Comprehensive Pan-Cancer Mutation Density Patterns in Enhancer RNA
Abstract
:1. Introduction
2. Results
2.1. Overall Study Design
2.2. Tissue-Specific eRNA Comparisons
2.3. Mutation Strand Bias in eRNA
2.4. Mutation Density Peaks and Dips in eRNA
2.5. Mutation Burden in eRNA
3. Discussion
4. Methods
4.1. Data Collection
4.2. Mutation Density Pattern and Strand Bias
4.3. Mutation Density in Target Genomic Regions by Cancer Patient
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croce, C.M. Oncogenes and cancer. N. Engl. J. Med. 2008, 358, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Chang, H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Xiong, F.; Li, W. Enhancer RNAs in cancer: Regulation, mechanisms and therapeutic potential. RNA Biol. 2020, 17, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Natoli, G.; Andrau, J.C. Noncoding Transcription at Enhancers: General Principles and Functional Models. Annu. Rev. Genet. 2012, 46, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylichenko, O.; Bondarenko, V.; Harnett, D.; Schor, I.E.; Males, M.; Viales, R.R.; Furlong, E.E.M. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev. 2018, 32, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lee, J.H.; Ruan, H.; Ye, Y.Q.; Krakowiak, J.; Hu, Q.S.; Xiang, Y.; Gong, J.; Zhou, B.Y.; Wang, L.; et al. Transcriptional landscape and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer. Nat. Commun. 2019, 10, 4562. [Google Scholar] [CrossRef]
- Adhikary, S.; Roy, S.; Chacon, J.; Gadad, S.S.; Das, C. Implications of Enhancer Transcription and eRNAs in Cancer. Cancer Res. 2021, 81, 4174–4182. [Google Scholar] [CrossRef]
- Stasevich, E.M.; Uvarova, A.N.; Murashko, M.M.; Khabusheva, E.R.; Sheetikov, S.A.; Prassolov, V.S.; Kuprash, D.V.; Demin, D.E.; Schwartz, A.M. Enhancer RNA AL928768.3 from the IGH Locus Regulates MYC Expression and Controls the Proliferation and Chemoresistance of Burkitt Lymphoma Cells with IGH/MYC Translocation. Int. J. Mol. Sci. 2022, 23, 4624. [Google Scholar] [CrossRef]
- Gao, T.S.; Qian, J. EnhancerAtlas 2.0: An updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res. 2020, 48, D58–D64. [Google Scholar] [CrossRef]
- Wang, J.; Dai, X.; Berry, L.D.; Cogan, J.D.; Liu, Q.; Shyr, Y. HACER: An atlas of human active enhancers to interpret regulatory variants. Nucleic Acids Res. 2019, 47, D106–D112. [Google Scholar] [CrossRef]
- Song, C.; Zhang, G.; Mu, X.; Feng, C.; Zhang, Q.; Song, S.; Zhang, Y.; Yin, M.; Zhang, H.; Tang, H.; et al. eRNAbase: A comprehensive database for decoding the regulatory eRNAs in human and mouse. Nucleic Acids Res. 2023, gkad925. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Shi, S.; Ai, B.; Jiang, Y.; Liu, Y.; Han, X.; Xu, M.; Pan, Q.; Wang, F.; Wang, Q.; et al. ENdb: A manually curated database of experimentally supported enhancers for human and mouse. Nucleic Acids Res. 2020, 48, D51–D57. [Google Scholar] [CrossRef] [PubMed]
- Koch, F.; Fenouil, R.; Gut, M.; Cauchy, P.; Albert, T.K.; Zacarias-Cabeza, J.; Spicuglia, S.; de la Chapelle, A.L.; Heidemann, M.; Hintermair, C.; et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 2011, 18, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Hemberg, M.; Gray, J.M.; Costa, A.M.; Bear, D.M.; Wu, J.; Harmin, D.A.; Laptewicz, M.; Barbara-Haley, K.; Kuersten, S.; et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010, 465, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Ren, B. TRANSCRIPTION Enhancers make non-coding RNA. Nature 2010, 465, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Zhao, Z. Impacts of somatic mutations on gene expression: An association perspective. Brief. Bioinform. 2017, 18, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Ping, J.; Oyebamiji, O.; Yu, H.; Ness, S.; Chien, J.; Ye, F.; Kang, H.; Samuels, D.; Ivanov, S.; Chen, D.; et al. MutEx: A multifaceted gateway for exploring integrative pan-cancer genomic data. Brief. Bioinform. 2020, 21, 1479–1486. [Google Scholar] [CrossRef]
- Yu, H.; Jiang, L.; Li, C.I.; Ness, S.; Piccirillo, S.G.M.; Guo, Y. Somatic mutation effects diffused over microRNA dysregulation. Bioinformatics 2023, 39, btad520. [Google Scholar] [CrossRef]
- Jiang, L.; Guo, F.; Tang, J.; Yu, H.; Ness, S.; Duan, M.; Mao, P.; Zhao, Y.Y.; Guo, Y. SBSA: An online service for somatic binding sequence annotation. Nucleic Acids Res. 2022, 50, e4. [Google Scholar] [CrossRef]
- Chiba, K.; Lorbeer, F.K.; Shain, A.H.; McSwiggen, D.T.; Schruf, E.; Oh, A.; Ryu, J.; Darzacq, X.; Bastian, B.C.; Hockemeyer, D. Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science 2017, 357, 1416–1420. [Google Scholar] [CrossRef]
- He, H.; Li, W.; Wu, D.; Nagy, R.; Liyanarachchi, S.; Akagi, K.; Jendrzejewski, J.; Jiao, H.; Hoag, K.; Wen, B.; et al. Ultra-rare mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance. PLoS ONE 2013, 8, e61920. [Google Scholar] [CrossRef]
- Ding, M.T.; Liu, Y.H.; Liao, X.H.; Zhan, H.J.; Liu, Y.C.; Huang, W.R. Enhancer RNAs (eRNAs): New Insights into Gene Transcription and Disease Treatment. J. Cancer 2018, 9, 2334–2340. [Google Scholar] [CrossRef] [PubMed]
- Pennacchio, L.A.; Bickmore, W.; Dean, A.; Nobrega, M.A.; Bejerano, G. Enhancers: Five essential questions. Nat. Rev. Genet. 2013, 14, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ness, S.; Li, C.I.; Bai, Y.S.; Mao, P.; Guo, Y. Surveying mutation density patterns around specific genomic features. Genome Res. 2022, 32, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yu, H.; Bai, Y.; Guo, Y. Mutation density analyses on long noncoding RNA reveal comparable patterns to protein-coding RNA and prognostic value. Comput. Struct. Biotechnol. J. 2023, 21, 4887–4894. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.; Poulos, R.C.; Shah, A.; Beck, D.; Pimanda, J.E.; Wong, J.W.H. Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes. Nature 2016, 532, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Cao, C.C.; Xue, Y.C. Enhancer RNA: Biogenesis, function, and regulation. Essays Biochem. 2020, 64, 883–894. [Google Scholar] [CrossRef]
- Sha, D.; Jin, Z.H.; Budczies, J.; Kluck, K.; Stenzinger, A.; Sinicrope, F.A. Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors. Cancer Discov. 2020, 10, 1808–1825. [Google Scholar] [CrossRef]
- Wang, L.; Chen, F.; Liu, R.; Shi, L.; Zhao, G.; Yan, Z. Gene expression and immune infiltration in melanoma patients with different mutation burden. BMC Cancer 2021, 21, 379. [Google Scholar] [CrossRef]
- Valero, C.; Lee, M.; Hoen, D.; Wang, J.M.; Nadeem, Z.; Patel, N.; Postow, M.A.; Shoushtari, A.N.; Plitas, G.; Balachandran, V.P.; et al. The association between tumor mutational burden and prognosis is dependent on treatment context. Nat. Genet. 2021, 53, 11–15. [Google Scholar] [CrossRef]
- Kim, T.K.; Hemberg, M.; Gray, J.M. Enhancer RNAs: A Class of Long Noncoding RNAs Synthesized at Enhancers. Cold Spring Harb. Perspect. Biol. 2015, 7, a018622. [Google Scholar] [CrossRef] [PubMed]
- Azofeifa, J.G.; Allen, M.A.; Hendrix, J.R.; Read, T.; Rubin, J.D.; Dowell, R.D. Enhancer RNA profiling predicts transcription factor activity. Genome Res. 2018, 28, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Bachl, J.; Carlson, C.; Gray-Schopfer, V.; Dessing, M.; Olsson, C. Increased transcription levels induce higher mutation rates in a hypermutating cell line. J. Immunol. 2001, 166, 5051–5057. [Google Scholar] [CrossRef] [PubMed]
- Durbin, A.D.; Wang, T.J.; Wimalasena, V.K.; Zimmerman, M.W.; Li, D.Y.; Dharia, N.V.; Mariani, L.; Shendy, N.A.M.; Nance, S.; Patel, A.G.; et al. EP300 Selectively Controls the Enhancer Landscape of MYCN-Amplified Neuroblastoma. Cancer Discov. 2022, 12, 730–751. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, E.; Hill, C.; Quesnel-Vallières, M.; Zucco, A.J.; Barash, Y.; Gardini, A. Rapid and Scalable Profiling of Nascent RNA with fastGRO. Cell Rep. 2020, 33, 108373. [Google Scholar] [CrossRef]
- Mahat, D.B.; Kwak, H.; Booth, G.T.; Jonkers, I.H.; Danko, C.G.; Patel, R.K.; Waters, C.T.; Munson, K.; Core, L.J.; Lis, J.T. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc. 2016, 11, 1455–1476. [Google Scholar] [CrossRef]
- Yao, L.; Liang, J.; Ozer, A.; Leung, A.K.; Lis, J.T.; Yu, H. A comparison of experimental assays and analytical methods for genome-wide identification of active enhancers. Nat. Biotechnol. 2022, 40, 1056–1065. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
eRNA Source | Additional Description | Matching Cancer Site | Number of eRNA |
---|---|---|---|
A375 | Melanoma cell | Skin | 10,206 |
A549 | Lung adenocacinoma cell | Lung | 46,317 |
AML blast | AML blast cell | Blood | 565 |
HeLa-S3 | Cervix adenocarcinoma cell | Cervix | 57,933 |
Hepatocyte | None | Liver | 321 |
Kidney | None | Kidney | 543 |
Liver | None | Liver | 20,227 |
Melanocyte | None | Skin | 1447 |
Melanoma | None | Skin | 33,138 |
Ovary | None | Ovary | 14,836 |
HS | All tissue type consensus | All | 193,218 |
Pancreas | None | Pancreas | 60,477 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Yu, H.; Jiang, L.; Bai, Y.; Liu, X.; Guo, Y. Comprehensive Pan-Cancer Mutation Density Patterns in Enhancer RNA. Int. J. Mol. Sci. 2024, 25, 534. https://doi.org/10.3390/ijms25010534
Zhang T, Yu H, Jiang L, Bai Y, Liu X, Guo Y. Comprehensive Pan-Cancer Mutation Density Patterns in Enhancer RNA. International Journal of Molecular Sciences. 2024; 25(1):534. https://doi.org/10.3390/ijms25010534
Chicago/Turabian StyleZhang, Troy, Hui Yu, Limin Jiang, Yongsheng Bai, Xiaoyi Liu, and Yan Guo. 2024. "Comprehensive Pan-Cancer Mutation Density Patterns in Enhancer RNA" International Journal of Molecular Sciences 25, no. 1: 534. https://doi.org/10.3390/ijms25010534
APA StyleZhang, T., Yu, H., Jiang, L., Bai, Y., Liu, X., & Guo, Y. (2024). Comprehensive Pan-Cancer Mutation Density Patterns in Enhancer RNA. International Journal of Molecular Sciences, 25(1), 534. https://doi.org/10.3390/ijms25010534