Transcriptomic Analysis of the Aged Nulliparous Mouse Ovary Suggests a Stress State That Promotes Pro-Inflammatory Lipid Signaling and Epithelial Cell Enrichment
Abstract
:1. Introduction
2. Results and Discussion
2.1. A Xenobiotic-like Stress State in the Aged NP Ovary
2.2. Genes Associated to Metabolism of Pro-Inflammatory Lipid Mediators
2.3. A Possible Mesenchymal-to-Epithelial Transition Signature in the Aged NP Ovary
2.4. Gene Expression Datamining of the Ovarian NP Signature
2.5. Follicle Depletion and the Pre-Neoplastic mOSE
2.6. The Status of Selected Genes Expressed by the Aged NP Mouse Ovary in Human OC
3. Materials and Methods
3.1. Experimental Design, Data Collection and Differential Expression
3.2. Mouse–Human Orthology
3.3. Canonical Enrichment
3.4. Mining of GEO Gene Expression Signatures
3.5. Gene Expression Analysis of Ovarian Carcinomas
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liberto, J.M.; Chen, S.-Y.; Shih, I.-M.; Wang, T.-H.; Wang, T.-L.; Pisanic, T.R., 2nd. Current and emerging methods for ovarian cancer screening and diagnostics: A comprehensive review. Cancers 2022, 14, 2885. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Brooks, M.M.; Irvin, S.; Jordan, S.; Aben, K.K.H.; Anton-Culver, H.; Bandera, E.V.; Beckmann, M.W.; Berchuck, A.; Brooks-Wilson, A.; et al. Lifetime ovulatory years and risk of epithelial ovarian cancer: A multinational pooled analysis. J. Natl. Cancer Inst. 2023, 115, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Dolgalev, I.; Zhang, T.; Ran, H.; Levine, D.A.; Neel, B.G. Both fallopian tube and ovarian surface epithelium are cells-of-origin for high-grade serous ovarian carcinoma. Nat. Commun. 2019, 10, 5367. [Google Scholar] [CrossRef] [PubMed]
- Broekmans, F.J.; Soules, M.R.; Fauser, B.C. Ovarian aging: Mechanisms and clinical consequences. Endocr. Rev. 2009, 30, 465–493. [Google Scholar] [CrossRef] [PubMed]
- Agnieszka, B.; Brodowski, J.; Laszczyńska, M.; Słuczanowska-Głąbowska, S.; Rumianowski, B.; Rotter, I.; Starczewski, A.; Ratajczak, M.Z. Immunoexpression of aromatase cytochrome P450 and 17β-hydroxysteroid dehydrogenase in women’s ovaries after menopause. J. Ovarian Res. 2014, 7, 52. [Google Scholar] [CrossRef]
- Mendez, C.; Morales-Vasquez, F.; Perez-Montiel, D.; Gomora, M.J.; Espinola-Zetina, C.; Hernandez-Martinez, A.; Lopez-Basave, H.; Pedernera, E. Estrogen and androgen receptor expression in surface epithelium and inclusion cyst in the ovary of premenopausal and postmenopausal women. J. Ovarian Res. 2013, 6, 85. [Google Scholar] [CrossRef]
- Brodowska, A.; Laszczyńska, M.; Brodowski, J.; Masiuk, M.; Starczewski, A. Analysis of pituitary gonadotropin concentration in blood serum and immunolocalization and immunoexpression of follicle stimulating hormone and luteinising hormone receptors in ovaries of postmenopausal women. Histol. Histopathol. 2012, 27, 241–248. [Google Scholar] [CrossRef]
- Timóteo-Ferreira, F.; Abreu, D.; Mendes, S.; Matos, L.; Rodrigues, A.R.; Almeida, H.; Silva, E. Redox imbalance in age-related ovarian dysfunction and perspectives for its prevention. Ageing Res. Rev. 2021, 68, 101345. [Google Scholar] [CrossRef]
- Lliberos, C.; Liew, S.H.; Mansell, A.; Hutt, K.J. The inflammasome contributes to depletion of the ovarian reserve during aging in mice. Front. Cell Dev. Biol. 2020, 8, 628473. [Google Scholar] [CrossRef]
- Chen, L.; Ding, B.; Wu, L.; Qiu, J.; Li, Q.; Ye, Z.; Yang, J. Transcriptome analysis reveals the mechanism of natural ovarian ageing. Front. Endocrinol. 2022, 13, 918212. [Google Scholar] [CrossRef]
- Russo, J.; Santucci-Pereira, J.; Russo, I.H. The genomic signature of breast cancer prevention. Genes 2014, 5, 65–83. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Díez, P.J.; Gomez-Pilar, J.; Hornero, R.; Martínez-Rodríguez, J.; López-Marcos, M.A.; Russo, J. The role of gene to gene interaction in the breast’s genomic signature of pregnancy. Sci. Rep. 2021, 11, 2643. [Google Scholar] [CrossRef] [PubMed]
- Urzúa, U.; Chacón, C.; Norambuena, M.; Lizama, L.; Sarmiento, S.; Asaki, E.; Powell, J.I.; Ampuero, S. The ovarian transcriptome of reproductively aged multiparous mice: Candidate genes for ovarian cancer protection. Biomolecules 2020, 10, 113. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Bader, N.; Grune, T. Lipofuscin: Formation, distribution, and metabolic consequences. Ann. N. Y. Acad. Sci. 2007, 1119, 97–111. [Google Scholar] [CrossRef]
- Urzua, U.; Chacon, C.; Espinoza, R.; Martínez, S.; Hernandez, N. Parity-dependent hemosiderin and lipofuscin accumulation in the reproductively aged mouse ovary. Anal. Cell. Pathol. 2018, 2018, 1289103. [Google Scholar] [CrossRef] [PubMed]
- Korovila, I.; Hugo, M.; Castro, J.P.; Weber, D.; Höhn, A.; Grune, T.; Jung, T. Proteostasis, oxidative stress and aging. Redox Biol. 2017, 13, 550–567. [Google Scholar] [CrossRef]
- Hauck, A.K.; Bernlohr, D.A. Oxidative stress and lipotoxicity. J. Lipid Res. 2016, 57, 1976–1986. [Google Scholar] [CrossRef]
- Guo, W.; Li, K.; Sun, B.; Xu, D.; Tong, L.; Yin, H.; Liao, Y.; Song, H.; Wang, T.; Jing, B.; et al. Dysregulated glutamate transporter SLC1A1 propels cystine uptake via Xc- for glutathione synthesis in lung cancer. Cancer Res. 2021, 81, 552–566. [Google Scholar] [CrossRef]
- Modyanov, N.N.; Mathews, P.M.; Grishin, A.V.; Beguin, P.; Beggah, A.T.; Rossier, B.C.; Horisberger, J.D.; Geering, K. Human ATP1AL1 gene encodes a ouabain-sensitive H-K-ATPase. Am. J. Physiol. 1995, 269 Pt 1, C992-7. [Google Scholar] [CrossRef]
- Cowen, L.E.; Hodak, S.P.; Verbalis, J.G. Age-associated abnormalities of water homeostasis. Endocrinol. Metab. Clin. N. Am. 2013, 42, 349–370. [Google Scholar] [CrossRef]
- Birder, L.A.; Wolf-Johnston, A.S.; Jackson, E.K.; Wein, A.J.; Dmochowski, R. Aging increases the expression of vasopressin receptors in both the kidney and urinary bladder. Neurourol. Urodyn. 2019, 38, 393–397. [Google Scholar] [CrossRef]
- Wu, B.; Beitz, E. Aquaporins with selectivity for unconventional permeants. Cell. Mol. Life Sci. CMLS 2007, 64, 2413–2421. [Google Scholar] [CrossRef] [PubMed]
- Kordowitzki, P.; Kranc, W.; Bryl, R.; Kempisty, B.; Skowronska, A.; Skowronski, M.T. The relevance of aquaporins for the physiology, pathology, and aging of the female reproductive system in mammals. Cells 2020, 9, 2570. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Cicero, N.; Mirabile, G.; Cancemi, G.; Tonacci, A.; Musolino, C.; Gangemi, S. Critical role of aquaporins in cancer: Focus on hematological malignancies. Cancers 2022, 14, 4182. [Google Scholar] [CrossRef] [PubMed]
- Brayboy, L.M.; Oulhen, N.; Long, S.; Voigt, N.; Raker, C.; Wessel, G.M. Multidrug resistance transporter-1 and breast cancer resistance protein protect against ovarian toxicity, and are essential in ovarian physiology. Reprod. Toxicol. 2017, 69, 121–131. [Google Scholar] [CrossRef]
- Ween, M.P.; Armstrong, M.A.; Oehler, M.K.; Ricciardelli, C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit. Rev. Oncol./Hematol. 2015, 96, 220–256. [Google Scholar] [CrossRef] [PubMed]
- Téllez, J.; Romero, I.; Romanha, A.J.; Steindel, M. Drug transporter and oxidative stress gene expression in human macrophages infected with benznidazole-sensitive and naturally benznidazole-resistant Trypanosoma cruzi parasites treated with benznidazole. Parasites Vectors 2019, 12, 262. [Google Scholar] [CrossRef]
- Diekjürgen, D.; Grainger, D.W. Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model. Pflug. Arch. Eur. J. Physiol. 2018, 470, 1311–1323. [Google Scholar] [CrossRef]
- Palumbo, A.; Ávila, J.; Naftolin, F. The ovarian renin-angiotensin system (OVRAS): A major factor in ovarian function and disease. Reprod. Sci. 2016, 23, 1644–1655. [Google Scholar] [CrossRef]
- Conti, S.; Cassis, P.; Benigni, A. Aging and the renin-angiotensin system. Hypertension 2012, 60, 878–883. [Google Scholar] [CrossRef]
- Kim, J.; You, S. High housing density-induced chronic stress diminishes ovarian reserve via granulosa cell apoptosis by angiotensin II overexpression in mice. Int. J. Mol. Sci. 2022, 23, 8614. [Google Scholar] [CrossRef] [PubMed]
- Queen, A.; Bhutto, H.N.; Yousuf, M.; Syed, M.A.; Hassan, M.I. Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Semin. Cancer Biol. 2022, 86 Pt 3, 899–913. [Google Scholar] [CrossRef] [PubMed]
- Yeo, E.-J. Hypoxia and aging. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gutzeit, O.; Iluz, R.; Ginsberg, Y.; Nebenzahl, K.; Beloosesky, R.; Weiner, Z.; Fainaru, O. Perinatal hypoxia leads to primordial follicle activation and premature depletion of ovarian reserve. J. Matern.-Fetal Neonatal Med. 2022, 35, 7844–7848. [Google Scholar] [CrossRef]
- Amweg, A.N.; Rodríguez, F.M.; Huber, E.; Marelli, B.E.; Gareis, N.C.; Belotti, E.M.; Rey, F.; Salvetti, N.R.; Ortega, H.H. Detection and activity of 11 beta hydroxylase (CYP11B1) in the bovine ovary. Reproduction 2017, 153, 433–441. [Google Scholar] [CrossRef]
- Bogaards, J.J.; Venekamp, J.C.; van Bladeren, P.J. Stereoselective conjugation of prostaglandin A2 and prostaglandin J2 with glutathione, catalyzed by the human glutathione S-transferases A1-1, A2-2, M1a-1a, and P1-1. Chem. Res. Toxicol. 1997, 10, 310–317. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Jiang, Y.; Qian, Y.; Chen, S.; Gao, S.; Chen, L.; Li, C.; Zhou, X. Follicle-stimulating hormone (FSH) promotes retinol uptake and metabolism in the mouse ovary. Reprod. Biol. Endocrinol. RBE 2018, 16, 52. [Google Scholar] [CrossRef]
- Damdimopoulou, P.; Chiang, C.; Flaws, J.A. Retinoic acid signaling in ovarian folliculogenesis and steroidogenesis. Reprod. Toxicol. 2019, 87, 32–41. [Google Scholar] [CrossRef]
- Wu, C.-C.; Schwartzman, M.L. The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat. 2011, 96, 45–53. [Google Scholar] [CrossRef]
- Farhat, A.; Philibert, P.; Sultan, C.; Poulat, F.; Boizet-Bonhoure, B. Hematopoietic-Prostaglandin D2 synthase through PGD2 production is involved in the adult ovarian physiology. J. Ovarian Res. 2011, 4, 3. [Google Scholar] [CrossRef]
- Zhou, F.; Zhong, L.L.; Tan, Y.; Liu, L.; Pei, G. A metabolomic approach to study triptolide-induced ovarian damage in rats. Toxicology 2022, 482, 153351. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.R.; Babes, L.; Rahn, J.J.; Ahn, B.-Y.; Goring, K.-A.R.; King, J.C.; Lau, A.; Petri, B.; Hao, X.; Chojnacki, A.K.; et al. Dipeptidase-1 is an adhesion receptor for neutrophil recruitment in lungs and liver. Cell 2019, 178, 1205–1221.e17. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.-L.; Xu, Y.-R.; Yang, W.-X.; Sun, Y. The role of FSH and TGF-β superfamily in follicle atresia. Aging 2018, 10, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Turan, V.; Lierman, S.; Cuvelier, C.; De Sutter, P.; Oktay, K. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum. Reprod. 2014, 29, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Pitman, M.; Oehler, M.K.; Pitson, S.M. Sphingolipids as multifaceted mediators in ovarian cancer. Cell. Signal. 2021, 81, 109949. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Agudo, D.; Malacrida, L.; Kakiyama, G.; Sparrer, T.; Fortes, C.; Maceyka, M.; Subler, M.A.; Windle, J.J.; Gratto, E.; Pandak, W.M.; et al. StarD5: An ER stress protein regulates plasma membrane and intracellular cholesterol homeostasis. J. Lipid Res. 2019, 60, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Banet, N.; Kurman, R.J. Two types of ovarian cortical inclusion cysts: Proposed origin and possible role in ovarian serous carcinogenesis. Int. J. Gynecol. Pathol. Off. J. Int. Soc. Gynecol. Pathol. 2015, 34, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Tan, O.L.; Hurst, P.R.; Fleming, J.S. Location of inclusion cysts in mouse ovaries in relation to age, pregnancy, and total ovulation number: Implications for ovarian cancer? J. Pathol. 2005, 205, 483–490. [Google Scholar] [CrossRef]
- Okamoto, S.; Okamoto, A.; Nikaido, T.; Saito, M.; Takao, M.; Yanaihara, N.; Takakura, S.; Ochiai, K.; Tanaka, T. Mesenchymal to epithelial transition in the human ovarian surface epithelium focusing on inclusion cysts. Oncol. Rep. 2009, 21, 1209–1214. [Google Scholar] [CrossRef]
- Toivola, D.M.; Strnad, P.; Habtezion, A.; Omary, M.B. Intermediate filaments take the heat as stress proteins. Trends Cell Biol. 2010, 20, 79–91. [Google Scholar] [CrossRef]
- Helenius, T.O.; Antman, C.A.; Asghar, M.N.; Nyström, J.H.; Toivola, D.M. Keratins are altered in intestinal disease-related stress responses. Cells 2016, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Gava, N.; Clarke, C.L.; Bye, C.; Byth, K.; deFazio, A. Global gene expression profiles of ovarian surface epithelial cells in vivo. J. Mol. Endocrinol. 2008, 40, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Urzúa, U.; Ampuero, S.; Roby, K.F.; Owens, G.A.; Munroe, D.J. Dysregulation of mitotic machinery genes precedes genome instability during spontaneous pre-malignant transformation of mouse ovarian surface epithelial cells. BMC Genom. 2016, 17 (Suppl. 8), 728. [Google Scholar] [CrossRef] [PubMed]
- Fadiel, A.; Chen, Z.; Ulukus, E.; Ohtani, K.; Hatami, M.; Naftolin, F. Ezrin overexpression by transformed human ovarian surface epithelial cells, ovarian cleft cells, and serous ovarian adenocarcinoma cells. Reprod. Sci. 2012, 19, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Aravindakshan, J.; Chen, X.; Sairam, M.R. Differential expression of claudin family proteins in mouse ovarian serous papillary epithelial adenoma in aging FSH receptor-deficient mutants. Neoplasia 2006, 8, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Coppé, J.-P.; Desprez, P.-Y.; Krtolica, A.; Campisi, J. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu. Rev. Pathol. 2010, 5, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Feng, H.; Zhang, Y.; Zhang, J.V.; Wang, X.; Liu, D.; Wang, T.; Li, R.H.W.; Ng, E.H.Y.; Yeung, W.S.B.; et al. Current understandings of core pathways for the activation of mammalian primordial follicles. Cells 2021, 10, 1491. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Whorton, A.E.; Sekulovski, N.; Paquet, M.; MacLean, J.A.; Song, Y.; Van Dyke, T.; Hayashi, K. Inactivation of TRP53, PTEN, RB1, and/or CDH1 in the ovarian surface epithelium induces ovarian cancer transformation and metastasis. Biol. Reprod. 2020, 102, 1055–1064. [Google Scholar] [CrossRef]
- Pangas, S.A. Regulation of the ovarian reserve by members of the transforming growth factor beta family. Mol. Reprod. Dev. 2012, 79, 666–679. [Google Scholar] [CrossRef]
- Symonds, D.; Tomic, D.; Borgeest, C.; McGee, E.; Flaws, J.A. Smad 3 regulates proliferation of the mouse ovarian surface epithelium. Anat. Record. Part A Discov. Mol. Cell. Evol. Biol. 2003, 273, 681–686. [Google Scholar] [CrossRef]
- Piprek, R.P.; Kloc, M.; Mizia, P.; Kubiak, J.Z. The central role of cadherins in gonad development, reproduction, and fertility. Int. J. Mol. Sci. 2020, 21, 8264. [Google Scholar] [CrossRef] [PubMed]
- Stodden, G.R.; Lindberg, M.E.; King, M.L.; Paquet, M.; MacLean, J.A.; Mann, J.L.; DeMayo, F.J.; Lydon, J.P.; Hayashi, K. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene 2015, 34, 2471–2482. [Google Scholar] [CrossRef] [PubMed]
- Choi, P.-W.; Yang, J.; Ng, S.-K.; Feltmate, C.; Muto, M.G.; Hasselblatt, K.; Lafferty-Whyte, K.; JeBailey, L.; MacConaill, L.; Welch, W.R.; et al. Loss of E-cadherin disrupts ovarian epithelial inclusion cyst formation and collective cell movement in ovarian cancer cells. Oncotarget 2016, 7, 4110–4121. [Google Scholar] [CrossRef] [PubMed]
- Ulloa-Aguirre, A.; Reiter, E.; Crépieux, P. FSH receptor signaling: Complexity of interactions and signal diversity. Endocrinology 2018, 159, 3020–3035. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Musnier, A.; Decourtye, J.; Boulo, T.; Lécureuil, C.; Guillou, H.; Valet, S.; Fouchécourt, S.; Pitetti, J.-L.; Nef, S.; et al. FSH-stimulated PTEN activity accounts for the lack of FSH mitogenic effect in prepubertal rat Sertoli cells. Mol. Cell. Endocrinol. 2010, 315, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wan, L.; Liu, J.; Yuan, Z.; Zhang, J.; Guo, J.; Malumbres, M.; Liu, J.; Zou, W.; Wei, W. Cdh1 inhibits WWP2-mediated ubiquitination of PTEN to suppress tumorigenesis in an APC-independent manner. Cell Discov. 2016, 2, 15044. [Google Scholar] [CrossRef]
- Eritja, N.; Felip, I.; Dosil, M.A.; Vigezzi, L.; Mirantes, C.; Yeramian, A.; Navaridas, R.; Santacana, M.; Llobet-Navas, D.; Yoshimura, A.; et al. A Smad3-PTEN regulatory loop controls proliferation and apoptotic responses to TGF-β in mouse endometrium. Cell Death Differ. 2017, 24, 1443–1458. [Google Scholar] [CrossRef]
- Cai, K.Q.; Wang, Y.; Smith, E.R.; Smedberg, J.L.; Yang, D.-H.; Yang, W.-L.; Xu, X.-X. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia 2015, 17, 89–100. [Google Scholar] [CrossRef]
- Smith, E.R.; Xu, X.-X. Ovarian ageing, follicle depletion, and cancer: A hypothesis for the aetiology of epithelial ovarian cancer involving follicle depletion. Lancet Oncol. 2008, 9, 1108–1111. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, T.; Yi, Q.; Huang, Y.; Wang, Z.; Hou, H.; Zhang, H.; Zhang, W.; Hao, Q.; Guo, Z.; et al. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells. Cell Cycle 2012, 11, 2864–2875. [Google Scholar] [CrossRef]
- Gaeta, I.M.; Meenderink, L.M.; Postema, M.M.; Cencer, C.S.; Tyska, M.J. Direct visualization of epithelial microvilli biogenesis. Curr. Biol. CB 2021, 31, 2561–2575.e6. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Liu, T.; Wang, M.-Y.; Yang, Y.-J.; Zhang, Z.-D.; Liu, Z.-J.; Yang, B. KRT7 promotes epithelial-mesenchymal transition in ovarian cancer via the TGF-β/Smad2/3 signaling pathway. Oncol. Rep. 2021, 45, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Gao, Y.; Chen, Q.; Zhao, H.; Zhao, X.; Yue, W. The Overexpression of keratin 23 promotes migration of ovarian cancer via epithelial-mesenchymal transition. BioMed Res. Int. 2020, 2020, 8218735. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; D’Souza, T.; Morin, P.J. Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res. 2005, 65, 7378–7385. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Mori, Y.; Cheng, Y.; Jin, Z.; Olaru, A.V.; Hamilton, J.P.; David, S.; Selaru, F.M.; Yang, J.; Abraham, J.M.; et al. Silencing of claudin-11 is associated with increased invasiveness of gastric cancer cells. PLoS ONE 2009, 4, e8002. [Google Scholar] [CrossRef]
- Li, H.-P.; Peng, C.-C.; Wu, C.-C.; Chen, C.-H.; Shih, M.-J.; Huang, M.-Y.; Lai, Y.R.; Chen, Y.L.; Chen, T.W.; Tang, P.; et al. Inactivation of the tight junction gene CLDN11 by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma. J. Exp. Clin. Cancer Res. CR 2018, 37, 102. [Google Scholar] [CrossRef]
- Gao, P.; Peng, T.; Cao, C.; Lin, S.; Wu, P.; Huang, X.; Wei, J.; Xi, L.; Yang, Q.; Wu, P. Association of CLDN6 and CLDN10 with immune microenvironment in ovarian cancer: A study of the claudin family. Front. Genet. 2021, 12, 595436. [Google Scholar] [CrossRef]
- Urzua, U.; Chacon, C.; Lizama, L.; Sarmiento, S.; Villalobos, P.; Kroxato, B.; Marcelain, K.; Gonzalez, M.-J. Parity history determines a systemic inflammatory response to spread of ovarian cancer in naturally aged mice. Aging Dis. 2017, 8, 546–557. [Google Scholar] [CrossRef]
Theme a (# Genes) | Specific Terms b | Database c | Genes c |
---|---|---|---|
Xenobiotic metabolism (38) | Modules 23, 24 & 88 Response to abiotic stimulus Glutathione metabolic process | CGS (C4) GO (C5) GO (C5) | ABCB1, ADORA1, AGT, AHSG, ALAS1, ANPEP, AQP1, AQP5, AVPR1A, CA12, CA9, CES1, CFI, CHRNB1, CLDN3, COX6A2, CYP2F1, DPEP1, F11R, GADD45B, GOT1, GSTM1, KRT18, KRT7, KRT8, MAPKAPK3, PDZK1IP1, PRSS8, PTGDS, RGS7, SCX, SLC1A1, SLC2A3, SLC7A11, SLC7A5, STARD5, STC2, WWC1 |
Ion/small molecule transport (28) | Monoatomic ion transport Transport of small molecules Transporter activity | GO (C5) CP (C2) GO (C5) | ABCB1, ADORA1, AGT, AKR1C4, AQP1, AQP5, ATP12A, AVPR1A, CAMK2B, CES1, CHRNB1, CLDN15, CYP4F2, EPPIN, FXYD4, GNG13, PRSS8, RGS7, SLC13A4, SLC1A1, SLC2A3, SLC5A4, SLC7A11, SLC7A5, STARD5, STC2, TMEM184A, UNC79 |
Lipid metabolism (24) | Lipid metabolic process Response to lipids Metabolism of lipids | GO (C5) GO (C5) CP (C2) | ADH7, ADORA1, AGT, AKR1C4, ALAS1, ALDH1A2, AQP1, AVPR1A, CA9, CES1, CYP11B1, CYP2F1, CYP4F2, DPEP1, GOT1, GSTM1, MAPKAPK3, PIK3R3, PTGDS, SC5D, SLC7A5, SPHK1, STARD5, STC2 |
Epithelium development (18) | Epithelium development Formation of the cornified envelope | GO (C5) CP (C2) | AGT, ALDH1A2, AQP1, CA9, CES1, CLDN3, CRYGB, EZR, F11R, KRT18, KRT23, KRT7, KRT8, PRSS8, SCX, SLC7A11, UPK1A, ZIC3 |
Proteolysis (18) | Proteolysis | GO (C5) | ACAN, ADAMTS4, AHSG, ANPEP, AQP1, CELA3B, CFI, CLDN3, CMA1, CST9L, DPEP1, EDEM2, EPPIN, FBXL22, KLK1, PRSS8, SLC1A1, SPINK8 |
Electrolyte homeostasis (17) | Metabolism of angiotensinogen Monoatomic ion homeostasis Circulatory system process | GO (C5) GO (C5) GO (C5) | ABCB1, ADORA1, AGT, ANPEP, ATP12A, AVPR1A, CA12, CALB2, CES1, CMA1, CYP11B1, CYP4F2, KLK1, SLC1A1, SLC2A3, SLC7A5, STC2 |
Cell junction (15) | Cell-cell junction Cell junction organization Tight junction interactions | GO (C5) GO (C5) CP (C2) | AGT, CALB2, CAMK2B, CDHR3, CHRNB1, CLDN11, CLDN15, CLDN3, EZR, F11R, KRT18, KRT8, NEFH, SLC1A1, SLC7A11 |
Cell projection (11) | Cell projection membrane Microvillus Actin based cell projection | GO (C5) GO (C5) GO (C5) | ADORA1, AQP1, AQP5, ARHGEF4, CA9, DPEP1, ESPN, EZR, SLC7A11, SLC7A5, WWC1 |
Intermediate filament (10) | Intermediate filament Polymeric cytoskeletal fiber | GO (C5) GO (C5) | CFAP161, CLDN11, DYNLRB2, ESPN, EZR, KRT18, KRT23, KRT7, KRT8, NEFH |
Biological oxidations (7) | Biological oxidations | CP (C2) | ADH7, CES1, CYP11B1, CYP2F1, CYP4F2, DPEP1, GSTM1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacón, C.; Mounieres, C.; Ampuero, S.; Urzúa, U. Transcriptomic Analysis of the Aged Nulliparous Mouse Ovary Suggests a Stress State That Promotes Pro-Inflammatory Lipid Signaling and Epithelial Cell Enrichment. Int. J. Mol. Sci. 2024, 25, 513. https://doi.org/10.3390/ijms25010513
Chacón C, Mounieres C, Ampuero S, Urzúa U. Transcriptomic Analysis of the Aged Nulliparous Mouse Ovary Suggests a Stress State That Promotes Pro-Inflammatory Lipid Signaling and Epithelial Cell Enrichment. International Journal of Molecular Sciences. 2024; 25(1):513. https://doi.org/10.3390/ijms25010513
Chicago/Turabian StyleChacón, Carlos, Constanza Mounieres, Sandra Ampuero, and Ulises Urzúa. 2024. "Transcriptomic Analysis of the Aged Nulliparous Mouse Ovary Suggests a Stress State That Promotes Pro-Inflammatory Lipid Signaling and Epithelial Cell Enrichment" International Journal of Molecular Sciences 25, no. 1: 513. https://doi.org/10.3390/ijms25010513
APA StyleChacón, C., Mounieres, C., Ampuero, S., & Urzúa, U. (2024). Transcriptomic Analysis of the Aged Nulliparous Mouse Ovary Suggests a Stress State That Promotes Pro-Inflammatory Lipid Signaling and Epithelial Cell Enrichment. International Journal of Molecular Sciences, 25(1), 513. https://doi.org/10.3390/ijms25010513