The Etiology of the Thrombotic Phenomena Involved in the Process of Coronary Artery Disease—What Is the Role of Thrombophilic Genes in the Development of This Pathology?
Abstract
:1. Introduction
2. Literature Search
3. Results and Discussion
3.1. Pathophysiology
- the G→A substitution at position 1691 of the factor V gene, resulting in an arginine to glutamine exchange in codon 506 (commonly referred to as Arg506Gln, factor V Leiden, or R506Q);
- the G→A exchange at position 10,976 in the factor VII gene, which results in an arginine to glutamine exchange in codon 353 (also known as Arg353Gln or R353Q);
- the G→A exchange at position 20,210 in the 3′ untranslated region of the prothrombin gene;
- the 4G/5G insertion/deletion in the PAI-1 gene at a position –675 of the promoter region;
- the C→T substitution at position 807 in the GPIa gene;
- a C→T substitution at position 1565 in exon 2 of the GPIIIa gene, which results in a leucine to proline exchange in codon 33 (Leu33Pro or PlA1/A2);
- the T→C substitution recently identified at position –5 upstream of the ATG initiation codon in the GPIb gene (the von Willebrand factor-binding subunit of the complex) [38].
3.1.1. Factor V Leiden
3.1.2. Prothrombin G20210A Mutation
3.1.3. Plasminogen Activator Inhibitor-1 (PAI-1)
3.1.4. Hyperhomocystinemia
3.1.5. Antiphospholipid Syndrome
3.2. Thrombophilia Testing
- First VTE event < 40 years;
- VTE at unusual sites < 50 years; (e.g., upper limb thrombosis, retinal vein thrombosis);
- First unprovoked event < 60 years;
- Recurrent episodes of VTE;
- Estrogen therapy/pregnancy—sole risk factor;
- Recurrent superficial vein thrombosis without varicose veins;
3.3. The Dysregulated Coagulopathy Induced by Procoagulant Platelets
3.4. Future Perspectives Regarding the Thrombophilia Assessment in Coronary Artery Disease
4. Conclusions
Funding
Conflicts of Interest
References
- Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 15 October 2023).
- Bratseth, V.; Pettersen, A.; Opstad, T.B.; Arnesen, H.; Seljeflot, I. Markers of hypercoagulability in CAD patients. Effects of single aspirin and clopidogrel treatment. Thromb. J. 2012, 10, 12. [Google Scholar] [CrossRef]
- Ralapanawa, U.; Sivakanesan, R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J. Epidemiol. Glob. Health. 2021, 11, 169–177. [Google Scholar] [CrossRef]
- El-Hazmi, M.A. Hematological risk factors for coronary heart disease. Med. Princ. Pract. 2002, 11 (Suppl. S2), 56–62. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.S.; Levy, D.; Vasan, R.S.; Wang, T.J. The Framingham Heart Study and the epidemiology of cardiovascular disease: A historical perspective. Lancet 2014, 383, 999–1008. [Google Scholar] [CrossRef]
- Buchan, D.S.; Thomas, N.E.; Baker, J.S. Novel risk factors of cardiovascular disease and their associations between obesity, physical activity and physical fitness. J. Public Health Res. 2012, 1, 59–66. [Google Scholar] [CrossRef]
- Stoykova, J.; Dimitrova, V.; Tasheva, I.; Dosev, L.; Zlatareva-Gronkova, N.; Petrov, I. Acute coronary syndrome and thrombophilia in young patients:clinical data, experience. Eur. Heart J. 2020, 41 (Suppl. S2), ehaa946.1553. [Google Scholar] [CrossRef]
- Hajar, R. Risk Factors for Coronary Artery Disease: Historical Perspectives. Hear. Views 2017, 18, 109–114. [Google Scholar] [CrossRef]
- Kumma, W.P.; Lindtjørn, B.; Loha, E. Modifiable cardiovascular disease risk factors among adults in southern Ethiopia: A community-based cross-sectional study. BMJ Open 2022, 12, e057930. [Google Scholar] [CrossRef] [PubMed]
- Barnes, A.S. Emerging modifiable risk factors for cardiovascular disease in women: Obesity, physical activity, and sedentary behavior. Tex. Heart Inst. J. 2013, 40, 293–295. [Google Scholar] [PubMed]
- Maor, E.; Fefer, P.; Varon, D.; Rosenberg, N.; Levi, N.; Hod, H.; Matetzky, S. Thrombophilic state in young patients with acute myocardial infarction. J. Thromb. Thrombolysis 2015, 39, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, L.; Figtree, G.A.; Schutte, A.E.; Patel, S.; Woodward, M.; Arnott, C. Cardiovascular Disease in Women: From Pathophysiology to Novel and Emerging Risk Factors. Heart Lung Circ. 2021, 30, 9–17. [Google Scholar] [CrossRef]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease. [Updated 2021 Jun 5]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554410/ (accessed on 15 October 2023).
- Hankey, G.J.; Eikelboom, J.W.; van Bockxmeer, F.M.; Lofthouse, E.; Staples, N.; Baker, R.I. Inherited thrombophilia in ischemic stroke and its pathogenic subtypes. Stroke 2001, 32, 1793–1799. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, D.; Ghosh, K.; Khare, A.; Kulkarni, B. Thrombophilia in coronary artery disease: A double jeopardy. Indian. J. Med. Res. 2004, 120, 13–23. [Google Scholar] [PubMed]
- de Moerloose, P.; Boehlen, F. Inherited thrombophilia in arterial disease: A selective review. Semin. Hematol. 2007, 44, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Lassila, R. Role and management of coagulation disorders in peripheral arterial disease. Scand. J. Surg. 2012, 101, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Milgrom, A.; Lee, K.; Rothschild, M.; Makadia, F.; Duhon, G.; Min, S.; Wang, P.; Glueck, C.J. Thrombophilia in 153 Patients with Premature Cardiovascular Disease ≤ Age 45. Clin. Appl. Thromb. Hemost. 2018, 24, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.J.; Becker, R.C. Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: A meta-analysis of published studies. Am. Heart J. 2003, 146, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Jara, L.J.; Medina, G.; Vera-Lastra, O.; Shoenfeld, Y. Atherosclerosis and antiphospholipid syndrome. Clin. Rev. Allergy Immunol. 2003, 25, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Jara, L.J.; Medina, G.; Vera-Lastra, O. Systemic antiphospholipid syndrome and atherosclerosis. Clin. Rev. Allergy Immunol. 2007, 32, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Pitoulias, G.A.; Tachtsi, M.D.; Tsiaousis, P.Z.; Papadimitriou, D.K. Hyperhomocysteinemia and hypercoagulable state in carotid plaque evolution. Novel risk factors or coincidental risk predictors? Int. Angiol. 2007, 26, 270–278. [Google Scholar] [PubMed]
- Ames, P.R.; Antinolfi, I.; Scenna, G.; Gaeta, G.; Margaglione, M.; Margarita, A. Atherosclerosis in thrombotic primary antiphospholipid syndrome. J. Thromb. Haemost. 2009, 7, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhou, Y.; Wu, X.; Wang, X.; Bai, H.; Li, Y.; Wang, Z.; Chen, X.; Wang, Y. Association of methylenetetrahydrofolate reductase (MTHFR) variant C677T and risk of carotid atherosclerosis: A cross-sectional analysis of 730 Chinese Han adults in Chongqing. BMC Cardiovasc. Disord 2020, 20, 222. [Google Scholar] [CrossRef] [PubMed]
- Vagdatli, E.; Serafimidou, O.; Pantziarela, E.; Tsikopoulou, F.; Mitsopoulou, K.; Papoutsi, A. Prevalence of thrombophilia in asymptomatic individuals with a family history of thrombosis. Hippokratia 2013, 17, 359–362. [Google Scholar]
- Khider, L.; Gendron, N.; Mauge, L. Inherited Thrombophilia in the Era of Direct Oral Anticoagulants. Int. J. Mol. Sci. 2022, 23, 1821. [Google Scholar] [CrossRef]
- Omran, S.S.; Lerario, M.P.; Gialdini, G.; Merkler, A.E.; Moya, A.; Chen, M.L.; Kamel, H.; DeSancho, M.; Navi, B.B. Clinical Impact of Thrombophilia Screening in Young Adults with Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2019, 28, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian. J. Anaesth. 2014, 58, 515–523. [Google Scholar] [CrossRef]
- Mackman, N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Westrick, R.J.; Bodary, P.F.; Xu, Z.; Shen, Y.C.; Broze, G.J.; Eitzman, D.T. Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 2001, 103, 3044–3046. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M.; Franchini, M. Classic thrombophilic gene variants. Thromb. Haemost. 2015, 114, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Amara, A.; Mrad, M.; Sayeh, A.; Haggui, A.; Lahideb, D.; Fekih-Mrissa, N.; Haouala, H.; Nsiri, B. Association of FV G1691A Polymorphism but not A4070G With Coronary Artery Disease. Clin. Appl. Thromb. Hemost. 2018, 24, 330–337. [Google Scholar] [CrossRef]
- Borissoff, J.I.; Spronk, H.M.; Heeneman, S.; ten Cate, H. Is thrombin a key player in the ‘coagulation-atherogenesis’ maze? Cardiovasc. Res. 2009, 82, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Kalz, J.; ten Cate, H.; Spronk, H.M. Thrombin generation and atherosclerosis. J. Thromb. Thrombolysis 2014, 37, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Jaberi, N.; Soleimani, A.; Pashirzad, M.; Abdeahad, H.; Mohammadi, F.; Khoshakhlagh, M.; Khazaei, M.; Ferns, G.A.; Avan, A.; Hassanian, S.M. Role of thrombin in the pathogenesis of atherosclerosis. J. Cell Biochem. 2019, 120, 4757–4765. [Google Scholar] [CrossRef] [PubMed]
- Ten Cate, H.; Hemker, H.C. Thrombin Generation and Atherothrombosis: What Does the Evidence Indicate? J. Am. Heart Assoc. 2016, 5, e003553. [Google Scholar] [CrossRef] [PubMed]
- Borissoff, J.I.; Otten, J.J.; Heeneman, S.; Leenders, P.; van Oerle, R.; Soehnlein, O.; Loubele, S.T.; Hamulyák, K.; Hackeng, T.M.; Daemen, M.J.; et al. Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner. PLoS ONE. 2013, 8, e55784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, Z.; Liu, E.H.; Higgins, J.P.; Keavney, B.D.; Lowe, G.D.; Collins, R.; Danesh, J. Seven haemostatic gene polymorphisms in coronary disease: Meta-analysis of 66,155 cases and 91,307 controls. Lancet 2006, 367, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Albagoush, S.A.; Koya, S.; Chakraborty, R.K.; Schmidt, A.E. Factor V Leiden Mutation. [Updated 2022 Feb 1]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Klarin, D.; Busenkell, E.; Judy, R.; Lynch, J.; Levin, M.; Haessler, J.; Aragam, K.; Chaffin, M.; Haas, M.; Lindström, S.; et al. Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease. Nat. Genet. 2019, 51, 1574–1579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Stefano, V.; Chiusolo, P.; Paciaroni, K.; Leone, G. Epidemiology of factor V Leiden: Clinical implications. Semin. Thromb. Hemost. 1998, 24, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Lam, W.; Moosavi, L. Physiology Factor, V. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Yusuf, M.; Gupta, A.; Kumar, A.; Afreen, S. Mechanism and pathophysiology of activated protein C-related factor V leiden in venous thrombosis. Asian J. Transfus. Sci. 2012, 6, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Nicolaes, G.A.; Dahlbäck, B. Congenital and acquired activated protein C resistance. Semin. Vasc. Med. 2003, 3, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Mok, M.Y.; Chan, E.Y.; Fong, D.Y.; Leung, K.F.; Wong, W.S.; Lau, C.S. Antiphospholipid antibody profiles and their clinical associations in Chinese patients with systemic lupus erythematosus. J. Rheumatol. 2005, 32, 622–628. [Google Scholar] [PubMed]
- Emmerich, J.; Rosendaal, F.R.; Cattaneo, M.; Margaglione, M.; De Stefano, V.; Cumming, T.; Arruda, V.; Hillarp, A.; Reny, J.L. Combined effect of factor V Leiden and prothrombin 20210A on the risk of venous thromboembolism-pooled analysis of 8 case-control studies including 2310 cases and 3204 controls. Study Group for Pooled-Analysis in Venous Thromboembolism. Thromb. Haemost. 2001, 86, 809–816, Erratum in Thromb. Haemost. 2001, 86, 1598. [Google Scholar] [PubMed]
- Kujovich, J.L. Prothrombin Thrombophilia. 2006 July 25. In GeneReviews® [Internet]; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2006. [Google Scholar]
- Jadaon, M.M. Epidemiology of Prothrombin G20210A Mutation in the Mediterranean Region. Mediterr. J. Hematol. Infect. Dis. 2011, 3, e2011054. [Google Scholar] [CrossRef] [PubMed]
- Varga, E.A.; Moll, S. Cardiology patient pages. Prothrombin 20210 mutation (factor II mutation). Circulation 2004, 110, e15–e18. [Google Scholar] [CrossRef] [PubMed]
- Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: Routine testing for Factor V Leiden (R506Q) and prothrombin (20210G>A) mutations in adults with a history of idiopathic venous thromboembolism and their adult family members. Genet. Med. 2011, 13, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Li, Y.; Ge-Shang, Q.-Z.; Ni, H.-C.; Shi, H.-M.; Shen, W. Varied association of prothrombin G20210A polymorphism with coronary artery disease susceptibility in different ethnic groups: Evidence from 15,041 cases and 21,507 controls. Mol. Biol. Rep. 2011, 38, 2371–2376. [Google Scholar] [CrossRef] [PubMed]
- Alessi, M.C.; Juhan-Vague, I. PAI-1 and the metabolic syndrome: Links, causes, and consequences. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2200–2207. [Google Scholar] [CrossRef] [PubMed]
- Tjärnlund-Wolf, A.; Brogren, H.; Lo, E.H.; Wang, X. Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases. Stroke 2012, 43, 2833–2839. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vaughan, D.E. PAI-1 and atherothrombosis. J. Thromb. Haemost. 2005, 3, 1879–1883. [Google Scholar] [CrossRef] [PubMed]
- Sillen, M.; Declerck, P.J. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front. Cardiovasc. Med. 2020, 7, 622473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.; Kim, H.; Roh, H.; Kwon, Y. Causes of hyperhomocysteinemia and its pathological significance. Arch. Pharm. Res. 2018, 41, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, D.; Sibani, S.; Rozen, R. Molecular Biology of Methylenetetrahydrofolate Reductase (MTHFR) and Overview of Mutations/Polymorphisms. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2000. [Google Scholar]
- Selhub, J. Homocysteine metabolism. Annu. Rev. Nutr. 1999, 19, 217–246. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.P.; Ishaq, M.; Kazmi, K.A.; Yousuf, F.A.; Mehboobali, N.; Ali, S.A.; Khan, A.H.; Waqar, M.A. Role of vitamins B6, B12 and folic acid on hyperhomocysteinemia in a Pakistani population of patients with acute myocardial infarction. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.Y.; Andreotti, F.; Becker, R.C. Hypercoagulable states in cardiovascular disease. Circulation 2008, 118, 2286–2297. [Google Scholar] [CrossRef] [PubMed]
- Lonn, E.; Yusuf, S.; Arnold, M.J.; Sheridan, P.; Pogue, J.; Micks, M.; McQueen, M.J.; Probstfield, J.; Fodor, G.; Held, C.; et al. Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators. Homocysteine lowering with folic acid and B vitamins in vascular disease. N. Engl. J. Med. 2006, 354, 1567–1577, Erratum in N. Engl. J. Med. 2006, 355, 746. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.G.; Goyal, A.; Singhal, M. Antiphospholipid Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Willis, R.; Pierangeli, S.S. Pathophysiology of the antiphospholipid antibody syndrome. Auto. Immun. Highlights 2011, 2, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Wang, P.; Liu, J. Antiphospholipid syndrome combined with acute coronary syndrome: Case report. Medicine 2018, 97, e13613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gürlek, A.; Ozdöl, C.; Pamir, G.; Dinçer, I.; Tutkak, H.; Oral, D. Association between anticardiolipin antibodies and recurrent cardiac events in patients with acute coronary syndrome. Int. Heart J. 2005, 46, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Overview of the Treatment of Lower Extremity Deep Vein Thrombosis (DVT). Available online: https://www.uptodate.com/contents/overview-of-the-treatment-of-lower-extremity-deep-vein-thrombosis-dvt (accessed on 15 October 2023).
- Colucci, G.; Tsakiris, D.A. Thrombophilia screening revisited: An issue of personalized medicine. J. Thromb. Thrombolysis 2020, 49, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Chopard, R.; Albertsen, I.E.; Piazza, G. Diagnosis and Treatment of Lower Extremity Venous Thromboembolism: A Review. JAMA 2020, 324, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.M. Thrombophilia Testing and Venous Thrombosis. N. Engl. J. Med. 2017, 377, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, I. Unusual forms of venous thrombosis and thrombophilia. Pathophysiol. Haemost. Thromb. 2002, 32, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Merriman, L.; Greaves, M. Testing for thrombophilia: An evidence-based approach. Postgrad. Med. J. 2006, 82, 699–704. [Google Scholar] [CrossRef] [PubMed]
- ASH Draft Recommendations for Thrombophilia Testing. Available online: https://www.hematology.org/-/media/hematology/files/education/clinicians/guidelines-quality/documents/thrombopilia-public-comment-supplementary-file.pdf?la=en&hash=E092A825084F5B5C36E08190929397D3 (accessed on 15 October 2023).
- Darlow, J.; Mould, H. Thrombophilia testing in the era of direct oral anticoagulants. Clin. Med. 2021, 21, e487–e491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vaz, C.; Bischoff, F.; Monteiro, F.; Lopes, M.; Vasconcelos, F.; Bastos, P.; Tavares, G.; Ferreira, M.; Amorim, A.; Koch, C. Genetic Testing for Inherited Thrombophilia: 20 Years of Experience in a University and Tertiary Care Centre. Proceedings 2018, 2, 527. [Google Scholar] [CrossRef]
- Pasalic, L.; Wing-Lun, E.; Lau, J.K.; Campbell, H.; Pennings, G.J.; Lau, E.; Connor, D.; Liang, H.P.; Muller, D.; Kritharides, L.; et al. Novel assay demonstrates that coronary artery disease patients have heightened procoagulant platelet response. J. Thromb. Haemost. 2018, 16, 1198–1210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerotziafas, G.T.; Zografos, T.; Pantos, I.; Lefkou, E.; Carlo, A.; Fareed, J.; Van Dreden, P.; Katritsis, D. Prospective Assessment of Biomarkers of Hypercoagulability for the Identification of Patients with Severe Coronary Artery Disease. The ROADMAP-CAD Study. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620964590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Badulescu, O.V.; Sirbu, P.D.; Filip, N.; Bordeianu, G.; Cojocaru, E.; Budacu, C.C.; Badescu, M.C.; Bararu-Bojan, I.; Veliceasa, B.; Ciocoiu, M. Hereditary Thrombophilia in the Era of COVID-19. Healthcare 2022, 10, 993. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Badulescu, O.V.; Sirbu, P.D.; Ungureanu, C.; Pȋnzariu, A.; Cojocaru, E.; Filip, N.; Bararu-Bojan, I.; Vladeanu, M.; Ciocoiu, M. Orthopedic surgery in hemophilic patients with musculoskeletal disorders: A systematic review. Exp. Ther. Med. 2021, 22, 995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Cardiovascular Risk Factors | |
---|---|
Traditional Risk Factors | Non-Traditional Risk Factors |
Age: > 45 years (M)/> 55 years (F) | Left ventricular hypertrophy |
Family history of CVD | Hyperhomocysteinemia |
Smoking | Lipoprotein(a) excess |
Hypertension (BP > 140/90 mmHg) | Hypertriglyceridemia |
LDL-C (130–159 mg/dL) + at least 2 risk factors | Oxidative stress |
HDL-C (< 35 mg/dL) | Hyperfibrinogenaemia |
Obesity (BMI > 30 kg/m2) | Procoagulant substances (e.g., Plasminogen, PAI-1, vWF, factor VII) |
Diabetes mellitus | Infectious agents (e.g., Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus) |
Inherited Thrombophilia: Prevalence in the General Population |
Severe Thrombophilia: |
|
Mild Thrombophilia: |
|
Reference | Studies | Perspective on Thrombophilia Assessment in CAD |
---|---|---|
[18] | Milgrom A. et al. (2018). Thrombophilia in 153 Patients with Premature Cardiovascular Disease ≤ Age 45. Clin Appl Thromb Hemost. |
|
| ||
| ||
| ||
| ||
| ||
[24] | Peng X. et al. (2020). Association of MTHFR Variant C677T and Risk of Carotid Atherosclerosis. BMC Cardiovasc Disord. |
|
[25] | Vagdatli E. et al. (2013). Prevalence of Thrombophilia in Asymptomatic Individuals with a Family History of Thrombosis. Hippokratia. |
|
| ||
| ||
| ||
| ||
[27] | Omran SS. et al. (2019). Clinical Impact of Thrombophilia Screening in Young Adults with Ischemic Stroke. J Stroke Cerebrovasc Dis. |
|
| ||
| ||
| ||
| ||
| ||
| ||
[38] | Ye Z. et al. (2006). Seven Haemostatic Gene Polymorphisms in Coronary Disease: Meta-analysis. Lancet. |
|
| ||
| ||
| ||
| ||
[40] | Klarin D. et al. (2019). Genome-wide Association Analysis of Venous Thromboembolism Identifies New Risk Loci. Nat Genet. |
|
[51] | Jin B. et al. (2011). Association of Prothrombin G20210A Polymorphism with Coronary Artery Disease. Mol Biol Rep. |
|
[65] | Gürlek A. et al. (2005). Association between Anticardiolipin Antibodies and Recurrent Cardiac Events in ACS. Int Heart J. |
|
[76] | Gerotziafas GT. et al. (2020). Prospective Assessment of Biomarkers for Identification of Patients with Severe CAD. Clin Appl Thromb Hemost. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bararu Bojan, I.; Dobreanu, S.; Vladeanu, M.C.; Ciocoiu, M.; Badescu, C.; Plesoianu, C.; Filip, N.; Iliescu, D.; Frasinariu, O.; Bojan, A.; et al. The Etiology of the Thrombotic Phenomena Involved in the Process of Coronary Artery Disease—What Is the Role of Thrombophilic Genes in the Development of This Pathology? Int. J. Mol. Sci. 2024, 25, 5228. https://doi.org/10.3390/ijms25105228
Bararu Bojan I, Dobreanu S, Vladeanu MC, Ciocoiu M, Badescu C, Plesoianu C, Filip N, Iliescu D, Frasinariu O, Bojan A, et al. The Etiology of the Thrombotic Phenomena Involved in the Process of Coronary Artery Disease—What Is the Role of Thrombophilic Genes in the Development of This Pathology? International Journal of Molecular Sciences. 2024; 25(10):5228. https://doi.org/10.3390/ijms25105228
Chicago/Turabian StyleBararu Bojan, Iris, Stefan Dobreanu, Maria Cristina Vladeanu, Manuela Ciocoiu, Codruta Badescu, Carmen Plesoianu, Nina Filip, Dan Iliescu, Otilia Frasinariu, Andrei Bojan, and et al. 2024. "The Etiology of the Thrombotic Phenomena Involved in the Process of Coronary Artery Disease—What Is the Role of Thrombophilic Genes in the Development of This Pathology?" International Journal of Molecular Sciences 25, no. 10: 5228. https://doi.org/10.3390/ijms25105228
APA StyleBararu Bojan, I., Dobreanu, S., Vladeanu, M. C., Ciocoiu, M., Badescu, C., Plesoianu, C., Filip, N., Iliescu, D., Frasinariu, O., Bojan, A., Tudor, R., & Badulescu, O. V. (2024). The Etiology of the Thrombotic Phenomena Involved in the Process of Coronary Artery Disease—What Is the Role of Thrombophilic Genes in the Development of This Pathology? International Journal of Molecular Sciences, 25(10), 5228. https://doi.org/10.3390/ijms25105228