Enterobacteriaceae as a Key Indicator of Huanglongbing Infection in Diaphorina citri
Abstract
:1. Introduction
2. Results
2.1. Microbial Community Diversity Associated with Populations and HLB Infection
2.2. The Effects of HLB on the Microbial Communities
2.3. Microbial Markers Associated with HLB Infection
2.4. Microbial Community Function Related to Populations and HLB Infection
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. HLB Infection Detection
4.3. 16S rDNA Amplicon Sequencing
4.4. Bioinformatics Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldhaar, H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol. Entomol. 2011, 36, 533–543. [Google Scholar] [CrossRef]
- Moya, A.; Peretó, J.; Gil, R.; Latorre, A. Learning how to live together: Genomic insights into prokaryote–animal symbioses. Nat. Rev. Genet. 2008, 9, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 1998, 43, 17–37. [Google Scholar] [CrossRef]
- Duron, O.; Bouchon, D.; Boutin, S.; Bellamy, L.; Zhou, L.; Engelstädter, J.; Hurst, G.D. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008, 6, 27. [Google Scholar] [CrossRef]
- Brownlie, J.C.; Johnson, K.N. Symbiont-mediated protection in insect hosts. Trends. Microbiol. 2009, 17, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Kriesner, P.; Conner, W.R.; Weeks, A.R.; Turelli, M.; Hoffmann, A.A. Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy. Evolution 2016, 70, 979–997. [Google Scholar] [CrossRef]
- Goto, S.; Anbutsu, H.; Fukatsu, T. Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Appl. Environ. Microbiol. 2006, 72, 4805–4810. [Google Scholar] [CrossRef] [PubMed]
- Toju, H.; Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol. Ecol. 2011, 20, 853–868. [Google Scholar] [CrossRef] [PubMed]
- Alves, G.R.; Diniz, A.J.F.; Parra, J.R.P. Biology of the Huanglongbing vector Diaphorina citri (Hemiptera: Liviidae) on different host plants. J. Econ. Entomol. 2014, 107, 691–696. [Google Scholar] [CrossRef]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant. Pathol. 2006, 88, 7–37. [Google Scholar]
- Jagoueix-Eveillard, S.; Bove, J.M.; Garnier, M. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. Int. J. Syst. Evol. Microbiol. 1994, 44, 379–386. [Google Scholar] [CrossRef]
- Gottwald, T.R. Current epidemiological understanding of citrus Huanglongbing. Annu. Rev. Phytopathol. 2010, 48, 119–139. [Google Scholar] [CrossRef]
- Inoue, H.; Ohnishi, J.; Ito, T.; Tomimura, K.; Miyata, S.; Iwanami, T.; Ashihara, W. Enhanced proliferation and efficient transmission of Candidatus Liberibacter asiaticus by adult Diaphorina citri after acquisition feeding in the nymphal stage. Ann. Appl. Biol. 2009, 155, 29–36. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, C.-X.; Chen, R.; He, S.Y. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc. Natl. Acad. Sci. USA 2019, 116, 23390–23397. [Google Scholar] [CrossRef]
- Liu, K.; Pang, R.; Guan, Z.Y.; Zhong, M.Z.; He, J.W.; Han, Q.X. Comparative microbiome analysis reveals bacterial communities associated with Candidatus Liberibacter asiaticus infection in the Huanglongbing insect vector Diaphorina citri. J. Asia-Pac. Entomol. 2022, 25, 101884. [Google Scholar] [CrossRef]
- Song, X.B.; Peng, A.T.; Ling, J.F.; Cui, Y.P.; Cheng, B.P.; Zhang, L.H. Composition and change in the microbiome of Diaphorina citri infected with Candidatus Liberibacter asiaticus in China. Int. J. Trop. Insect Sci. 2019, 39, 283–290. [Google Scholar] [CrossRef]
- Jiang, R.-X.; Shang, F.; Jiang, H.-B.; Dou, W.; Cernava, T.; Wang, J.-J. Environmental factors affect the bacterial community in Diaphorina citri, an important vector of “Candidatus Liberibacter asiaticus”. Microbiol. Spectr. 2023, 11, 05298-22. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Ghanim, M. Interactions of Liberibacter Species with Their Psyllid Vectors: Molecular, Biological and Behavioural Mechanisms. Int. J. Mol. Sci. 2022, 23, 4029. [Google Scholar] [CrossRef]
- Fukatsu, T. Utilization of symbiotic microorganisms for pest control and management: Concepts and practices. J. Pestic. Sci. 2011, 36, 94–97. [Google Scholar] [CrossRef]
- Baldelli, V.; Scaldaferri, F.; Putignani, L.; Del Chierico, F. The role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms 2021, 9, 697. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of carbapenem-resistant Enterobacteriaceae: The Impact and evolution of a global menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, R.; Kannan, K.; Sivanesan, S.D.; Chakrabarti, T. Prevalence and phylogenetic relationship of two β-carbonic anhydrases in affiliates of Enterobacteriaceae. Ann. Microbiol. 2013, 63, 1275–1282. [Google Scholar] [CrossRef]
- Singh, A.K.; Das, S.; Kumar, S.; Gajamer, V.R.; Najar, I.N.; Lepcha, Y.D.; Tiwari, H.K.; Singh, S. Distribution of antibiotic-resistant Enterobacteriaceae pathogens in potable spring water of eastern Indian Himalayas: Emphasis on virulence gene and antibiotic resistance genes in Escherichia coli. Front. Microbiol. 2020, 11, 581072. [Google Scholar] [CrossRef]
- Trocado, N.D.; Moraes, M.S.; Aveleda, L.; Silva, C.R.; Marin, V.A. Phenotypic and genotypic detection of antibiotic-resistant bacteria in fresh fruit juices from a public hospital in Rio de Janeiro. Arch. Microbiol. 2021, 203, 1471–1475. [Google Scholar] [CrossRef] [PubMed]
- Behar, A.; Jurkevitch, E.; Yuval, B. Bringing back the fruit into fruit fly-bacteria interactions. Mol. Ecol. 2008, 17, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yosef, M.; Pasternak, Z.; Jurkevitch, E.; Yuval, B. Symbiotic bacteria enable olive fly larvae to overcome host defenses. R. Soc. Open. Sci. 2015, 2, 150170. [Google Scholar] [CrossRef]
- Reddy, K.; Sharma, K.; Singh, S. Attractancy potential of culturable bacteria from the gut of peach fruit fly, Bactrocera sonata (Saunders). Phytoparasitica 2014, 42, 691–698. [Google Scholar] [CrossRef]
- Behar, A.; Yuval, B.; Jurkevitch, E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J. Insect. Physiol. 2008, 54, 1377–1383. [Google Scholar] [CrossRef]
- Robacker, D.C.; Lauzon, C.R.; He, X. Volatiles production and attractiveness to the Mexican fruit fly of Enterobacter agglomerans isolated from apple maggot and Mexican fruit flies. J. Chem. Ecol. 2004, 30, 1329–1347. [Google Scholar] [CrossRef]
- Shi, Z.H.; Wang, L.L.; Zhang, H.Y. Low diversity bacterial community and the trapping activity of metabolites from cultivable bacteria species in the female reproductive system of the oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). Int. J. Mol. Sci. 2012, 13, 6266–6278. [Google Scholar] [CrossRef]
- Martinson, V.G.; Douglas, A.E.; Jaenike, J. Community structure of the gut microbiota in sympatric species of wild Drosophila. Ecol Lett. 2017, 20, 629–639. [Google Scholar] [CrossRef]
- Waltmann, A.; Willcox, A.C.; Balasubramanian, S.; Mayori, K.B.; Guerrero, S.M.; Sanchez, R.S.S.; Roach, J.; Pino, C.C.; Gilman, R.H.; Bern, C.; et al. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl. Trop. Dis. 2019, 13, e0007383. [Google Scholar] [CrossRef] [PubMed]
- Zug, R.; Hammerstein, P. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 2012, 7, e38544. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Dedeine, F.; Vavre, F.; Fleury, F.; Loppin, B.; Hochberg, M.E.; Boulétreau, M. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc. Natl. Acad. Sci. USA 2001, 98, 6247–6252. [Google Scholar] [CrossRef]
- Fry, A.J.; Palmer, M.R.; Rand, D.M. Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 2004, 93, 379–389. [Google Scholar] [CrossRef]
- Guidolin, A.S.; Fresia, P.; Cônsoli, F.L. The genetic structure of an invasive pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). PLoS ONE 2014, 9, e115749. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Li, Y.; Ou, D.; Guo, Y.; Qureshi, J.A.; Stansly, P.A.; Qiu, B. Localization and dynamics of Wolbachia infection in Asian citrus psyllid Diaphorina citri, the insect vector of the causal pathogens of Huanglongbing. Microbiol. Open 2018, 7, e00561. [Google Scholar] [CrossRef]
- Mann, M.; Fattah-Hosseini, S.; Ammar, E.-D.; Stange, R.; Warrick, E.; Sturgeon, K.; Shatters, R.; Heck, M. Diaphorina citri nymphs are resistant to morphological changes induced by “Candidatus Liberibacter asiaticus” in midgut epithelial cells. Infect. Immun. 2018, 86, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.A.; Wiwatanaratanabutr, I.; Axford, J.K.; White, V.L.; Endersby-Harshman, N.M.; Hoffmann, A.A. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog. 2017, 13, e1006006. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.L.; Vega-Rodriguez, J.; Xue, P.; Rasgon, J.L. Wolbachia strain wAlbB enhances infection by the rodent malaria parasite Plasmodium berghei in Anopheles gambiae mosquitoes. Appl. Environ. Microbiol. 2012, 78, 1491–1495. [Google Scholar] [CrossRef]
- Dodson, B.L.; Hughes, G.L.; Paul, O.; Matacchiero, A.C.; Kramer, L.D. Wolbachia enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl. Trop. Dis. 2014, 8, e2965. [Google Scholar] [CrossRef]
- Nakabachi, A.; Fujikami, M. Concentration and distribution of diaphorin, and expression of diaphorin synthesis genes during Asian citrus psyllid development. J. Insect Physiol. 2019, 118, 103931. [Google Scholar] [CrossRef] [PubMed]
- Nakabachi, A.; Ueoka, R.; Oshima, K.; Teta, R.; Mangoni, A.; Gurgui, M.; Oldham, N.J.; van Echten-Deckert, G.; Okamura, K.; Yamamoto, K.; et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 2013, 23, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Nakabachi, A.; Malenovský, I.; Gjonov, I.; Hirose, Y. 16S rRNA sequencing detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from relatives of the Asian citrus psyllid. Microb. Ecol. 2020, 80, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Uzan-Yulzari, A.; Turta, O.; Belogolovski, A.; Ziv, O.; Kunz, C.; Perschbacher, S.; Neuman, H.; Pasolli, E.; Oz, A.; Ben-Amram, H.; et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization. Nat Commun. 2021, 12, 443. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Magoç, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 2016. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Lutsiv, T.; Weir, T.L.; McGinley, J.N.; Neil, E.S.; Wei, Y.; Thompson, H.J. Compositional changes of the high-fat diet-induced gut microbiota upon consumption of common pulses. Nutrients 2021, 13, 3992. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Smith, G.M. Analyzing Ecological Data; Springer: New York, NY, USA, 2007. [Google Scholar]
- The Galaxy Community. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022, 50, W345–W351. [Google Scholar] [CrossRef] [PubMed]
- Moossavi, S.; Sepehri, S.; Robertson, B.; Bode, L.; Goruk, S.; Field, C.J.; Lix, L.M.; de Souza, R.J.; Becker, A.B.; Mandhane, P.J.; et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe 2019, 25, 324–335. [Google Scholar] [CrossRef]
- Raju, S.C.; Viljakainen, H.; Figueiredo, R.A.O.; Neuvonen, P.J.; Eriksson, J.G.; Weiderpass, E.; Rounge, T.B. Antimicrobial drug use in the first decade of life influences saliva microbiota diversity and composition. Microbiome 2020, 8, 121. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Hermans, S.M.; Buckley, H.L.; Case, B.S.; Curran-Cournane, F.; Taylor, M.; Lear, G. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 2020, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
ID | Province | City | County | Host | Latitude | Longitude | Temperature | Date | Frequency |
---|---|---|---|---|---|---|---|---|---|
HS | Hunan | Hengyang | Hengshan | Orange | 27.1 °C | 112.8 °C | 32 °C | 2 October 2022 | 0 |
RJ | Jiangxi | Ganzhou | Ruijin | Orange | 25.9 °C | 116.1 °C | 29 °C | 3 August 2022 | 57% |
YC | Fujian | Quanzhou | Yongchun | wampee | 25.3 °C | 118.3 °C | 29 °C | 4 August 2022 | 0 |
LG | Guangxi | Guilin | Lingui | Orange | 25.1 °C | 110.0 °C | 33 °C | 3 October 2022 | 15% |
HD | Guangdong | Huidong | Huidong | Wampee, kamuning | 23.0 °C | 114.8 °C | 32 °C | 6 August 2022 | 28% |
Genus Classes | LI (%) | LU (%) | RI (%) | RU (%) | All Groups (%) |
---|---|---|---|---|---|
Wolbachia | 92.15 | 91.51 | 88.26 | 90.34 | 89.86 |
Bacillus | 1.32 | 1.26 | 3.52 | 1.85 | 2.38 |
Pseudomonas | 0.81 | 0.85 | 2.61 | 1.27 | 1.7 |
Acinetobacter | 0.47 | 0.34 | 0.91 | 1.96 | 1.09 |
Candidatus_Carsonella | 0.27 | 0.2 | 0.76 | 0.25 | 0.46 |
Candidatus_Liberibacter | 0.52 | 0.42 | 0.2 | 0.54 | 0.37 |
uncultured_d_Bacteria | 0.51 | 1.37 | 0.02 | 0.06 | 0.34 |
uncultured_f_ Enterobacteriaceae | 0.57 | 0 | 0.63 | 0 | 0.3 |
uncultured_o_ Acidobacteriales | 0.28 | 0.31 | 0.18 | 0.3 | 0.25 |
Lactobacillus | 0.1 | 0.1 | 0.32 | 0.15 | 0.2 |
Others | 2.94 | 3.58 | 2.54 | 3.23 | 2.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.-Z.; Guo, G.-S.; Zhou, L.-F.; Li, L.; Liu, Z.-M.; Chen, C.; Wang, B.-H.; Wu, L. Enterobacteriaceae as a Key Indicator of Huanglongbing Infection in Diaphorina citri. Int. J. Mol. Sci. 2024, 25, 5136. https://doi.org/10.3390/ijms25105136
Duan X-Z, Guo G-S, Zhou L-F, Li L, Liu Z-M, Chen C, Wang B-H, Wu L. Enterobacteriaceae as a Key Indicator of Huanglongbing Infection in Diaphorina citri. International Journal of Molecular Sciences. 2024; 25(10):5136. https://doi.org/10.3390/ijms25105136
Chicago/Turabian StyleDuan, Xing-Zhi, Guo-Sen Guo, Ling-Fei Zhou, Le Li, Ze-Min Liu, Cheng Chen, Bin-Hua Wang, and Lan Wu. 2024. "Enterobacteriaceae as a Key Indicator of Huanglongbing Infection in Diaphorina citri" International Journal of Molecular Sciences 25, no. 10: 5136. https://doi.org/10.3390/ijms25105136
APA StyleDuan, X. -Z., Guo, G. -S., Zhou, L. -F., Li, L., Liu, Z. -M., Chen, C., Wang, B. -H., & Wu, L. (2024). Enterobacteriaceae as a Key Indicator of Huanglongbing Infection in Diaphorina citri. International Journal of Molecular Sciences, 25(10), 5136. https://doi.org/10.3390/ijms25105136