SKA3 Expression as a Prognostic Factor for Patients with Pancreatic Adenocarcinoma
Abstract
:1. Introduction
2. Results
2.1. SKA3 Protein Expression in PDAC and Non-Cancerous Adjacent Tissue: Association with Patients’ Characteristics
2.2. Association between the SKA3 Protein Expression and PDAC Patients’ Survival (n = 96)
2.3. SKA3 mRNA Expression in PDAC and Normal Pancreatic Tissue: Association with Patients Characteristics and Genome Instability Parameters
2.4. Association between the SKA3 mRNA Expression and PDAC Patients’ Survival
2.5. Functional Enrichment Analysis
2.6. Protein-Protein Interaction (PPI)
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Tissue Material and Clinicopathological Data
5.2. Immunochistochemistry
5.3. RNA-Sequencing Data
5.4. Functional Enrichment Analysis
5.5. Construction of the Protein-Protein Interaction Network
5.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic Cancer: A Review of Clinical Diagnosis, Epidemiology, Treatment and Outcomes. World J. Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef]
- Grant, T.J.; Hua, K.; Singh, A. Molecular Pathogenesis of Pancreatic Cancer. Prog. Mol. Biol. Transl. Sci. 2016, 144, 241–275. [Google Scholar] [CrossRef]
- Guo, J.; Xie, K.; Zheng, S. Molecular Biomarkers of Pancreatic Intraepithelial Neoplasia and Their Implications in Early Diagnosis and Therapeutic Intervention of Pancreatic Cancer. Int. J. Biol. Sci. 2016, 12, 292–301. [Google Scholar] [CrossRef]
- Gaitanos, T.N.; Santamaria, A.; Jeyaprakash, A.A.; Wang, B.; Conti, E.; Nigg, E.A. Stable Kinetochore-Microtubule Interactions Depend on the Ska Complex and Its New Component Ska3/C13Orf3. EMBO J. 2009, 28, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Helgeson, L.A.; Zelter, A.; Riffle, M.; MacCoss, M.J.; Asbury, C.L.; Davis, T.N. Human Ska Complex and Ndc80 Complex Interact to Form a Load-Bearing Assembly That Strengthens Kinetochore-Microtubule Attachments. Proc. Natl. Acad. Sci. USA 2018, 115, 2740–2745. [Google Scholar] [CrossRef]
- Sivakumar, S.; Daum, J.R.; Tipton, A.R.; Rankin, S.; Gorbsky, G.J. The Spindle and Kinetochore-Associated (Ska) Complex Enhances Binding of the Anaphase-Promoting Complex/Cyclosome (APC/C) to Chromosomes and Promotes Mitotic Exit. Mol. Biol. Cell 2014, 25, 594–605. [Google Scholar] [CrossRef]
- Janczyk, P.Ł.; Skorupka, K.A.; Tooley, J.G.; Matson, D.R.; Kestner, C.A.; West, T.; Pornillos, O.; Stukenberg, P.T. Mechanism of Ska Recruitment by Ndc80 Complexes to Kinetochores. Dev. Cell 2017, 41, 438–449.e4. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Luo, H.; Niu, M.; Zheng, X.; Hu, W.; Cui, J.; Xue, X.; Bo, Y.; Dai, F.; et al. Targeting SKA3 Suppresses the Proliferation and Chemoresistance of Laryngeal Squamous Cell Carcinoma via Impairing PLK1-AKT Axis-Mediated Glycolysis. Cell Death Dis. 2020, 11, 919. [Google Scholar] [CrossRef]
- You, C.; Piao, X.-M.; Kang, K.; Kim, Y.-J.; Kang, K. Integrative Transcriptome Profiling Reveals SKA3 as a Novel Prognostic Marker in Non-Muscle Invasive Bladder Cancer. Cancers 2021, 13, 4673. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhuang, Z.; Mo, P.; Lin, M.; Gong, J.; Huang, J.; Mo, H.; Lu, Y.; Huang, M. Overexpression of SKA3 Correlates with Poor Prognosis in Female Early Breast Cancer. PeerJ 2021, 9, e12506. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Liu, J.; Li, J.; Liang, Z.; Zeng, K.; Li, H.; Zhao, Z.; Zhou, L.; Jiang, N. Upregulation of SKA3 Enhances Cell Proliferation and Correlates with Poor Prognosis in Hepatocellular Carcinoma. Oncol. Rep. 2021, 45, 48. [Google Scholar] [CrossRef]
- Feng, D.; Zhang, F.; Liu, L.; Xiong, Q.; Xu, H.; Wei, W.; Liu, Z.; Yang, L. SKA3 Serves as a Biomarker for Poor Prognosis in Kidney Renal Papillary Cell Carcinoma. Int. J. Gen. Med. 2021, 14, 8591–8602. [Google Scholar] [CrossRef]
- Li, Z.; Huang, L.; Li, J.; Yang, W.; Li, W.; Long, Q.; Dai, X.; Wang, H.; Du, G. Immunological Role and Prognostic Value of the SKA Family in Pan-Cancer Analysis. Front. Immunol. 2023, 14, 1012999. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, Z.-R.; Huang, X.; Che, Y.-C.; Liu, Q. Identification of Spindle and Kinetochore-Associated Family Genes as Therapeutic Targets and Prognostic Biomarkers in Pancreas Ductal Adenocarcinoma Microenvironment. Front. Oncol. 2020, 10, 553536. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.-D.; Chen, H.-L.; Lou, L.-M.; Zhang, H.; Yang, G.-L. SKA3 Promotes Lung Adenocarcinoma Metastasis through the EGFR-PI3K-Akt Axis. Biosci. Rep. 2020, 40, BSR20194335. [Google Scholar] [CrossRef]
- Feng, D.; Zhu, W.; Shi, X.; Xiong, Q.; Li, D.; Wei, W.; Han, P.; Wei, Q.; Yang, L. Spindle and Kinetochore-Associated Complex Subunit 3 Could Serve as a Prognostic Biomarker for Prostate Cancer. Exp. Hematol. Oncol. 2022, 11, 76. [Google Scholar] [CrossRef]
- Tang, D.; Zhao, X.; Zhang, L.; Wang, Z.; Wang, C. Identification of Hub Genes to Regulate Breast Cancer Metastasis to Brain by Bioinformatics Analyses. J. Cell Biochem. 2019, 120, 9522–9531. [Google Scholar] [CrossRef]
- Yu, S. Overexpression of SKA Complex Is Associated With Poor Prognosis in Gliomas. Front. Neurol. 2021, 12, 755681. [Google Scholar] [CrossRef]
- Pang, H.; Zhou, Y.; Wang, J.; Wu, H.; Cui, C.; Xiao, Z. SKA3 Overexpression Predicts Poor Outcomes in Skin Cutaneous Melanoma Patients. Transl. Oncol. 2022, 15, 101253. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Zhang, X.; Wang, Y.; Guan, P.; Bu, F.; Wang, H.; Wang, D.; Fan, Y.; Hou, S.; et al. SKA3 Is a Prognostic Biomarker and Associated with Immune Infiltration in Bladder Cancer. Hereditas 2022, 159, 20. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Liao, W.-Y.; Chan, T.-S.; Chen, W.-Y.; Lee, C.-T.; Shan, Y.-S.; Huang, P.-J.; Hou, Y.-C.; Li, C.-R.; Tsai, K.K. The Differential Distributions of ASPM Isoforms and Their Roles in Wnt Signaling, Cell Cycle Progression, and Pancreatic Cancer Prognosis. J. Pathol. 2019, 249, 498–508. [Google Scholar] [CrossRef]
- Daum, J.R.; Wren, J.D.; Daniel, J.J.; Sivakumar, S.; McAvoy, J.N.; Potapova, T.A.; Gorbsky, G.J. Ska3 Is Required for Spindle Checkpoint Silencing and the Maintenance of Chromosome Cohesion in Mitosis. Curr. Biol. 2009, 19, 1467–1472. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, X.; Kong, L.; Pan, Z.; Chen, G. BUB1 Promotes Gemcitabine Resistance in Pancreatic Cancer Cells by Inhibiting Ferroptosis. Cancers 2024, 16, 1540. [Google Scholar] [CrossRef]
- Cao, J.-Z.; Nie, G.; Hu, H.; Zhang, X.; Ni, C.-M.; Huang, Z.-P.; Qiao, G.-L.; Ouyang, L. UBE2C Promotes the Progression of Pancreatic Cancer and Glycolytic Activity via EGFR Stabilization-Mediated PI3K-Akt Pathway Activation. J. Gastrointest. Oncol. 2022, 13, 1444–1453. [Google Scholar] [CrossRef]
- Gao, C.-T.; Ren, J.; Yu, J.; Li, S.-N.; Guo, X.-F.; Zhou, Y.-Z. KIF23 Enhances Cell Proliferation in Pancreatic Ductal Adenocarcinoma and Is a Potent Therapeutic Target. Ann. Transl. Med. 2020, 8, 1394. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, F.; Wu, Q.; Wang, Z.; Ren, H.; Zhang, Q.; Wang, Z.; Xu, J. KIF2C Facilitates Tumor Growth and Metastasis in Pancreatic Ductal Adenocarcinoma. Cancers 2023, 15, 1502. [Google Scholar] [CrossRef]
- Gu, X.; Zhu, Q.; Tian, G.; Song, W.; Wang, T.; Wang, A.; Chen, X.; Qin, S. KIF11 Manipulates SREBP2-Dependent Mevalonate Cross Talk to Promote Tumor Progression in Pancreatic Ductal Adenocarcinoma. Cancer Med. 2022, 11, 3282–3295. [Google Scholar] [CrossRef]
- Hu, P.; Shangguan, J.; Zhang, L. Downregulation of NUF2 Inhibits Tumor Growth and Induces Apoptosis by Regulating lncRNA AF339813. Int. J. Clin. Exp. Pathol. 2015, 8, 2638–2648. [Google Scholar]
- Wijnen, R.; Pecoraro, C.; Carbone, D.; Fiuji, H.; Avan, A.; Peters, G.J.; Giovannetti, E.; Diana, P. Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers 2021, 13, 4389. [Google Scholar] [CrossRef]
- Tian, X.; Wang, N. Upregulation of ASPM, BUB1B and SPDL1 in Tumor Tissues Predicts Poor Survival in Patients with Pancreatic Ductal Adenocarcinoma. Oncol. Lett. 2020, 19, 3307–3315. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, R.; Meng, Q.-C.; Shi, S.; Xu, J.; Yu, X.-J.; Zhang, B.; Wang, W. NUSAP1 Promotes Pancreatic Ductal Adenocarcinoma Progression by Drives the Epithelial-Mesenchymal Transition and Reduces AMPK Phosphorylation. BMC Cancer 2024, 24, 87. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, Z.; Huang, S.; Sun, C.; Zhao, J.; Shi, J.; Li, Z.; Wang, Z.; He, X.; Tam, N.L.; et al. SKA3 Promotes Tumor Growth by Regulating CDK2/P53 Phosphorylation in Hepatocellular Carcinoma. Cell Death Dis. 2019, 10, 929. [Google Scholar] [CrossRef]
- Ning, G.; Lu, C.; Chen, Y.; Jiang, M.; Si, P.; Zhang, R. Transcription Factor ZEB1 Regulates PLK1-Mediated SKA3 Phosphorylation to Promote Lung Cancer Cell Proliferation, Migration and Cell Cycle. Anticancer Drugs 2023, 34, 866–876. [Google Scholar] [CrossRef]
- Hu, R.; Wang, M.-Q.; Niu, W.-B.; Wang, Y.-J.; Liu, Y.-Y.; Liu, L.-Y.; Wang, M.; Zhong, J.; You, H.-Y.; Wu, X.-H.; et al. SKA3 Promotes Cell Proliferation and Migration in Cervical Cancer by Activating the PI3K/Akt Signaling Pathway. Cancer Cell Int. 2018, 18, 183. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, S.; Tan, Y.; Pan, S.; An, W.; Chen, Q.; Wang, X.; Xu, H. The SKA3-DUSP2 Axis Promotes Gastric Cancer Tumorigenesis and Epithelial-Mesenchymal Transition by Activating the MAPK/ERK Pathway. Front. Pharmacol. 2022, 13, 777612. [Google Scholar] [CrossRef]
- Mintziras, I.; Wächter, S.; Manoharan, J.; Kanngiesser, V.; Maurer, E.; Bartsch, D.K. Postoperative Morbidity Following Pancreatic Cancer Surgery Is Significantly Associated with Worse Overall Patient Survival; Systematic Review and Meta-Analysis. Surg. Oncol. 2021, 38, 101573. [Google Scholar] [CrossRef]
- Bliss, L.A.; Witkowski, E.R.; Yang, C.J.; Tseng, J.F. Outcomes in Operative Management of Pancreatic Cancer. J. Surg. Oncol. 2014, 110, 592–598. [Google Scholar] [CrossRef]
- Wegner, R.E.; Verma, V.; Hasan, S.; Schiffman, S.; Thakkar, S.; Horne, Z.D.; Kulkarni, A.; Williams, H.K.; Monga, D.; Finley, G.; et al. Incidence and Risk Factors for Post-Operative Mortality, Hospitalization, and Readmission Rates Following Pancreatic Cancer Resection. J. Gastrointest. Oncol. 2019, 10, 1080–1093. [Google Scholar] [CrossRef]
- Ginestier, C.; Charafe-Jauffret, E.; Bertucci, F.; Eisinger, F.; Geneix, J.; Bechlian, D.; Conte, N.; Adélaïde, J.; Toiron, Y.; Nguyen, C.; et al. Distinct and Complementary Information Provided by Use of Tissue and DNA Microarrays in the Study of Breast Tumor Markers. Am. J. Pathol. 2002, 161, 1223–1233. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Beattie, A.; Baradaran, B.; Dray, E.; Duijf, P.H.G. Contradictory mRNA and Protein Misexpression of EEF1A1 in Ductal Breast Carcinoma Due to Cell Cycle Regulation and Cellular Stress. Sci. Rep. 2018, 8, 13904. [Google Scholar] [CrossRef] [PubMed]
- Klimaszewska-Wiśniewska, A.; Buchholz, K.; Neska-Długosz, I.; Durślewicz, J.; Grzanka, D.; Zabrzyński, J.; Sopońska, P.; Grzanka, A.; Gagat, M. Expression of Genomic Instability-Related Molecules: Cyclin F, RRM2 and SPDL1 and Their Prognostic Significance in Pancreatic Adenocarcinoma. Cancers 2021, 13, 859. [Google Scholar] [CrossRef]
- Klimaszewska-Wiśniewska, A.; Neska-Długosz, I.; Buchholz, K.; Durślewicz, J.; Grzanka, D.; Kasperska, A.; Antosik, P.; Zabrzyński, J.; Grzanka, A.; Gagat, M. Prognostic Significance of KIF11 and KIF14 Expression in Pancreatic Adenocarcinoma. Cancers 2021, 13, 3017. [Google Scholar] [CrossRef]
- Ogłuszka, M.; Orzechowska, M.; Jędroszka, D.; Witas, P.; Bednarek, A.K. Evaluate Cutpoints: Adaptable Continuous Data Distribution System for Determining Survival in Kaplan-Meier Estimator. Comput. Methods Programs Biomed. 2019, 177, 133–139. [Google Scholar] [CrossRef]
- The University of California Santa Cruz Xena Browser. Available online: https://xenabrowser.net (accessed on 26 October 2023).
- The cBio Cancer Genomics Portal. Available online: https://www.cbioportal.org (accessed on 26 October 2023).
- The University of Alabama at Birmingham Cancer Data Analysis Portal. Available online: http://ualcan.path.uab.edu (accessed on 27 July 2022).
- The Reactome Pathway Database. Available online: https://reactome.org (accessed on 27 July 2022).
- The Kyoto Encyclopedia of Genes and Genomes: Biomolecular Relations in Information Transmission and Expression. Available online: https://www.genome.jp/kegg/brite.html (accessed on 27 July 2022).
- Database for Annotation, Visualization, and Integrated Discovery. Available online: https://david.ncifcrf.gov (accessed on 27 July 2022).
- Search Tool for the Retrieval of Interacting Genes/Proteins. Available online: https://string-db.org (accessed on 27 July 2022).
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Combescure, C.; Perneger, T.V.; Weber, D.C.; Daurès, J.-P.; Foucher, Y. Prognostic ROC Curves: A Method for Representing the Overall Discriminative Capacity of Binary Markers with Right-Censored Time-to-Event Endpoints. Epidemiology 2014, 25, 103–109. [Google Scholar] [CrossRef]
Variable | EPV/n | Univariable Analysis | Multivariable Analysis # | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | ||||
Lower | Upper | Lower | Upper | ||||||
Overall survival | |||||||||
SKA3 (low vs. high) | 61/64_26/32 | 0.47 | 0.29 | 0.77 | 0.003 | 0.40 | 0.24 | 0.67 | <0.001 |
Age (≤70 vs. >70) | 70/79_17/17 | 2.45 | 1.39 | 4.30 | 0.002 | 0.89 | 0.43 | 1.85 | 0.75 |
Sex (female vs. male) | 48/53_39/43 | 0.89 | 0.58 | 1.37 | 0.61 | - | - | - | - |
Grade (G1 vs. G2–G3) | 6/7_81/89 | 1.27 | 0.55 | 2.92 | 0.57 | - | - | - | - |
pT (T1 vs. T2–T4) | 13/18_74/78 | 1.77 | 0.98 | 3.21 | 0.06 | - | - | - | - |
pN (absent vs. present) | 37/45_50/51 | 2.32 | 1.47 | 3.65 | <0.001 | - | - | - | - |
pM (absent vs. present) | 78/87_9/9 | 1.81 | 0.90 | 3.66 | 0.10 | - | - | - | - |
TNM stage (I–II vs. III–IV) | 58/67_29/29 | 2.46 | 1.53 | 3.96 | <0.001 | 3.15 | 1.85 | 5.37 | <0.001 |
VI (absent vs. present) | 67/75_20/21 | 2.07 | 1.24 | 3.45 | 0.006 | 2.20 | 1.24 | 3.89 | 0.007 |
PNI (absent vs. present) | 15/19_72/77 | 1.71 | 0.97 | 3.03 | 0.06 | - | - | - | - |
R (R0 vs. R1) | 60/68_27/28 | 1.60 | 1.00 | 2.55 | 0.049 | 1.11 | 0.68 | 1.82 | 0.68 |
CTX (no vs. yes) | 13/13_74/83 | 0.25 | 0.14 | 0.47 | <0.001 | 0.16 | 0.07 | 0.37 | <0.001 |
Disease-free survival | |||||||||
Variable | EPV/n | Univariable analysis | Multivariable analysis # | ||||||
SKA3 (low vs. high) | 61/64_27/32 | 0.52 | 0.32 | 0.83 | 0.006 | 0.48 | 0.29 | 0.79 | 0.004 |
Age (≤70 vs. >70) | 71/79_17/17 | 1.90 | 1.10 | 3.28 | 0.02 | 0.80 | 0.37 | 1.72 | 0.56 |
Sex (female vs. male) | 49/53_39/43 | 0.96 | 0.63 | 1.46 | 0.84 | - | - | - | - |
Grade (G1 vs. G2–G3) | 7/7_81/89 | 0.99 | 0.45 | 2.15 | 0.98 | - | - | - | - |
pT (T1 vs. T2–T4) | 13/18_75/78 | 2.01 | 1.11 | 3.64 | 0.02 | - | - | - | - |
pN (absent vs. present) | 37/45_51/51 | 1.92 | 1.43 | 2.58 | <0.001 | - | - | - | - |
pM (absent vs. present) | 79/87_9/9 | ||||||||
pM | 0.28 T | 0.04 | 2.03 | 0.21 | - | - | - | - | |
pM*T_COV_ | 1.29 T | 1.04 | 1.61 | 0.02 | - | - | - | - | |
TNM stage (I–II vs. III–IV) | 59/67_29/29 | 3.02 | 1.83 | 4.97 | <0.001 | 3.58 | 2.07 | 6.19 | <0.001 |
VI (absent vs. present) | 68/75_20/21 | 1.95 | 1.17 | 3.26 | 0.01 | 1.90 | 1.08 | 3.35 | 0.03 |
PNI (absent vs. present) | 15/19_73/77 | 1.62 | 0.93 | 2.85 | 0.09 | - | - | - | - |
R (R0 vs. R1) | 61/68_27/28 | 1.41 | 0.89 | 2.24 | 0.15 | - | - | - | - |
CTX (no vs. yes) | 13/13_75/83 | 0.30 | 0.17 | 0.56 | <0.001 | 0.18 | 0.08 | 0.44 | <0.001 |
Variable | EPV/n | Univariable Analysis TNM Stage I–II | Multivariable Analysis # TNM Stage I–II | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | ||||
Lower | Upper | Lower | Upper | ||||||
SKA3 (low vs. high) | 43/46_15/21 | 0.31 | 0.16 | 0.61 | <0.001 | 0.28 | 0.14 | 0.59 | <0.001 |
Age (≤70 vs. >70) | 46/55_12/12 | 3.16 | 1.58 | 6.35 | 0.001 | 1.19 | 0.45 | 3.10 | 0.73 |
Sex (female vs. male) | 32/37_26/30 | 0.84 | 0.50 | 1.43 | 0.53 | - | - | - | - |
Grade (G1 vs. G2–G3) | 4/5_54/62 | 1.27 | 0.46 | 3.53 | 0.65 | - | - | - | - |
pT (T1 vs. T2–T3) | 10/15_48/52 | 1.71 | 0.86 | 3.39 | 0.13 | - | - | - | - |
pN (N0 vs. N1) | 32/40_26/27 | 2.17 | 1.26 | 3.75 | 0.005 | 2.37 | 1.30 | 4.31 | 0.005 |
TNM stage (I vs. II) | 25/32_33/35 | 1.63 | 0.96 | 2.76 | 0.07 | - | - | - | - |
VI (absent vs. present) | 46/54_12/13 | 2.14 | 1.12 | 4.12 | 0.02 | 2.95 | 1.40 | 6.20 | 0.004 |
PNI (absent vs. present) | 8/12_50/55 | 2.34 | 1.08 | 5.08 | 0.03 | 1.67 | 0.74 | 3.79 | 0.22 |
R (R0 vs. R1) | 42/50_16/17 | 1.76 | 0.97 | 3.19 | 0.06 | - | - | - | - |
CTX (no vs. yes) | 12/12_46/55 | 0.18 | 0.09 | 0.37 | <0.001 | 0.15 | 0.06 | 0.42 | <0.001 |
Variable | EPV/n | Univariable Analysis | Multivariable Analysis # | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | ||||
Lower | Upper | Lower | Upper | ||||||
SKA3 (low vs. high) | 34/71_50/74 | 1.84 | 1.18 | 2.86 | 0.007 | 2.13 | 1.36 | 3.34 | <0.001 |
Age (≤73 vs. >73) | 59/107_25/38 | 1.63 | 1.01 | 2.63 | 0.04 | 1.73 | 1.07 | 2.79 | 0.03 |
Sex (female vs. grade) | 43/68_41/77 | 0.82 | 0.53 | 1.26 | 0.36 | - | - | - | - |
Grade (G1–G2 vs. G3–G4) | 56/103_28/42 | 1.38 | 0.87 | 2.17 | 0.17 | - | - | - | - |
pT (T1–T2 vs. T3–T4) | 9/19_75/126 | 1.14 | 0.57 | 2.29 | 0.71 | - | - | - | - |
pN (absent vs. present) | 17/37_67/108 | 1.51 | 0.88 | 2.57 | 0.13 | - | - | - | - |
TNM stage (I–II vs. III–IV) | 81/138_3/7 | 0.57 | 0.18 | 1.80 | 0.34 | - | - | - | - |
Radiation Therapy (no vs. yes) | 66/107_18/38 | ||||||||
Radiation Therapy | 0.28 T | 0.10 | 0.81 | 0.02 | 0.28 | 0.10 | 0.79 | 0.02 | |
Radiation Therapy*T_COV_ | 1.05 T | 0.99 | 1.11 | 0.10 | 1.04 | 0.98 | 1.10 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchholz, K.; Durślewicz, J.; Klimaszewska-Wiśniewska, A.; Wiśniewska, M.; Słupski, M.; Grzanka, D. SKA3 Expression as a Prognostic Factor for Patients with Pancreatic Adenocarcinoma. Int. J. Mol. Sci. 2024, 25, 5134. https://doi.org/10.3390/ijms25105134
Buchholz K, Durślewicz J, Klimaszewska-Wiśniewska A, Wiśniewska M, Słupski M, Grzanka D. SKA3 Expression as a Prognostic Factor for Patients with Pancreatic Adenocarcinoma. International Journal of Molecular Sciences. 2024; 25(10):5134. https://doi.org/10.3390/ijms25105134
Chicago/Turabian StyleBuchholz, Karolina, Justyna Durślewicz, Anna Klimaszewska-Wiśniewska, Magdalena Wiśniewska, Maciej Słupski, and Dariusz Grzanka. 2024. "SKA3 Expression as a Prognostic Factor for Patients with Pancreatic Adenocarcinoma" International Journal of Molecular Sciences 25, no. 10: 5134. https://doi.org/10.3390/ijms25105134
APA StyleBuchholz, K., Durślewicz, J., Klimaszewska-Wiśniewska, A., Wiśniewska, M., Słupski, M., & Grzanka, D. (2024). SKA3 Expression as a Prognostic Factor for Patients with Pancreatic Adenocarcinoma. International Journal of Molecular Sciences, 25(10), 5134. https://doi.org/10.3390/ijms25105134