.A. microRNAs Downregulated following Immune Activation of Rat Testis. Am. J. Reprod. Immunol. 2017, 77, e12673. [Google Scholar] [CrossRef] [PubMed]
- Francomano, D.; Sanguigni, V.; Capogrosso, P.; Deho, F.; Antonini, G. New Insight into Molecular and Hormonal Connection in Andrology. Int. J. Mol. Sci. 2021, 22, 11908. [Google Scholar] [CrossRef] [PubMed]
- Rupaimoole, R.; Slack, F.J. microRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.-S. Therapeutic Advances of miRNAs: A Preclinical and Clinical Update. J. Adv. Res. 2021, 28, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The Effect of Cryopreservation on the Genome of Gametes and Embryos: Principles of Cryobiology and Critical Appraisal of the Evidence. Hum. Reprod. Update 2015, 21, 209–227. [Google Scholar] [CrossRef]
- Aitken, R.J. DNA Damage in Human Spermatozoa; Important Contributor to Mutagenesis in the Offspring. Transl. Androl. Urol. 2017, 6, S761–S764. [Google Scholar] [CrossRef]
- Tamburrino, L.; Traini, G.; Marcellini, A.; Vignozzi, L.; Baldi, E.; Marchiani, S. Cryopreservation of Human Spermatozoa: Functional, Molecular and Clinical Aspects. Int. J. Mol. Sci. 2023, 24, 4656. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Zini, A.; Coward, R.M.; Evenson, D.P.; Gosálvez, J.; Lewis, S.E.M.; Sharma, R.; Humaidan, P. Sperm DNA Fragmentation Testing: Summary Evidence and Clinical Practice Recommendations. Andrology 2021, 53, e13874. [Google Scholar] [CrossRef] [PubMed]
- Wündrich, K.; Paasch, U.; Leicht, M.; Glander, H.-J. Activation of Caspases in Human Spermatozoa during Cryopreservation—An Immunoblot Study. Cell Tissue Bank 2006, 7, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Shanehbandi, D.; Bahramzadeh, B.; Hamdi, K.; Pashaiasl, M. Investigation of Molecular Cryopreservation, Fertility Potential and microRNA-Mediated Apoptosis in Oligoasthenoteratozoospermia Men. Cell Tissue Bank 2021, 22, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Thomson, L.K.; Fleming, S.D.; Aitken, R.J.; De Iuliis, G.N.; Zieschang, J.-A.; Clark, A.M. Cryopreservation-Induced Human Sperm DNA Damage Is Predominantly Mediated by Oxidative Stress Rather than Apoptosis. Hum. Reprod. 2009, 24, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dai, D.; Chang, Y.; Li, Y.; Zhang, M.; Zhou, G.; Peng, Z.; Zeng, C. Cryopreservation of Boar Sperm Induces Differential microRNAs Expression. Cryobiology 2017, 76, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, W.; Zhang, L.; Ji, Y.; Qin, J.; Wang, L.; Wang, M.; Qi, L.; Xue, J.; Lv, B.; et al. Effect of Sperm Cryopreservation on miRNA Expression and Early Embryonic Development. Front. Cell Dev. Biol. 2021, 9, 749486. [Google Scholar] [CrossRef]
- Abu-Halima, M.; Khaizaran, Z.A.; Ayesh, B.M.; Fischer, U.; Khaizaran, S.A.; Al-Battah, F.; Hammadeh, M.; Keller, A.; Meese, E. microRNAs in Combined Spent Culture Media and Sperm Are Associated with Embryo Quality and Pregnancy Outcome. Fertil. Steril. 2020, 113, 970–980.e2. [Google Scholar] [CrossRef]
- Lyons, P.J.; Lang-Ouellette, D.; Morin, P. CryomiRs: Towards the Identification of a Cold-Associated Family of microRNAs. Comp. Biochem. Physiol. Part D Genom. Proteom. 2013, 8, 358–364. [Google Scholar] [CrossRef]
- Singh, G.; Storey, K.B. microRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? Cells 2021, 10, 3374. [Google Scholar] [CrossRef]
- Saadeldin, I.M.; Khalil, W.A.; Alharbi, M.G.; Lee, S.H. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals 2020, 10, 2281. [Google Scholar] [CrossRef]
- Wu, J.-X.; Xia, T.; She, L.-P.; Lin, S.; Luo, X.-M. Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transpl. 2022, 31, 9636897221083252. [Google Scholar] [CrossRef] [PubMed]
- Brinster, R.L.; Zimmermann, J.W. Spermatogenesis following Male Germ-Cell Transplantation. Proc. Natl. Acad. Sci. USA 1994, 91, 11298–11302. [Google Scholar] [CrossRef] [PubMed]
- Hermann, B.P.; Sukhwani, M.; Winkler, F.; Pascarella, J.N.; Peters, K.A.; Sheng, Y.; Valli, H.; Rodriguez, M.; Ezzelarab, M.; Dargo, G.; et al. Spermatogonial Stem Cell Transplantation into Rhesus Testes Regenerates Spermatogenesis Producing Functional Sperm. Cell Stem Cell 2012, 11, 715–726. [Google Scholar] [CrossRef]
- Velez, D.; Hwang, K. Personalized Medicine for the Infertile Male. Urol. Clin. N. Am. 2020, 47, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Khanlari, P.; Khanehzad, M.; Khosravizadeh, Z.; Sobhani, A.; Barakzai, S.; Kazemzadeh, S.; Hedayatpour, A. Effect of miR-30a-5p on Apoptosis, Colonization, and Oxidative Stress Variables in Frozen-Thawed Neonatal Mice Spermatogonial Stem Cells. Biopreserv. Biobank 2021, 19, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Kadam, P.; Ntemou, E.; Onofre, J.; Van Saen, D.; Goossens, E. Does Co-Transplantation of Mesenchymal and Spermatogonial Stem Cells Improve Reproductive Efficiency and Safety in Mice? Stem Cell Res. Ther. 2019, 10, 310. [Google Scholar] [CrossRef]
- Sagaradze, G.; Monakova, A.; Basalova, N.; Popov, V.; Balabanyan, V.; Efimenko, A. Regenerative Medicine for Male Infertility: A Focus on Stem Cell Niche Injury Models. Biomed. J. 2022, 45, 607–614. [Google Scholar] [CrossRef]
- Hade, M.D.; Suire, C.N.; Suo, Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021, 10, 1959. [Google Scholar] [CrossRef]
- Li, C.-Y.; Liu, S.-P.; Dai, X.-F.; Lan, D.-F.; Song, T.; Wang, X.-Y.; Kong, Q.-H.; Tan, J.; Zhang, J.-D. The Emerging Role of Exosomes in the Development of Testicular. Asian J. Androl. 2023, 25, 547–555. [Google Scholar] [CrossRef]
- Badawy, A.A.; El-Magd, M.A.; AlSadrah, S.A.; Alruwaili, M.M. Altered Expression of Some miRNAs and Their Target Genes following Mesenchymal Stem Cell Treatment in Busulfan-Induced Azoospermic Rats. Gene 2020, 737, 144481. [Google Scholar] [CrossRef] [PubMed]
- Segal, M.; Slack, F.J. Challenges Identifying Efficacious miRNA Therapeutics for Cancer. Expert Opin. Drug Discov. 2020, 15, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.F.; Cerqueira, L.; Figueiredo, C.; Oliveira, C.; Azevedo, N.F. Anti-miRNA Oligonucleotides: A Comprehensive Guide for Design. RNA Biol. 2018, 15, 338–352. [Google Scholar] [CrossRef]
- Lennox, K.A.; Behlke, M.A. Chemical Modification and Design of Anti-miRNA Oligonucleotides. Gene Ther. 2011, 18, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Liu, C.; Lü, J.; Zhao, Q.; Deng, S.; Wang, G.; Qiao, J.; Zhang, C.; Zhen, L.; Lu, Y.; et al. Small RNA Zippers Lock miRNA Molecules and Block miRNA Function in Mammalian Cells. Nat. Commun. 2017, 8, 13964. [Google Scholar] [CrossRef] [PubMed]
- Martino, E.; D’Onofrio, N.; Anastasio, C.; Abate, M.; Zappavigna, S.; Caraglia, M.; Balestrieri, M.L. microRNA-Nanoparticles against Cancer: Opportunities and Challenges for Personalized Medicine. Mol. Ther. Nucleic Acids 2023, 32, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, W.; Nguyen, G.N.; Zhang, C.; Zeng, C.; Yan, J.; Du, S.; Hou, X.; Li, W.; Jiang, J.; et al. Functionalized Lipid-like Nanoparticles for in Vivo mRNA Delivery and Base Editing. Sci. Adv. 2020, 6, eabc2315. [Google Scholar] [CrossRef]
- Gokita, K.; Inoue, J.; Ishihara, H.; Kojima, K.; Inazawa, J. Therapeutic Potential of LNP-Mediated Delivery of miR-634 for Cancer Therapy. Mol. Ther. Nucleic Acids 2020, 19, 330–338. [Google Scholar] [CrossRef]
- Du, S.; Li, W.; Zhang, Y.; Xue, Y.; Hou, X.; Yan, J.; Cheng, J.; Deng, B.; McComb, D.W.; Lin, J.; et al. Cholesterol-Amino-Phosphate (CAP) Derived Lipid Nanoparticles for Delivery of Self-Amplifying RNA and Restoration of Spermatogenesis in Infertile Mice. Adv. Sci. 2023, 10, e2300188. [Google Scholar] [CrossRef]
- Idumah, C.I. Emerging Trends in Poly(Lactic-Co-Glycolic) Acid Bionanoarchitectures and Applications. Clean. Mater. 2023, 5, 100102. [Google Scholar] [CrossRef]
- Höbel, S.; Aigner, A. Polyethylenimines for siRNA and miRNA Delivery in Vivo. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 484–501. [Google Scholar] [CrossRef]
- Chaudhari, R.; Nasra, S.; Meghani, N.; Kumar, A. MiR-206 Conjugated Gold Nanoparticle Based Targeted Therapy in Breast Cancer Cells. Sci. Rep. 2022, 12, 4713. [Google Scholar] [CrossRef] [PubMed]
- Crew, E.; Tessel, M.A.; Rahman, S.; Razzak-Jaffar, A.; Mott, D.; Kamundi, M.; Yu, G.; Tchah, N.; Lee, J.; Bellavia, M.; et al. microRNA Conjugated Gold Nanoparticles and Cell Transfection. Anal. Chem. 2012, 84, 26–29. [Google Scholar] [CrossRef]
- Valkenier, H.; Malytskyi, V.; Blond, P.; Retout, M.; Mattiuzzi, A.; Goole, J.; Raussens, V.; Jabin, I.; Bruylants, G. Controlled Functionalization of Gold Nanoparticles with Mixtures of Calix[4]Arenes Revealed by Infrared Spectroscopy. Langmuir 2017, 33, 8253–8259. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, C.; Daniel, A.; Bruylants, G.; Demeestere, I. The Role of microRNAs in Ovarian Function and the Transition toward Novel Therapeutic Strategies in Fertility Preservation: From Bench to Future Clinical Application. Hum. Reprod. Update 2020, 26, 174–196. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, A.; Houle, E.; Pilsner, J.R. Extracellular Vesicle Cargo of the Male Reproductive Tract and the Paternal Preconception Environment. Syst. Biol. Reprod. Med. 2021, 67, 103–111. [Google Scholar] [CrossRef]
- Cornwall, G.A. New Insights into Epididymal Biology and Function. Hum. Reprod. Update 2009, 15, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Barrachina, F.; Battistone, M.A.; Castillo, J.; Mallofré, C.; Jodar, M.; Breton, S.; Oliva, R. Sperm Acquire Epididymis-Derived Proteins through Epididymosomes. Hum. Reprod. 2022, 37, 651–668. [Google Scholar] [CrossRef]
- Reilly, J.N.; McLaughlin, E.A.; Stanger, S.J.; Anderson, A.L.; Hutcheon, K.; Church, K.; Mihalas, B.P.; Tyagi, S.; Holt, J.E.; Eamens, A.L.; et al. Characterisation of Mouse Epididymosomes Reveals a Complex Profile of microRNAs and a Potential Mechanism for Modification of the Sperm Epigenome. Sci. Rep. 2016, 6, 31794. [Google Scholar] [CrossRef]
- Aalberts, M.; Stout, T.A.E.; Stoorvogel, W. Prostasomes: Extracellular Vesicles from the Prostate. Reproduction 2014, 147, R1–R14. [Google Scholar] [CrossRef]
- Tamessar, C.T.; Trigg, N.A.; Nixon, B.; Skerrett-Byrne, D.A.; Sharkey, D.J.; Robertson, S.A.; Bromfield, E.G.; Schjenken, J.E. Roles of Male Reproductive Tract Extracellular Vesicles in Reproduction. Am. J. Reprod. Immunol. 2021, 85, e13338. [Google Scholar] [CrossRef] [PubMed]
- Barkalina, N.; Jones, C.; Wood, M.J.A.; Coward, K. Extracellular Vesicle-Mediated Delivery of Molecular Compounds into Gametes and Embryos: Learning from Nature. Hum. Reprod. Update 2015, 21, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Claas, C.; Kretz, C.C.; Nazarenko, I.; Zoeller, M. Activation-Induced Internalization Differs for the Tetraspanins CD9 and Tspan8: Impact on Tumor Cell Motility. Int. J. Biochem. Cell Biol. 2011, 43, 106–119. [Google Scholar] [CrossRef]
- Zhu, X.; Badawi, M.; Pomeroy, S.; Sutaria, D.S.; Xie, Z.; Baek, A.; Jiang, J.; Elgamal, O.A.; Mo, X.; Perle, K.L.; et al. Comprehensive Toxicity and Immunogenicity Studies Reveal Minimal Effects in Mice following Sustained Dosing of Extracellular Vesicles Derived from HEK293T Cells. J. Extracell. Vesicles 2017, 6, 1324730. [Google Scholar] [CrossRef]
- Rezaie, J.; Feghhi, M.; Etemadi, T. A Review on Exosomes Application in Clinical Trials: Perspective, Questions, and Challenges. Cell Commun. Signal. 2022, 20, 145. [Google Scholar] [CrossRef]
- Heath, N.; Osteikoetxea, X.; de Oliveria, T.M.; Lázaro-Ibáñez, E.; Shatnyeva, O.; Schindler, C.; Tigue, N.; Mayr, L.M.; Dekker, N.; Overman, R.; et al. Endosomal Escape Enhancing Compounds Facilitate Functional Delivery of Extracellular Vesicle Cargo. Nanomedicine 2019, 14, 2799–2814. [Google Scholar] [CrossRef] [PubMed]
- Goss, D.M.; Vasilescu, S.A.; Sacks, G.; Gardner, D.K.; Warkiani, M.E. Microfluidics Facilitating the Use of Small Extracellular Vesicles in Innovative Approaches to Male Infertility. Nat. Rev. Urol. 2023, 20, 66–95. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Wei, H.; Ouyang, Y.; Dong, M.; Zhang, R.; Wang, L.; Chen, Y.; Ma, Y.; Guo, M.; et al. Testis Electroporation Coupled with Autophagy Inhibitor to Treat Non-Obstructive Azoospermia. Mol. Ther. Nucleic Acids 2022, 30, 451–464. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Thatte, J.; Periasamy, J.; Javali, A.; Jayaram, M.; Sen, D.; Krishnagopal, A.; Jayandharan, G.R.; Sambasivan, R. Infectivity of Adeno-Associated Virus Serotypes in Mouse Testis. BMC Biotechnol. 2018, 18, 70. [Google Scholar] [CrossRef]
- Watanabe, S.; Kanatsu-Shinohara, M.; Ogonuki, N.; Matoba, S.; Ogura, A.; Shinohara, T. In Vivo Genetic Manipulation of Spermatogonial Stem Cells and Their Microenvironment by Adeno-Associated Viruses. Stem Cell Rep. 2018, 10, 1551–1564. [Google Scholar] [CrossRef]
- Vilpreux, C. Restauration d’une Spermatogenèse Fonctionnelle Chez Des Souris Infertiles Par Thérapie in Vivo. Ph.D. Thesis, Université Grenobles Alpes, Saint-Martin-d’Hères, France, 16 October 2023. [Google Scholar]
- Yu, J.; Xu, J.; Li, H.; Wu, P.; Zhu, S.; Huang, X.; Shen, C.; Zheng, B.; Li, W. Gold Nanoparticles Retrogradely Penetrate through Testicular Barriers via Sertoli-Cells Mediated Endocytosis/Exocytosis and Induce Immune Response in Mouse. Ecotoxicol. Environ. Saf. 2023, 255, 114827. [Google Scholar] [CrossRef]
- Qu, N.; Ogawa, Y.; Kuramasu, M.; Nagahori, K.; Sakabe, K.; Itoh, M. Immunological Microenvironment in the Testis. Reprod. Med. Biol. 2020, 19, 24–31. [Google Scholar] [CrossRef]
Samples Used | Techniques | Down- or Up-Regulated miRNAs | Reference |
---|---|---|---|
Human seminal plasma | RNAseq and qRT-PCR validation | RT-qPCR: miR-34c-5p, miR-122, miR-146b-5p, miR-181a, miR-374b, miR-509-5p, and miR-513a-5p were down-regulated in patients with NOA and up-regulated in patients with asthenozoospermia | [91] |
Human seminal plasma | qRT-PCR | miR-19b, let-7a were up-regulated in patients with NOA | [90] |
Human seminal plasma | qRT-PCR (TaqMan) | miR-141, miR-429, and miR-7-1-3P were up-regulated in patients with NOA compared to control | [94] |
Human semen sample Human purified spermatozoa and testicular biopsies | Microarray with RT-qPCR validation qRT-PCR | 50 miRNAs up-regulated and 27 miRNAs down-regulated in asthenozoospermic patients compared to control. 42 miRNAs were up-regulated and 44 miRNAs down-regulated in oligoasthenozoospermic patients when compared with normozoospermic males. miR-34b*, miR-34b, miR-34c-5p, miR-122 down-regulated and miR-429 up-regulated in NOA and subfertile patients | [92] [98] |
Human semen sample | qPCR | miR-34b-5p is down-regulated in patients with asthenozoospermia and oligozoospermia | [93] |
Testicular tissue | Microarray and validation with qRT-PCR | 129 miRNAs were differentially expressed in the NOA group compared to control Combination of miR-10b-3p and miR-34b-5p as a predictive biomarker of azoospermia | [97] |
Human male germ cells isolated from testicular tissue | miRNA microarray | miR-122-5p is up-regulated in human spermatogonia of patients with OA compared to NOA patients | [66] |
Human seminal plasma | High-throughput sequence technology and validation with RT-qPCR | 6 miRNAs were up-regulated (miR-765, miR-5000-3p, miR-4289, miR-6514-3p, miR-6882-5p, miR-6739-5p) and 7 (miR-34b/c-5p, mR-135a-5p, miR-146b-5p, miR-196b-5p, miR-449a, miR-509-3p) were down-regulated in patients with asthenozoospermia compared to healthy men | [95] |
Human seminal plasma and urine samples | Next-generation sequencing | 13 miRNAs differentially expressed (10 in seminal plasma samples and 3 in urine) to predict the presence of testicular spermatogonia | [96] |
Cell culture | Microarray Genetic screen | miR-372 and miR-373: potential novel oncogenes in testicular germ cell tumors by interfering with p53 pathway | [99] |
Testicular tissue | qPCR | miRNA expression profile to distinguish type II and III germ cell tumors | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klees, C.; Alexandri, C.; Demeestere, I.; Lybaert, P. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? Int. J. Mol. Sci. 2024, 25, 460. https://doi.org/10.3390/ijms25010460
Klees C, Alexandri C, Demeestere I, Lybaert P. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? International Journal of Molecular Sciences. 2024; 25(1):460. https://doi.org/10.3390/ijms25010460
Chicago/Turabian StyleKlees, Charlotte, Chrysanthi Alexandri, Isabelle Demeestere, and Pascale Lybaert. 2024. "The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation?" International Journal of Molecular Sciences 25, no. 1: 460. https://doi.org/10.3390/ijms25010460
APA StyleKlees, C., Alexandri, C., Demeestere, I., & Lybaert, P. (2024). The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? International Journal of Molecular Sciences, 25(1), 460. https://doi.org/10.3390/ijms25010460