Chemotherapy-Induced Changes in Plasma Amino Acids and Lipid Oxidation of Resected Patients with Colorectal Cancer: A Background for Future Studies
Abstract
:1. Introduction
2. Results
2.1. Baseline Patient Clinical Characteristics, PAAL and MDA (Time A, TA)
2.2. Time Courses of PAALs during the Three-Month CMT (Time A: Baseline → Time B: 28–32 Dys → Time C: 87–93 Days)
2.3. Time Courses of Plasma MDA Levels during the Three-Month CMT
2.4. PAAL at the End of Three-Month CMT (Time C, TC)
2.5. Correlations between PAAL and Peripheral Blood White Cells
3. Discussion
3.1. Potential Mechanisms Underlying PAAL
3.1.1. Pre-CMT
3.1.2. During CMT
- Hypotheses on mechanisms underpinning FOLFOX-induced AA time courses
- Hypotheses on mechanisms underpinning XELOX-induced AA time courses
3.2. Potential Mechanisms Underlying Oxidative Stress Pre- and during CMT
3.3. Limitations
4. Materials and Methods
4.1. Population
4.2. Chemotherapy
4.3. Plasma AA and MDA Measures
4.3.1. AA Measurements
4.3.2. Procedure of MDA Measurement
4.4. Demographic, Anthropometric, Bio-Humoral Variable Measures
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J.; et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef] [PubMed]
- Fata, F.; Mirza, A.; Craig, G.; Nair, S.; Law, A.; Gallagher, J.; Ellison, N.; Bernath, A. Efficacy and toxicity of adjuvant chemotherapy in elderly patients with colon carcinoma: A 10-year experience of the Geisinger Medical Center. Cancer 2002, 94, 1931–1938. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, N.V.; Jenkins, R.O.; Radilov, A.S. Toxicology of fluoroacetate: A review, with possible directions for therapy research. J. Appl. Toxicol. 2006, 26, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Grem, J.L. Mechanisms of action and modulation of fluorouracil. Semin. Radiat. Oncol. 1997, 7, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Mitani, S.; Kadowaki, S.; Komori, A.; Sugiyama, K.; Narita, Y.; Taniguchi, H.; Ura, T.; Ando, M.; Sato, Y.; Yamaura, H.; et al. Acute hyperammonemic encephalopathy after fluoropyrimidine-based chemotherapy: A case series and review of the literature. Medicine 2017, 96, e6874. [Google Scholar] [CrossRef] [PubMed]
- Polk, A.; Vaage-Nilsen, M.; Vistisen, K.; Nielsen, D.L. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: A systematic review of incidence, manifestations and predisposing factors. Cancer Treat. Rev. 2013, 39, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Denlinger, C.S.; Barsevick, A.M. The challenges of colorectal cancer survivorship. J. Natl. Compr. Canc. Netw. 2009, 7, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Cersosimo, R.J. Oxaliplatin-associated neuropathy: A review. Ann. Pharmacother. 2005, 39, 128–135. [Google Scholar] [CrossRef]
- Grothey, A. Clinical management of oxaliplatin-associated neurotoxicity. Clin. Colorectal Cancer 2005, 5 (Suppl. 1), S38–S46. [Google Scholar] [CrossRef]
- Erdem, G.U.; Dogan, M.; Demirci, N.S.; Zengin, N. Oxaliplatin-induced acute thrombocytopenia. J. Cancer Res. Ther. 2016, 12, 509–514. [Google Scholar] [CrossRef]
- Sorensen, J.C.; Cheregi, B.D.; Timpani, C.A.; Nurgali, K.; Hayes, A.; Rybalka, E. Mitochondria: Inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting? Cancer Chemother. Pharmacol. 2016, 78, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Barreto, R.; Waning, D.L.; Gao, H.; Liu, Y.; Zimmers, T.A.; Bonetto, A. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget 2016, 7, 43442–43460. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, C.; Zhang, F.; Liu, Y.; Guo, Y.; Yao, Q. The gut microbiota attenuates muscle wasting by regulating energy metabolism in chemotherapy-induced malnutrition rats. Cancer Chemother. Pharm. 2020, 85, 1049–1062. [Google Scholar] [CrossRef] [PubMed]
- VanderVeen, B.N.; Sougiannis, A.T.; Velazquez, K.T.; Carson, J.A.; Fan, D.; Murphy, E.A. The acute effects of 5 fluorouracil on skeletal muscle resident and infiltrating immune cells in mice. Front. Physiol. 2020, 11, 593468. [Google Scholar] [CrossRef] [PubMed]
- Campelj, D.G.; Timpani, C.A.; Cree, T.; Petersen, A.C.; Hayes, A.; Goodman, C.A.; Rybalka, E. Metronomic 5-fluorouracil delivery primes skeletal muscle for myopathy but does not cause cachexia. Pharmaceuticals 2021, 14, 478. [Google Scholar] [CrossRef] [PubMed]
- Campelj, D.G.; Goodman, C.A.; Rybalka, E. Chemotherapy-induced myopathy: The dark side of the cachexia sphere. Cancers 2021, 13, 3615. [Google Scholar] [CrossRef] [PubMed]
- Halle, J.L.; Counts, B.R.; Zhang, Q.; Carson, J.A. Short duration treadmill exercise improves physical function and skeletal muscle mitochondria protein expression after recovery from FOLFOX chemotherapy in male mice. FASEB J. 2022, 36, e22437. [Google Scholar] [CrossRef] [PubMed]
- Lightfoot, A.; McArdle, A.; Griffiths, R.D. Muscle in defense. Crit. Care Med. 2009, 37 (Suppl. 10), S384–S390. [Google Scholar] [CrossRef] [PubMed]
- Dev, R.; Bruera, E.; Dalal, S. Insulin resistance and body composition in cancer patients. Ann. Oncol. 2018, 29 (Suppl. 2), ii18–ii26. [Google Scholar] [CrossRef]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef]
- Singh, R.; Mishra, M.K.; Aggarwal, H. Inflammation, immunity, and cancer. Mediat. Inflamm. 2017, 2017, 6027305. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O.; Jonathan, E. Rhoads lecture 2011: Insulin resistance and enhanced recovery after surgery. JPEN J. Parenter. Enteral Nutr. 2012, 36, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Soeters, P.B.; Grimble, R.F. Dangers, and benefits of the cytokine mediated response to injury and infection. Clin. Nutr. 2009, 28, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Sarosiek, K.A.; Chonghaile, T.N.; Letai, A. Mitochondria: Gatekeepers of response to chemotherapy. Trends Cell Biol. 2013, 23, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.A.; Chandel, N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, L.A.A.; Moylan, J.S.; Patterson, E.W.; Smith, J.D.; Wilson, A.S.; Rabbani, Z.; Reid, M.B. Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am. J. Physiol. Cell Physiol. 2012, 302, C195–C202. [Google Scholar] [CrossRef] [PubMed]
- Kourie, J.I. Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 1998, 275, C1–C24. [Google Scholar] [CrossRef]
- Cheregi, B.; Timpani, C.; Nurgali, K.; Hayes, A.; Rybalka, E. Chemotherapy-induced mitochondrial respiratory dysfunction, oxidant production and death in healthy skeletal muscle C2C12 myoblast and myotube models. Neuromuscul. Disord. 2015, 25 (Suppl. 2), S202. [Google Scholar] [CrossRef]
- Leeuwenburgh, C. Role of apoptosis in sarcopenia. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 999–1001. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jungsuwadee, P.; Vore, M.; Butterfield, D.A.; St Clair, D.K. Collateral damage in cancer chemotherapy: Oxidative stress in nontargeted tissues. Mol. Interv. 2007, 7, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Molenaar-Kuijsten, L.; Jacobs, B.A.W.; Kurk, S.A.; May, A.M.; Dorlo, T.P.C.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Worse capecitabine treatment outcome in patients with a low skeletal muscle mass is not explained by altered pharmacokinetics. Cancer Med. 2021, 10, 4781–4789. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Sikalidis, A.K. Amino acids and immune response: A role for cysteine, glutamine, phenylalanine, tryptophan and arginine in T-cell function and cancer? Pathol. Oncol. Res. 2015, 21, 9–17. [Google Scholar] [CrossRef]
- Sammarco, G.; Gallo, G.; Vescio, G.; Picciariello, A.; De Paola, G.; Trompetto, M.; Currò, G.; Ammendola, M. Mast Cells, microRNAs and Others: The Role of Translational Research on Colorectal Cancer in the Forthcoming Era of Precision Medicine. J. Clin. Med. 2020, 9, 2852. [Google Scholar] [CrossRef] [PubMed]
- Calvani, M.; Dabraio, A.; Subbiani, A.; Buonvicino, D.; De Gregorio, V.; Ciullini Mannurita, S.; Pini, A.; Nardini, P.; Favre, C.; Filippi, L. β3-Adrenoceptors as Putative Regulator of Immune Tolerance in Cancer and Pregnancy. Front. Immunol. 2020, 11, 2098. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, M. Amino acids: Key sources for immunometabolites and immunotransmitters. Int. Immunol. 2020, 32, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Cha, Y.; Shin, S.J.; Park, Y.S.; Kang, J.H.; Kim, C.; Lim, S.H.; Kang, M.J.; Kim, J.G.; Hwang, I.G.; et al. Treatment Patterns and Prognosis of Palliative Chemotherapy Combined With Targeting Agents in Patients With Unresectable Metastatic Colorectal Cancer: CHOICE, A Multicenter Longitudinal Observational Study. Anticancer Res. 2024, 44, 347–359. [Google Scholar] [CrossRef]
- Kim, S.W.; Jung, H.W.; Kim, C.H.; Kim, K.I.; Chin, H.J.; Lee, H. A New Equation to Estimate Muscle Mass from Creatinine and Cystatin, C. PLoS ONE 2016, 11, e0148495. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Kashani, K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. J. Thorac. Dis. 2016, 8, E305–E311. [Google Scholar] [CrossRef] [PubMed]
- Schutte, J.E.; Longhurst, J.C.; Gaffney, F.A.; Bastian, B.C.; Blomqvist, C.G. Total plasma creatinine: An accurate measure of total striated muscle mass. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 51, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.J.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Conigrave, A.D.; Quinn, S.J.; Brown, E.M. L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 4814–4819. [Google Scholar] [CrossRef]
- Ling, Z.N.; Jiang, Y.F.; Ru, J.N.; Lu, J.H.; Ding, B.; Wu, J. Amino acid metabolism in health and disease. Signal Transduct. Target Ther. 2023, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef]
- Ling, P.R.; Bistrian, B.R. Comparison of the effects of food versus protein restriction on selected nutritional and inflammatory markers in rats. Metabolism 2009, 58, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Miljkovic, I.; Cauley, J.A.; Wang, P.Y.; Holton, K.F.; Lee, C.G.; Sheu, Y.; Barrett-Connor, E.; Hoffman, A.R.; Lewis, C.B.; Orwoll, E.S.; et al. Abdominal myosteatosis is independently associated with hyperinsulinemia and insulin resistance among older men without diabetes. Obesity 2013, 21, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.S.; Clark, J.; Wagenmakers, A.J.M. The effect of exercise and nutrition on intramuscular fat metabolism and insulin sensitivity. Annu. Rev. Nutr. 2010, 30, 13–34. [Google Scholar] [CrossRef]
- D’Alessandris, C.; Lauro, R.; Presta, I.; Sesti, G. C-reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser307 and Ser 612 in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport. Diabetologia 2007, 50, 840–849. [Google Scholar] [CrossRef]
- Lheureux, O.; Preiser, J.C. Role of nutrition support in inflammatory conditions. Nutr. Clin. Pract. 2017, 32, 310–317. [Google Scholar] [CrossRef]
- Dolan, E.; Saunders, B.; Harris, R.C.; Bicudo, J.E.P.W.; Bishop, D.J.; Sale, C.; Gualano, B. Comparative physiology investigations support a role for histidine-containing dipeptides in intracellular acid-base regulation of skeletal muscle. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 234, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Katzung, B.G.; Masters, S.B.; Trevor, A.J. Basic & Clinical Pharmacology, 12th ed.; McGraw-Hill Companies, Inc.: New York, NY, USA, 2012; p. 1076. [Google Scholar]
- André, T.; Boni, C.; Mounedji-Boudiaf, L.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Zaninelli, M.; Clingan, P.; Bridgewater, J.; et al. Multicenter International Study of Oxaliplatin/5-Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer (MOSAIC) Investigators. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N. Engl. J. Med. 2004, 350, 2343–2351. [Google Scholar] [CrossRef]
- De Forni, M.; Malet-Martino, M.C.; Jaillais, P.; Shubinski, R.E.; Bachaud, J.M.; Lemaire, L.; Canal, P.; Chevreau, C.; Carrié, D.; Soulié, P.; et al. Cardiotoxicity of high-dose continuous infusion fluorouracil: A prospective clinical study. J. Clin. Oncol. 1992, 10, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Lischke, J.; Lang, C.; Sawodny, O.; Feuer, R. Impairment of energy metabolism in cardiomyocytes caused by 5-FU catabolites can be compensated by administration of amino acids. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 5363–5366. [Google Scholar] [CrossRef]
- Cynober, L.A. Plasma amino acid levels with a note on membrane transport: Characteristics, regulation, and metabolic significance. Nutrition 2002, 18, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.P.K.J.; Safar, A.M.; Bartter, T.; Koeman, F.; Deutz, N.E.P. Reduced arginine availability and nitric oxide synthesis in cancer is related to impaired endogenous arginine synthesis. Clin. Sci. 2016, 130, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Scriver, C.R.; Lamm, P.; Clow, C.L. Plasma amino acids: Screening, quantitation, and interpretation. Am. J. Clin. Nutr. 1971, 24, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, R.; La Rovere, M.T.; Corbellini, D.; Pasini, E.; Verri, M.; Barbieri, A.; Condino, A.M.; Boschi, F. Plasma amino acid abnormalities in chronic heart failure. Mechanisms, potential risks and targets in human myocardium metabolism. Nutrients 2017, 9, 1251. [Google Scholar] [CrossRef]
- Holecek, M. Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition 2002, 18, 130–133. [Google Scholar] [CrossRef]
- Mendonça Machado, N.; Torrinhas, R.S.; Sala, P.; Ishida, R.K.; Siqueira Guarda, I.F.M.; Hourneaux de Moura, E.G.; Sakai, P.; Santo, M.A.; Waitzberg, D.L. Type 2 diabetes metabolic improvement after roux-en-Y gastric bypass may include a compensatory mechanism that balances fatty acid β and ω oxidation. JPEN J. Parenter. Enteral Nutr. 2020, 44, 1417–1427. [Google Scholar] [CrossRef]
- Pithon-Curi, T.C.; De Melo, M.P.; Curi, R. Glucose and glutamine utilization by rat lymphocytes, monocytes and neutrophils in culture: A comparative study. Cell Biochem. Funct. 2004, 22, 321–326. [Google Scholar] [CrossRef]
- Porter, C.; Sousse, L.E.; Irick, R.; Schryver, E.; Klein, G.L. Interactions of phosphate metabolism with serious injury, including burns. JBMR Plus 2017, 1, 59–65. [Google Scholar] [CrossRef]
- Powers, S.K.; Kavazis, A.N.; DeRuisseau, K.C. Mechanisms of disuse muscle atrophy: Role of oxidative stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R337–R344. [Google Scholar] [CrossRef]
- Leyderman, I.; Yaroshetskiy, A.; Klek, S. Protein requirements in critical illness: Do we really know why to give so much? JPEN J. Parenter. Enteral Nutr. 2020, 44, 589–598. [Google Scholar] [CrossRef]
- McGregor, N.R.; Zerbes, M.; Niblett, S.H.; Dunstan, R.H.; Roberts, T.K.; Butt, H.L.; Klineberg, I.J. Coagulase-negative staphylococcal membrane-damaging toxins, pain intensity, and metabolic changes in temporomandibular disorder patients with chronic muscle pain. J. Orofac. Pain 2003, 17, 125–132. [Google Scholar]
- Young, L.H.; McNulty, P.H.; Morgan, C.; Deckelbaum, L.I.; Zaret, B.L.; Barrett, E.J. Myocardial protein turnover in patients with coronary artery disease. Effect of branched chain amino acid infusion. J. Clin. Investig. 1991, 87, 554–560. [Google Scholar] [CrossRef]
- Chua, B.; Siehl, D.L.; Morgan, H.E. Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. J. Biol. Chem. 1979, 254, 8358–8362. [Google Scholar] [CrossRef] [PubMed]
- Schisler, J.C.; Grevengoed, T.J.; Pascual, F.; Cooper, D.E.; Ellis, J.M.; Paul, D.S.; Willis, M.S.; Patterson, C.; Jia, W.; Coleman, R.A. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J. Am. Heart Assoc. 2015, 4, e001136. [Google Scholar] [CrossRef]
- Smeets, J.S.J.; Horstman, A.M.H.; Schijns, O.E.M.G.; Dings, J.T.A.; Hoogland, G.; Gijsen, A.P.; Goessens, J.P.B.; Bouwman, F.G.; Wodzig, W.K.W.H.; Mariman, E.C.; et al. Brain tissue plasticity: Protein synthesis rates of the human brain. Brain 2018, 141, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.C.; Cook, M.P.; Qin, M.; Kang, J.; Burlin, T.V.; Smith, C.B. Measurement of regional rates of cerebral protein synthesis with L-[1-11C]leucine and PET with correction for recycling of tissue amino acids: I. kinetic modeling approach. J. Cereb. Blood Flow Metab. 2005, 25, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.B.; Schmidt, K.C.; Qin, M.; Burlin, T.V.; Cook, M.P.; Kang, J.; Saunders, R.C.; Bacher, J.D.; Carson, R.E.; Channing, M.A.; et al. Measurement of Regional Rates of Cerebral Protein Synthesis with L-[1-11C]Leucine and PET with Correction for Recycling of Tissue Amino Acids: II. Validation in Rhesus Monkeys. J. Cereb. Blood Flow Metab. 2005, 25, 629–640. [Google Scholar] [CrossRef]
- Metges, C.C. Contribution of microbial amino acids to amino acid homeostasis of the host. J. Nutr. 2000, 130, 1857S–1864S. [Google Scholar] [CrossRef]
- Aquilani, R.; Costa, A.; Maestri, R.; Cotta Ramusino, M.; Perini, G.; Boselli, M.; Iadarola, P.; Buonocore, D.; Verri, M.; Dossena, M.; et al. Is the brain undernourished in Alzheimer’s disease? Nutrients 2022, 14, 1872. [Google Scholar] [CrossRef] [PubMed]
- McNulty, P.H.; Louard, R.J.; Deckelbaum, L.I.; Zaret, B.L.; Young, L.H. Hyperinsulinemia inhibits myocardial protein degradation in patients with cardiovascular disease and insulin resistance. Circulation 1995, 92, 2151–2156. [Google Scholar] [CrossRef]
- Schwartz, R.G.; Barret, E.J.; Francis, C.K.; Jacob, R.; Zaret, B.L. Regulation of myocardial amino acid balance in the conscious dog. J. Clin. Investig. 1985, 75, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Knapik-Czajka, M.; Jurczyk, M.; Bieleń, J.; Aleksandrovych, V.; Gawędzka, A.; Stach, P.; Drąg, J.; Gil, K. Effect of 5-fluorouracil on branched-chain α-keto acid dehydrogenase (BCKDH) complex in rat’s heart. Folia Med. Cracov. 2021, 61, 121–129. [Google Scholar]
- Maneikyte, J.; Bausys, A.; Leber, B.; Feldbacher, N.; Hoefler, G.; Kolb-Lenz, D.; Strupas, K.; Stiegler, P.; Schemmer, P. Dietary glycine prevents FOLFOX chemotherapy-induced heart injury: A colorectal cancer liver metastasis treatment model in rats. Nutrients 2020, 12, 2634. [Google Scholar] [CrossRef]
- Chen, K.J.; Chen, Y.L.; Ueng, S.H.; Hwang, T.L.; Kuo, L.M.; Hsieh, P.W. Neutrophil elastase inhibitor (MPH-966) improves intestinal mucosal damage and gut microbiota in a mouse model of 5-fluorouracil-induced intestinal mucositis. Biomed. Pharmacother. 2021, 134, 111152. [Google Scholar] [CrossRef]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Shen, S.; Lim, G.; You, Z.; Ding, W.; Huang, P.; Ran, C.; Doheny, J.; Caravan, P.; Tate, S.; Hu, K.; et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat. Neurosci. 2017, 20, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Pédron, T.; Sansonetti, P. Commensals, Bacterial Pathogens and Intestinal Inflammation: An Intriguing Ménage à Trois. Cell Host Microbe 2008, 3, 344–347. [Google Scholar] [CrossRef]
- Mishima, E.; Fukuda, S.; Mukawa, C.; Yuri, A.; Kanemitsu, Y.; Matsumoto, Y.; Akiyama, Y.; Fukuda, N.N.; Tsukamoto, H.; Asaji, K.; et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017, 92, 634–645. [Google Scholar] [CrossRef]
- Wu, G.; Knabe, D.A.; Flynn, N.E. Amino acid metabolism in the small intestine: Biochemical bases and nutritional significance. In Biology of Metabolism in Growing Animals; Burrin, D.G., Mersmann, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Burrin, D.G. Gastrointestinal protein and amino acid metabolism in growing animals. In Biology of the Intestine in Growing Animals; Zabielski, R., Gregory, P.C., Westrom, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Stoll, B.; Henry, J.; Reeds, P.J.; Yu, H.; Jahoor, F.; Burrin, D.G. Catabolism Dominates the First-Pass Intestinal Metabolism of Dietary Essential Amino Acids in Milk Protein-Fed Piglets. J. Nutr. 1998, 128, 606–614. [Google Scholar] [CrossRef]
- Garibotto, G.; Sofia, A.; Saffioti, S.; Bonanni, A.; Mannucci, I.; Verzola, D. Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clin. Nutr. 2010, 29, 424–433. [Google Scholar] [CrossRef]
- Crenn, P.; Messing, B.; Cynober, L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 2008, 27, 328–339. [Google Scholar] [CrossRef]
- Herrera, O.R.; Talati, A.J.; Helms, R.A. Plasma citrulline concentrations in neonates with or without gastrointestinal disease during periods of parenteral and enteral nutrition. JPEN J. Parenter. Enteral Nutr. 2019, 43, 977–985. [Google Scholar] [CrossRef]
- Yang, J.A.; Lee, K.E.; Park, J.H.; Yee, J.; Kim, J.Y.; Gwak, H.S. Effects of citrulline supplementation on body weight in patients with hepatobiliary pancreatic surgery. Nutr. Clin. Pract. 2020, 35, 323–330. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Pinzon-Guzman, C.; Barbul, A. Arginine-Dual roles as an onconutrient and immunonutrient. J. Surg. Oncol. 2017, 115, 273–280. [Google Scholar] [CrossRef]
- Vissers, Y.L.J.; Dejong, C.H.C.; Luiking, Y.C.; Fearon, K.C.H.; von Meyenfeldt, M.F.; Deutz, N.E.P. Plasma arginine concentrations are reduced in cancer patients: Evidence for arginine deficiency? Am. J. Clin. Nutr. 2005, 81, 1142–1146. [Google Scholar] [CrossRef]
- Scrimini, S.; Pons, J.; Agustí, A.; Clemente, A.; Sallán, M.C.; Bauçà, J.M.; Soriano, J.B.; Cosio, B.G.; Lopez, M.; Crespi, C.; et al. Expansion of myeloid-derived suppressor cells in chronic obstructive pulmonary disease and lung cancer: Potential link between inflammation and cancer. Cancer Immunol. Immunother. 2015, 64, 1261–1270. [Google Scholar] [CrossRef]
- McCarthy, M.S.; Martindale, R.G. Immunonutrition in critical illness: What is the role? Nutr. Clin. Pract. 2018, 33, 348–358. [Google Scholar] [CrossRef]
- Tabatabaie, L.; Klomp, L.W.; Berger, R.; de Koning, T.J. L-serine synthesis in the central nervous system: A review on serine deficiency disorders. Mol. Genet. Metab. 2010, 99, 256–262. [Google Scholar] [CrossRef]
- Brundin, T.; Wahren, J. Renal oxygen consumption, thermogenesis, and amino acid utilization during i.v. infusion of amino acids in man. Am. J. Physiol. 1994, 267, E648–E655. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Hall, B. Renal serine production in vivo: Effects of dietary manipulation of serine status. Can. J. Physiol. Pharmacol. 1989, 67, 1058–1061. [Google Scholar] [CrossRef]
- Lowry, M.; Hall, D.E.; Hall, M.S.; Brosnan, J.T. Renal metabolism of amino acids in vivo: Studies on serine and glycine fluxes. Am. J. Physiol. 1987, 252, F304–F309. [Google Scholar] [CrossRef]
- Kalhan, S.C.; Hanson, R.W. Resurgence of serine: An often neglected but indispensable amino acid. J. Biol. Chem. 2012, 287, 19786–19791. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Wu, G.; Sun, Y.; Wang, B.; He, B.; Dai, Z.; Wu, Z. Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. J. Nutr. 2015, 145, 25–31. [Google Scholar] [CrossRef]
- Rothschild, M.A.; Oratz, M.; Mongelli, J.; Fishman, L.; Schreiber, S.S. Amino acid regulation of albumin synthesis. J. Nutr. 1969, 98, 395–403. [Google Scholar] [CrossRef]
- Fiore, A.; Murray, P.J. Tryptophan and indole metabolism in immune regulation. Curr. Opin. Immunol. 2021, 70, 7–14. [Google Scholar] [CrossRef]
- Aquilani, R.; Bolasco, P.; Murtas, S.; Maestri, R.; Iadarola, P.; Testa, C.; Deiana, M.L.; Esposito, M.P.; Contu, R.; Cadeddu, M.; et al. Effects of a metabolic mixture on gut inflammation and permeability in elderly patients with chronic kidney disease: A proof-of-concept study. Metabolites 2022, 12, 987. [Google Scholar] [CrossRef]
- Calder, P.C. Branched-chain amino acids and immunity. J. Nutr. 2006, 136, 288S–293S. [Google Scholar] [CrossRef] [PubMed]
- Cusick, P.K.; Koehler, K.M.; Ferrier, B.; Haskell, B.E. The neurotoxicity of valine deficiency in rats. J. Nutr. 1978, 108, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- García-Espinosa, M.A.; Wallin, R.; Hutson, S.M.; Sweatt, A.J. Widespread neuronal expression of branched-chain aminotransferase in the CNS: Implications for leucine/glutamate metabolism and for signaling by amino acids. J. Neurochem. 2007, 100, 1458–1468. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, S.; Zou, D.; Dong, D.; He, X.; Liu, N.; Liu, W.; Huang, L. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids 2016, 48, 2731–2745. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Raines, L.N.; Ching-Cheng Huang, S. Carbohydrate and Amino Acid Metabolism as Hallmarks for Innate Immune Cell Activation and Function. Cells 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- MacMicking, J.; Xie, Q.W.; Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 1997, 15, 323–350. [Google Scholar] [CrossRef]
- Daly, J.M.; Reynolds, J.; Thom, A.; Kinsley, L.; Dietrick-Gallagher, M.; Shou, J.; Ruggieri, B. Immune and metabolic effects of arginine in the surgical patient. Ann. Surg. 1988, 208, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Kikuta, S.; Asakage, T.; Nakao, K.; Sugasawa, M.; Kubota, A. The aggravating factors of hyperammonemia related to 5-fluorouracil infusion—A report of two cases. Auris Nasus Larynx 2008, 35, 295–299. [Google Scholar] [CrossRef]
- Yeh, K.H.; Cheng, A.L. High-dose 5-fluorouracil infusional therapy is associated with hyperammonaemia, lactic acidosis and encephalopathy. Br. J. Cancer 1997, 75, 464–465. [Google Scholar] [CrossRef]
- Ma, E.H.; Bantug, G.; Griss, T.; Condotta, S.; Johnson, R.M.; Samborska, B.; Mainolfi, N.; Suri, V.; Guak, H.; Balmer, M.L.; et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 2017, 25, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Ron-Harel, N.; Notarangelo, G.; Ghergurovich, J.M.; Paulo, J.A.; Sage, P.T.; Santos, D.; Satterstrom, F.K.; Gygi, S.P.; Rabinowitz, J.D.; Sharpe, A.H.; et al. Defective respiration and one-carbon metabolism contribute to impaired naïve T cell activation in aged mice. Proc. Natl. Acad. Sci. USA 2018, 115, 13347–13352. [Google Scholar] [CrossRef]
- Huehnchen, P.; van Kampen, A.; Boehmerle, W.; Endres, M. Cognitive impairment after cytotoxic chemotherapy. Neurooncol. Pract. 2020, 7, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Vardy, J.; Wefel, J.S.; Ahles, T.; Tannock, I.F.; Schagen, S.B. Cancer and cancer-therapy related cognitive dysfunction: An international perspective from the Venice cognitive workshop. Ann. Oncol. 2008, 19, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Wefel, J.S.; Vardy, J.; Ahles, T.; Schagen, S.B. International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011, 12, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, X.; Miereles, C.; Bailey, J.L.; Debigare, R.; Zheng, B.; Price, S.R.; Mitch, W.E. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J. Clin. Investig. 2004, 113, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Smuder, A.J.; Kavazis, A.N.; Min, K.; Powers, S.K. Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. J. Appl. Physiol. 2011, 110, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, G.; Macciò, A.; Madeddu, C.; Massa, E. Cancer-related cachexia and oxidative stress: Beyond current therapeutic options. Expert Rev. Anticancer Ther. 2003, 3, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Maya-Mendoza, A.; Ostrakova, J.; Kosar, M.; Hall, A.; Duskova, P.; Mistrik, M.; Merchut-Maya, J.M.; Hodny, Z.; Bartkova, J.; Christensen, C.; et al. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol. Oncol. 2015, 9, 601–616. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, R.; Yuan, K.; Yi, T.; Zhao, X.; Huang, C.; Wei, Y. Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis. Mass. Spectrom. Rev. 2013, 32, 267–311. [Google Scholar] [CrossRef]
- Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 2014, 14, 709–721. [Google Scholar] [CrossRef] [PubMed]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [PubMed]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.; et al. ESPEN guideline: Clinical nutrition in surgery. Clin. Nutr. 2017, 36, 623–650. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.J.; Pye, D.; Palomero, J. The production of reactive oxygen and nitrogen species by skeletal muscle. J. Appl. Physiol. 2007, 102, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Conklin, K.A. Chemotherapy-associated oxidative stress: Impact on chemotherapeutic effectiveness. Integr. Cancer Ther. 2004, 3, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.J. Principles of cytotoxic chemotherapy. Medicine 2008, 36, 9–23. [Google Scholar] [CrossRef]
- Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014, 2, 289–295. [Google Scholar] [CrossRef] [PubMed]
- McQuade, R.M.; Stojanovska, V.; Bornstein, J.C.; Nurgali, K. PARP inhibition in platinum-based chemotherapy: Chemopotentiation and neuroprotection. Pharmacol. Res. 2018, 137, 104–113. [Google Scholar] [CrossRef]
- Di Cesare Mannelli, L.; Zanardelli, M.; Failli, P.; Ghelardini, C. Oxaliplatin-induced neuropathy: Oxidative stress as pathological mechanism. Protective effect of silibinin. J. Pain 2012, 13, 276–284. [Google Scholar] [CrossRef]
- Coriat, R.; Alexandre, J.; Nicco, C.; Quinquis, L.; Benoit, E.; Chéreau, C.; Lemaréchal, H.; Mir, O.; Borderie, D.; Tréluyer, J.M.; et al. Treatment of oxaliplatin-induced peripheral neuropathy by intravenous mangafodipir. J. Clin. Investig. 2014, 124, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Falsini, M.; Catarzi, D.; Varano, F.; Ceni, C.; Dal Ben, D.; Marucci, G.; Buccioni, M.; Volpini, R.; Di Cesare Mannelli, L.; Lucarini, E.; et al. Antioxidant-conjugated 1,2,4-triazolo[4,3-a]pyrazin-3-one derivatives: Highly potent and selective human A2A adenosine receptor antagonists possessing protective efficacy in neuropathic pain. J. Med. Chem. 2019, 62, 8511–8531. [Google Scholar] [CrossRef] [PubMed]
- Donald, E.L.; Stojanovska, L.; Apostolopoulos, V.; Nurgali, K. Resveratrol alleviates oxidative damage in enteric neurons and associated gastrointestinal dysfunction caused by chemotherapeutic agent oxaliplatin. Maturitas 2017, 105, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Alardín, A.L.; Varon, J.; Marik, P.E. Bench-to-bedside review: Rhabdomyolysis—An overview for clinicians. Crit. Care 2005, 9, 158–169. [Google Scholar] [CrossRef]
- Sharp, L.S.; Rozycki, G.S.; Feliciano, D.V. Rhabdomyolysis and secondary renal failure in critically ill surgical patients. Am. J. Surg. 2004, 188, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Sobrero, A.F.; Shields, A.F.; Yoshino, T.; Paul, J.; Taieb, J.; Souglakos, J.; Shi, Q.; Kerr, R.; Labianca, R.; et al. Duration of adjuvant chemotherapy for stage III colon cancer. N. Engl. J. Med. 2018, 378, 1177–1188. [Google Scholar] [CrossRef]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. (Eds.) TNM Classification of Malignant Tumours, 8th ed.; John Wiley & Sons, Inc.: Oxford, UK, 2016. [Google Scholar]
- Aquilani, R.; Brugnatelli, S.; Dossena, M.; Maestri, R.; Delfanti, S.; Buonocore, D.; Boschi, F.; Simeti, E.; Condino, A.M.; Verri, M. Oxaliplatin-fluoropyrimidine combination (XELOX) therapy does not affect plasma amino acid levels and plasma markers of oxidative stress in colorectal cancer surgery patients: A pilot study. Nutrients 2019, 11, 2667. [Google Scholar] [CrossRef]
Variable | TA XELOX (N = 5) | TA FOLFOX (N = 9) | p Value |
---|---|---|---|
Gender (M) | 5 (100%) | 6 (66.7%) | |
Age (years) | 63.8 ± 5.9 | 57.6 ± 9.2 | |
Body weight (kg) | 70.0 ± 9.4 | 68.6 ± 12.5 | |
Body mass index (kg/m2) | 23.6 ± 4.7 | 23.1 ± 4.1 | |
Malondialdehyde (NV 1.86–3.94 μmol/L) | 6.45 ± 2.30 | 9.90 ± 2.92 | 0.037 |
Albumin (NV 3500–5200 mg/dL) | 3634 ± 223 | 3448 ± 552 | |
Creatinine (NV: M 0.73–1.18 mg/dL; F 0.55–1.02 mg/dL) | 0.91 ± 0.32 | 0.78 ± 0.18 | |
Hemoglobin (NV: M 13.2–17.3 g/dL; F 11.7–15.5 g/dL) | 12.5 ± 2.1 | 12.0 ± 2.3 | |
Red blood cell count (NV: M 4.30–5.70 × 106/µL; F 3.80–5.20 × 106/µL) | 4.38 ± 0.30 | 4.36 ± 0.74 | |
Hematocrit (NV: M 39.0–49.0%; F 35.0–45.0%) | 38.7 ± 5.4 | 36.7 ± 6.0 | |
Mean corpuscular volume (NV 82.0–98.0 fL) | 88.5 ± 11.8 | 84.7 ± 9.6 | |
Mean hemoglobin content (NV 27.0–32.0 pg) | 28.6 ± 4.5 | 27.7 ± 4.0 | |
Total white blood cells (TWBC, NV 4.00–10.00 × 103/µL) | 7.04 ± 0.88 | 7.75 ± 3.19 | |
Neutrophil count (NV 2.0–8.0 × 103/µL) | 4.50 ± 0.73 | 5.38 ± 2.88 | |
Neutrophils % TWBC | 63.8 ± 2.9 | 67.2 ± 9.9 | |
Lymphocyte count (NV 1.5–4.0 × 103/µL) | 1.62 ± 0.16 | 1.56 ± 0.76 | |
Lymphocytes % TWBC | 23.1 ± 1.8 | 21.2 ± 9.7 | |
Neutrophil/Lymphocyte ratio | 2.77 ± 0.29 | 3.93 ± 2.08 | |
Monocyte count (NV 0.1–1.0 × 103/µL) | 0.54 ± 0.05 | 0.59 ± 0.12 | |
Monocytes % TWBC | 7.86 ± 1.62 | 8.52 ± 2.93 | |
Eosinophil count (NV 0.1–0.5 × 103/µL) | 0.34 ± 0.09 | 0.19 ± 0.17 | 0.029 |
Eosinophils % TWBC | 4.64 ± 1.19 | 2.33 ± 1.89 | 0.038 |
Basophil count (NV 0.0–0.2 × 103/µL) | 0.02 ± 0.04 | 0.06 ± 0.05 | |
Basophils % TWBC | 0.36 ± 0.61 | 0.42 ± 0.42 | |
Platelet count (NV 150–450 × 103/µL) | 366.0 ± 160.4 | 345.3 ± 193.9 | |
Total bilirubin (NV 0.20–1.10 mg/dL) | 0.37 ± 0.19 | 0.53 ± 0.24 | |
ɣ-glutamyl transpeptidase (NV 11–53 mU/mL) | 33.8 ± 8.8 | 51.4 ± 33.9 | |
Alanine transaminase (NV 11–34 mU/mL) | 16.0 ± 4.8 | 20.8 ± 8.6 | |
Aspartate transaminase (NV 11–39 mU/mL) | 10.7 ± 5.7 | 18.9 ± 7.7 |
Variable | XELOXs TA (N = 5) | FOLFOXs TA (N = 9) | Controls TA (N = 15) | p Value | p XELOXs vs. FOLFOXs | p XELOXs vs. Controls | p FOLFOXs vs. Controls |
---|---|---|---|---|---|---|---|
Aspartic acid | 9.44 ± 2.42 | 7.60 ± 3.63 | 8.87 ± 2.83 | 0.64 | |||
Glutamic acid | 137.1 ± 27.9 | 140.1 ± 27.3 | 117.2 ± 41.0 | 0.29 | |||
Asparagine | 41.0 ± 13.0 | 59.0 ± 21.3 | 46.4 ± 15.3 | 0.24 | |||
Serine | 39.3 ± 13.3 | 45.4 ± 11.0 | 42.0 ± 13.9 | 0.67 | |||
Glutamine | 329.6 ± 160.7 | 246.6 ± 64.6 | 169.0 ± 132.7 | 0.040 | 0.70 | 0.057 | 0.19 |
Histidine | 96.9 ± 24.2 | 125.0 ± 43.5 | 56.1 ± 54.8 | 0.0005 | 0.85 | 0.046 | 0.0008 |
Glycine | 120.9 ± 33.6 | 128.8 ± 63.6 | 157.1 ± 48.7 | 0.16 | |||
Threonine | 77.7 ± 32.1 | 86.9 ± 23.6 | 102.8 ± 48.0 | 0.45 | |||
Citrulline | 18.1 ± 7.9 | 20.1 ± 5.8 | N.A. | 0.55 | |||
Alanine | 317.5 ± 78.8 | 344.0 ± 101.2 | 266.8 ± 76.8 | 0.18 | |||
Arginine | 55.3 ± 13.8 | 64.6 ± 19.1 | 64.4 ± 16.2 | 0.54 | |||
Tyrosine | 48.4 ± 12.6 | 63.6 ± 16.2 | 48.4 ± 17.5 | 0.09 | |||
Tryptophan | 48.3 ± 15.4 | 51.6 ± 10.8 | 32.7 ± 7.6 | 0.001 | 0.92 | 0.047 | 0.002 |
Phenylalanine | 47.2 ± 7.8 | 53.3 ± 11.0 | 42.1 ± 13.2 | 0.053 | 0.75 | 0.47 | 0.046 |
Isoleucine | 58.8 ± 13.0 | 63.1 ± 13.5 | 43.6 ± 11.3 | 0.005 | 0.95 | 0.09 | 0.008 |
Leucine | 92.5 ± 23.6 | 103.3 ± 26.0 | 74.2 ± 18.5 | 0.019 | 0.81 | 0.27 | 0.018 |
Lysine | 101.3 ± 43.6 | 126.3 ± 34.6 | 88.0 ± 27.7 | 0.045 | 0.41 | 0.79 | 0.034 |
Ornithine | 106.2 ± 29.2 | 89.7 ± 22.5 | N.A. | 0.26 | |||
Cysteine | 179.9 ± 66.8 | 182.4 ± 77.6 | 148.1 ± 47.0 | 0.60 | |||
Valine | 174.0 ± 42.6 | 195.5 ± 46.4 | 149.6 ± 25.0 | 0.026 | 0.60 | 0.48 | 0.020 |
Methionine | 21.5 ± 7.2 | 29.4 ± 7.3 | 21.4 ± 7.3 | 0.054 | 0.26 | 0.97 | 0.048 |
Phenylalanine/Tyrosine | 1.01 ± 0.23 | 0.87 ± 0.24 | 0.89 ± 0.11 | 0.44 | |||
Tyrosine/Leucine | 0.54 ± 0.14 | 0.62 ± 0.09 | 0.66 ± 0.21 | 0.39 | |||
EAAs | 718.3 ± 183.3 | 834.4 ± 163.2 | 610.6 ± 146.4 | 0.024 | 0.56 | 0.51 | 0.018 |
BCAAs | 325.4 ± 77.0 | 361.9 ± 83.5 | 267.4 ± 52.8 | 0.012 | 0.77 | 0.25 | 0.012 |
NEAAs | 1409.2 ± 384.0 | 1397.5 ± 310.0 | 1274.8 ± 256.6 | 0.60 | |||
EAAs/TAAs | 0.34 ± 0.05 | 0.38 ± 0.03 | 0.32 ± 0.04 | 0.025 | 0.40 | 0.68 | 0.018 |
BCAAs/TAAs | 0.15 ± 0.02 | 0.16 ± 0.02 | 0.14 ± 0.02 | 0.064 | |||
BCAAs/EAAs | 0.45 ± 0.02 | 0.43 ± 0.05 | 0.44 ± 0.05 | 0.61 | |||
(Gln+Ala)/BCAAs | 2.00 ± 0.56 | 1.66 ± 0.39 | 1.65 ± 0.51 | 0.34 | |||
NEAAs/TAAs | 0.66 ± 0.05 | 0.62 ± 0.03 | 0.68 ± 0.04 | 0.025 | 0.40 | 0.68 | 0.018 |
Arginine/TAAs | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.08 |
Variable | TA Males (N = 11) | TA Females (N = 3) | p Value |
---|---|---|---|
Age (years) | 60.5 ± 6.6 | 57.0 ± 15.5 | 0.86 |
Body weight (kg) | 70.9 ± 11.7 | 62.3 ± 6.1 | 0.24 |
Body mass index (kg/m2) | 23.7 ± 4.5 | 21.5 ± 2.5 | 0.46 |
Malondialdehyde (NV 1.86–3.94 μmol/L) | 8.02 ± 2.76 | 11.06 ± 3.83 | 0.16 |
Albumin (NV 3500–5200 mg/dL) | 3581.3 ± 420.6 | 2862.0 ± 0.0 | 0.36 |
Creatinine (NV: M 0.73–1.18 mg/dL; F 0.55–1.02 mg/dL) | 0.88 ± 0.24 | 0.65 ± 0.05 | 0.08 |
Hemoglobin (NV: M 13.2–17.3 g/dL; F 11.7–15.5 g/dL) | 12.4 ± 2.4 | 11.2 ± 0.3 | 0.17 |
Red blood cell count (NV: M 4.30–5.70 × 106/µL; F 3.80–5.20 × 106/µL) | 4.44 ± 0.63 | 4.08 ± 0.46 | 0.28 |
Hematocrit (NV: M 39.0–49.0%; F 35.0–45.0%) | 38.3 ± 6.2 | 34.3 ± 1.0 | 0.13 |
Mean corpuscular volume (NV 82.0–98.0 fL) | 86.5 ± 11.1 | 84.5 ± 6.9 | 0.55 |
Mean hemoglobin content (NV 27.0–32.0 pg) | 28.1 ± 4.4 | 27.7 ± 3.0 | 0.88 |
Total white blood cells (TWBC, NV 4.00–10.00 × 103/µL) | 7.20 ± 2.10 | 8.58 ± 4.32 | 0.77 |
Neutrophil count (NV 2.0–8.0 × 103/µL) | 4.73 ± 1.78 | 6.30 ± 4.09 | 0.77 |
Neutrophils % TWBC | 64.7 ± 7.4 | 70.6 ± 10.6 | 0.46 |
Lymphocyte count (NV 1.5–4.0 × 103/µL) | 1.60 ± 0.61 | 1.50 ± 0.69 | 0.80 |
Lymphocytes % TWBC | 22.9 ± 7.8 | 18.2 ± 7.7 | 0.46 |
Neutrophil/Lymphocyte ratio | 3.28 ± 1.71 | 4.40 ± 1.88 | 0.45 |
Monocyte count (NV 0.1–1.0 × 103/µL) | 0.57 ± 0.11 | 0.57 ± 0.06 | 1.00 |
Monocytes % TWBC | 8.36 ± 2.30 | 8.00 ± 3.70 | 0.86 |
Eosinophil count (NV 0.1–0.5 × 103/µL) | 0.27 ± 0.16 | 0.13 ± 0.12 | 0.26 |
Eosinophils % TWBC | 3.34 ± 1.97 | 2.50 ± 2.33 | 0.60 |
Basophil count (NV 0.0–0.2 × 103/µL) | 0.04 ± 0.05 | 0.07 ± 0.06 | 0.77 |
Basophils % TWBC | 0.35 ± 0.48 | 0.57 ± 0.51 | 0.54 |
Platelet count (NV 150–450 × 103/µL) | 334.5 ± 172.1 | 419.7 ± 214.2 | 0.66 |
Total bilirubin (NV 0.20–1.10 mg/dL) | 0.48 ± 0.26 | 0.46 ± 0.10 | 0.79 |
ɣ-glutamyl transpeptidase (NV 11–53 mU/mL) | 48.4 ± 30.7 | 24.5 ± 10.6 | 0.23 |
Alanine transaminase (NV 11–34 mU/mL) | 19.3 ± 8.4 | 18.3 ± 4.7 | 1.00 |
Aspartate transaminase (NV 11–39 mU/mL) | 16.3 ± 9.1 | 16.0 ± 1.4 | 1.00 |
Variable | TA Males (N = 11) | TA Females (N = 3) | p Value |
---|---|---|---|
Aspartic acid | 8.29 ± 2.25 | 8.14 ± 6.68 | 0.55 |
Glutamic acid | 137.0 ± 24.7 | 146.5 ± 37.5 | 0.55 |
Asparagine | 49.2 ± 18.7 | 65.1 ± 25.4 | 0.29 |
Serine | 39.6 ± 10.1 | 56.4 ± 7.2 | 0.022 |
Glutamine | 278.3 ± 122.4 | 268.7 ± 66.2 | 1.00 |
Histidine | 101.7 ± 32.4 | 163.7 ± 15.2 | 0.011 |
Glycine | 110.4 ± 32.0 | 183.0 ± 84.6 | 0.09 |
Threonine | 77.9 ± 21.6 | 104.9 ± 35.1 | 0.37 |
Citrulline | 19.2 ± 6.5 | 19.9 ± 7.4 | 0.77 |
Alanine | 318.4 ± 89.3 | 393.7 ± 89.3 | 0.17 |
Arginine | 60.9 ± 17.1 | 62.6 ± 22.9 | 1.00 |
Tyrosine | 56.9 ± 16.8 | 62.9 ± 17.1 | 0.55 |
Tryptophan | 49.7 ± 12.8 | 53.2 ± 10.8 | 0.88 |
Phenylalanine | 48.5 ± 9.5 | 60.8 ± 5.3 | 0.09 |
Isoleucine | 59.1 ± 13.6 | 70.7 ± 4.7 | 0.17 |
Leucine | 96.9 ± 26.4 | 108.9 ± 18.9 | 0.37 |
Lysine | 110.5 ± 38.7 | 142.4 ± 30.6 | 0.29 |
Ornithine | 92.7 ± 26.3 | 106.3 ± 22.1 | 0.46 |
Cysteine | 161.7 ± 48.4 | 254.1 ± 106.1 | 0.022 |
Valine | 186.4 ± 48.1 | 193.0 ± 36.5 | 0.66 |
Methionine | 24.9 ± 7.1 | 32.7 ± 9.6 | 0.29 |
Phenylalanine/Tyrosine | 0.90 ± 0.25 | 1.00 ± 0.23 | 0.55 |
Tyrosine/Leucine | 0.60 ± 0.12 | 0.57 ± 0.06 | 0.77 |
EAAs | 755.5 ± 174.6 | 930.3 ± 83.6 | 0.13 |
BCAAs | 342.4 ± 86.5 | 372.6 ± 58.0 | 0.46 |
NEAAs | 1338.5 ± 307.4 | 1633.4 ± 323.5 | 0.13 |
EAAs/TAAs | 0.36 ± 0.04 | 0.37 ± 0.06 | 0.88 |
BCAAs/TAAs | 0.16 ± 0.02 | 0.15 ± 0.03 | 0.46 |
BCAAs/EAAs | 0.45 ± 0.04 | 0.40 ± 0.03 | 0.060 |
(Gln+Ala)/BCAAs | 1.76 ± 0.43 | 1.84 ± 0.66 | 0.88 |
NEAAs/TAAs | 0.64 ± 0.04 | 0.63 ± 0.06 | 0.88 |
Arginine/TAAs | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.46 |
Variable | TA Males (N = 11) | TA Females (N = 3) | p Value |
---|---|---|---|
Aspartic acid/creatinine | 10.0 ± 3.4 | 12.5 ± 10.6 | 0.66 |
Glutamic acid/creatinine | 167.6 ± 59.3 | 226.2 ± 55.6 | 0.17 |
Asparagine/creatinine | 62.8 ± 36.2 | 99.4 ± 33.0 | 0.17 |
Serine/creatinine | 49.2 ± 21.3 | 87.9 ± 16.6 | 0.038 |
Glutamine/creatinine | 339.8 ± 168.3 | 419.5 ± 121.7 | 0.46 |
Histidine/creatinine | 125.7 ± 56.8 | 253.2 ± 16.5 | 0.011 |
Glycine/creatinine | 132.1 ± 42.0 | 285.7 ± 142.0 | 0.022 |
Threonine/creatinine | 96.7 ± 42.0 | 165.2 ± 63.5 | 0.038 |
Citrulline/creatinine | 21.9 ± 4.5 | 31.4 ± 13.1 | 0.29 |
Alanine/creatinine | 389.6 ± 157.9 | 611.8 ± 155.4 | 0.060 |
Arginine/creatinine | 75.7 ± 33.9 | 97.3 ± 38.4 | 0.23 |
Tyrosine/creatinine | 71.7 ± 34.2 | 97.9 ± 29.9 | 0.29 |
Tryptophan/creatinine | 61.6 ± 27.9 | 82.1 ± 14.2 | 0.13 |
Phenylalanine/creatinine | 59.5 ± 21.6 | 94.7 ± 14.2 | 0.022 |
Isoleucine/creatinine | 72.9 ± 29.8 | 109.9 ± 14.1 | 0.09 |
Leucine/creatinine | 121.4 ± 58.7 | 169.0 ± 32.7 | 0.13 |
Lysine/creatinine | 142.7 ± 86.8 | 219.9 ± 44.8 | 0.17 |
Ornithine/creatinine | 116.2 ± 61.6 | 166.4 ± 43.8 | 0.09 |
Cysteine/creatinine | 191.7 ± 50.6 | 398.2 ± 182.7 | 0.011 |
Valine/creatinine | 232.9 ± 110.2 | 300.4 ± 68.2 | 0.13 |
Methionine/creatinine | 24.9 ± 7.1 | 32.7 ± 9.6 | 0.29 |
EAAs/creatinine | 944.7 ± 429.7 | 1445.1 ± 187.1 | 0.09 |
BCAAs/creatinine | 427.2 ± 197.9 | 579.4 ± 110.8 | 0.13 |
NEAAs/creatinine | 1634.4 ± 576.6 | 2543.6 ± 604.2 | 0.060 |
TAAs/creatinine | 2579.1 ± 989.3 | 3988.8 ± 615.7 | 0.09 |
Variable | TA XELOX | TA FOLFOX | TB XELOX | TB FOLFOX | TC XELOX | TC FOLFOX | p-Time | p-Group | p-Group x Time Interaction |
---|---|---|---|---|---|---|---|---|---|
Body weight (kg) | 70.0 ± 9.4 | 68.6 ± 12.5 | 71.6 ± 8.6 | 68.0 ± 13.1 | 72.0 ± 8.7 | 69.0 ± 12.8 | 0.10 | 0.69 | 0.15 |
Body mass index (kg/m2) | 23.6 ± 4.7 | 23.1 ± 4.1 | 24.1 ± 4.4 | 22.9 ± 4.3 | 24.2 ± 4.6 | 23.2 ± 4.1 | 0.11 | 0.71 | 0.15 |
Creatinine (mg/dL) | 0.91 ± 0.32 | 0.78 ± 0.18 | 0.89 ± 0.22 | 0.78 ± 0.22 | 0.97 ± 0.21 | 0.79 ± 0.15 | 0.38 | 0.24 | 0.54 |
Variable | TA XELOXs | TA FOLFOXs | TB XELOXs | TB FOLFOXs | TC XELOXs | TC FOLFOXs | p-Time | p-Group | p-Group x Time Interaction |
---|---|---|---|---|---|---|---|---|---|
Aspartic acid | 9.44 ± 2.42 | 8.21 ± 3.95 | 9.98 ± 1.34 | 6.85 ± 3.51 | 10.18 ± 3.29 | 6.51 ± 2.75 | 0.84 | 0.09 | 0.37 |
Glutamic acid | 137.1 ± 27.9 | 147.1 ± 31.4 | 160.6 ± 34.5 | 148.8 ± 25.5 | 164.5 ± 46.8 | 136.2 ± 29.6 | 0.50 | 0.45 | 0.22 |
Asparagine | 41.0 ± 13.0 | 55.7 ± 19.0 | 49.9 ± 17.7 | 52.5 ± 16.2 | 62.5 ± 25.2 | 47.8 ± 14.4 | 0.54 | 0.90 | 0.070 |
Serine | 39.3 ± 13.3 | 46.0 ± 11.2 | 47.2 ± 17.5 | 37.2 ± 10.0 | 48.3 ± 12.8 | 33.7 ± 7.9 | 0.90 | 0.25 | 0.019 |
Glutamine | 329.6 ± 160.7 | 275.6 ± 111.4 | 423.9 ± 174.2 | 264.6 ± 135.9 | 431.4 ± 149.7 | 265.5 ± 130.7 | 0.23 | 0.10 | 0.11 |
Histidine | 96.9 ± 24.2 | 126.9 ± 42.3 | 128.4 ± 62.1 | 137.7 ± 32.8 | 132.4 ± 44.5 | 125.0 ± 40.8 | 0.19 | 0.58 | 0.31 |
Glycine | 120.9 ± 33.6 | 136.3 ± 62.1 | 155.0 ± 48.6 | 143.2 ± 42.0 | 150.2 ± 28.6 | 138.0 ± 46.9 | 0.29 | 0.90 | 0.50 |
Threonine | 77.7 ± 32.1 | 88.5 ± 24.2 | 88.8 ± 30.7 | 92.2 ± 38.9 | 94.8 ± 23.2 | 75.2 ± 17.7 | 0.64 | 0.89 | 0.16 |
Citrulline | 18.1 ± 7.9 | 21.4 ± 5.8 | 23.0 ± 7.8 | 17.4 ± 8.0 | 26.2 ± 12.0 | 17.1 ± 8.3 | 0.67 | 0.33 | 0.029 |
Alanine | 317.5 ± 78.8 | 371.5 ± 98.1 | 421.0 ± 134.9 | 335.3 ± 91.8 | 469.5 ± 196.5 | 287.4 ± 78.4 | 0.69 | 0.062 | 0.045 |
Arginine | 55.3 ± 13.8 | 65.1 ± 19.7 | 65.2 ± 28.5 | 51.2 ± 17.9 | 50.5 ± 12.3 | 38.8 ± 16.5 | 0.016 | 0.54 | 0.068 |
Tyrosine | 48.4 ± 12.6 | 64.3 ± 16.0 | 57.1 ± 17.5 | 48.4 ± 12.9 | 75.1 ± 29.3 | 49.8 ± 18.2 | 0.35 | 0.36 | 0.016 |
Tryptophan | 48.3 ± 15.4 | 55.4 ± 12.2 | 62.7 ± 15.5 | 45.1 ± 9.3 | 65.5 ± 13.2 | 43.0 ± 9.2 | 0.85 | 0.023 | 0.007 |
Phenylalanine | 47.2 ± 7.8 | 56.9 ± 11.3 | 60.0 ± 6.6 | 50.1 ± 12.1 | 74.6 ± 25.9 | 51.3 ± 12.9 | 0.11 | 0.12 | 0.013 |
Isoleucine | 58.8 ± 13.0 | 67.9 ± 16.0 | 62.4 ± 16.8 | 53.4 ± 19.1 | 76.7 ± 30.0 | 44.9 ± 12.4 | 0.71 | 0.13 | 0.017 |
Leucine | 92.5 ± 23.6 | 110.8 ± 31.7 | 93.7 ± 33.6 | 79.1 ± 26.5 | 116.4 ± 53.0 | 59.9 ± 19.0 | 0.25 | 0.21 | 0.003 |
Lysine | 101.3 ± 43.6 | 127.9 ± 34.9 | 136.7 ± 77.7 | 109.4 ± 31.6 | 145.7 ± 83.1 | 80.2 ± 17.5 | 0.74 | 0.31 | 0.010 |
Ornithine | 106.2 ± 29.2 | 97.7 ± 21.4 | 129.7 ± 40.6 | 80.7 ± 18.9 | 137.4 ± 40.6 | 69.3 ± 13.1 | 0.93 | 0.002 | 0.006 |
Cysteine | 179.9 ± 66.8 | 198.4 ± 78.6 | 197.6 ± 46.6 | 213.0 ± 72.5 | 193.0 ± 47.6 | 196.8 ± 65.8 | 0.65 | 0.70 | 0.90 |
Valine | 174.0 ± 42.6 | 208.1 ± 51.4 | 186.6 ± 60.8 | 160.5 ± 50.0 | 226.0 ± 98.9 | 122.6 ± 27.2 | 0.55 | 0.18 | 0.003 |
Methionine | 21.5 ± 7.2 | 29.9 ± 7.4 | 29.4 ± 9.0 | 27.1 ± 9.0 | 35.9 ± 14.1 | 26.1 ± 8.6 | 0.28 | 0.73 | 0.034 |
Tyrosine/Leucine | 0.54 ± 0.14 | 0.60 ± 0.12 | 0.64 ± 0.17 | 0.65 ± 0.14 | 0.70 ± 0.26 | 0.87 ± 0.37 | 0.032 | 0.39 | 0.58 |
Phenylalanine/Tyrosine | 1.01 ± 0.23 | 0.93 ± 0.25 | 1.10 ± 0.19 | 1.09 ± 0.36 | 1.01 ± 0.17 | 1.10 ± 0.30 | 0.08 | 1.00 | 0.30 |
TAAs | 2128 ± 518 | 2366 ± 498 | 2596 ± 743 | 2160 ± 504 | 2791 ± 750 | 1920 ± 396 | 0.78 | 0.10 | 0.034 |
EAAs | 718 ± 183 | 872 ± 172 | 849 ± 289 | 755 ± 179 | 968 ± 351 | 628 ± 105 | 1.00 | 0.26 | 0.009 |
BCAAs | 325.4 ± 77.0 | 386.8 ± 97.0 | 342.7 ± 110.7 | 293.0 ± 93.0 | 419.1 ± 180.5 | 227.4 ± 56.4 | 0.48 | 0.17 | 0.004 |
(Gln+Ala)/BCAAs | 2.00 ± 0.56 | 1.66 ± 0.39 | 2.52 ± 0.66 | 2.08 ± 0.85 | 2.26 ± 0.46 | 2.26 ± 0.53 | 0.012 | 0.38 | 0.35 |
NEAAs | 1409 ± 384 | 1493 ± 359 | 1747 ± 482 | 1406 ± 363 | 1823 ± 426 | 1292 ± 323 | 0.59 | 0.10 | 0.07 |
Variable | TA Males (N = 6) | TA Females (N = 3) | TB Males (N = 6) | TB Females (N = 3) | TC Males (N = 6) | TC Females (N = 3) | p-Time | p-Gender | p-Gender x Time Interaction |
---|---|---|---|---|---|---|---|---|---|
Aspartic acid | 7.42 ± 1.92 | 8.14 ± 6.68 | 6.59 ± 3.88 | 4.96 ± 3.21 | 6.42 ± 3.71 | 6.23 ± 1.36 | 0.33 | 0.78 | 0.33 |
Glutamic acid | 138.9 ± 26.7 | 146.5 ± 37.5 | 149.4 ± 30.2 | 131.8 ± 4.5 | 136.0 ± 40.7 | 132.1 ± 8.7 | 0.65 | 0.63 | 0.39 |
Asparagine | 50.2 ± 17.3 | 65.1 ± 25.4 | 49.0 ± 14.3 | 40.2 ± 3.8 | 46.5 ± 11.7 | 48.3 ± 23.3 | 0.16 | 0.94 | 0.08 |
Serine | 38.6 ± 8.2 | 56.4 ± 7.2 | 34.8 ± 8.0 | 34.7 ± 8.2 | 30.7 ± 7.0 | 36.1 ± 9.1 | 0.001 | 0.14 | 0.038 |
Glutamine | 231.2 ± 74.0 | 268.7 ± 66.2 | 225.1 ± 72.5 | 196.7 ± 72.8 | 243.5 ± 80.9 | 202.4 ± 57.1 | 0.43 | 0.73 | 0.22 |
Histidine | 108.4 ± 44.0 | 163.7 ± 15.2 | 138.9 ± 41.2 | 137.2 ± 29.1 | 119.4 ± 52.1 | 135.8 ± 31.2 | 0.69 | 0.40 | 0.12 |
Glycine | 104.3 ± 33.7 | 183.0 ± 84.6 | 138.8 ± 47.4 | 139.6 ± 43.2 | 127.7 ± 53.2 | 148.2 ± 49.9 | 0.92 | 0.36 | 0.056 |
Threonine | 76.0 ± 10.5 | 104.9 ± 35.1 | 87.9 ± 42.4 | 80.3 ± 40.8 | 70.7 ± 17.2 | 76.9 ± 21.2 | 0.30 | 0.68 | 0.19 |
Citrulline | 21.3 ± 5.6 | 19.9 ± 7.4 | 17.2 ± 8.5 | 10.9 ± 3.6 | 18.6 ± 8.2 | 11.6 ± 6.8 | 0.10 | 0.20 | 0.25 |
Alanine | 338.2 ± 105.0 | 393.7 ± 89.3 | 318.7 ± 82.2 | 253.5 ± 8.4 | 290.4 ± 97.4 | 260.3 ± 47.5 | 0.13 | 0.53 | 0.20 |
Arginine | 62.6 ± 20.0 | 62.6 ± 22.9 | 51.1 ± 22.3 | 46.6 ± 15.5 | 34.7 ± 13.1 | 41.3 ± 24.7 | 0.009 | 0.99 | 0.58 |
Tyrosine | 65.4 ± 19.0 | 62.9 ± 17.1 | 48.4 ± 8.1 | 41.1 ± 20.1 | 52.5 ± 20.4 | 47.9 ± 20.8 | 0.08 | 0.55 | 0.80 |
Tryptophan | 53.0 ± 11.7 | 53.2 ± 10.8 | 43.8 ± 7.2 | 36.6 ± 7.5 | 45.5 ± 11.0 | 36.6 ± 1.0 | 0.046 | 0.17 | 0.44 |
Phenylalanine | 51.5 ± 11.5 | 60.8 ± 5.3 | 49.5 ± 15.3 | 45.3 ± 7.7 | 51.0 ± 17.0 | 51.6 ± 9.3 | 0.34 | 0.89 | 0.32 |
Isoleucine | 61.1 ± 16.4 | 70.7 ± 4.7 | 51.3 ± 14.2 | 32.5 ± 6.8 | 48.7 ± 13.8 | 40.0 ± 12.5 | 0.004 | 0.23 | 0.011 |
Leucine | 102.1 ± 33.5 | 108.9 ± 18.9 | 76.3 ± 17.6 | 59.8 ± 35.4 | 60.1 ± 20.4 | 61.1 ± 24.3 | 0.00049 | 0.71 | 0.15 |
Lysine | 117.1 ± 40.4 | 142.4 ± 30.6 | 107.0 ± 14.7 | 104.1 ± 57.8 | 76.6 ± 14.7 | 81.5 ± 25.8 | 0.009 | 0.64 | 0.54 |
Ornithine | 86.7 ± 15.7 | 106.3 ± 22.1 | 78.2 ± 11.4 | 65.5 ± 23.7 | 72.1 ± 13.3 | 60.7 ± 11.4 | 0.006 | 0.61 | 0.052 |
Cysteine | 151.3 ± 21.2 | 254.1 ± 106.1 | 208.1 ± 88.8 | 199.8 ± 64.9 | 178.2 ± 68.9 | 212.4 ± 74.4 | 0.89 | 0.40 | 0.08 |
Valine | 203.6 ± 57.2 | 193.0 ± 36.5 | 156.9 ± 37.8 | 117.5 ± 54.5 | 126.5 ± 33.5 | 115.3 ± 24.3 | 0.0009 | 0.32 | 0.18 |
Methionine | 27.7 ± 7.0 | 32.7 ± 9.6 | 26.7 ± 7.9 | 19.9 ± 9.2 | 28.1 ± 8.7 | 23.7 ± 11.2 | 0.32 | 0.52 | 0.10 |
EAAs | 800.5 ± 194.9 | 930.3 ± 83.6 | 738.3 ± 138.8 | 633.3 ± 232.3 | 626.6 ± 106.7 | 622.6 ± 145.5 | 0.012 | 0.87 | 0.12 |
BCAAs | 366.7 ± 106.5 | 372.6 ± 58.0 | 284.5 ± 68.4 | 209.8 ± 96.3 | 235.3 ± 66.0 | 216.4 ± 60.5 | 0.0007 | 0.40 | 0.10 |
NEAAs | 1302 ± 271 | 1633 ± 324 | 1331 ± 331 | 1170 ± 208 | 1243 ± 357 | 1210 ± 157 | 0.21 | 0.93 | 0.12 |
TAAs | 2103 ± 464 | 2564 ± 267 | 2069 ± 462 | 1803 ± 348 | 1870 ± 449 | 1832 ± 271 | 0.07 | 1.00 | 0.11 |
MDA | 9.64 ± 2.73 | 11.06 ± 3.83 | 8.61 ± 0.89 | 10.00 ± 5.92 | 7.18 ± 0.53 | 9.39 ± 4.51 | 0.041 | 0.39 | 0.82 |
Variable | TA XELOX | TA FOLFOX | TB XELOX | TB FOLFOX | TC XELOX | TC FOLFOX | p-Time | p-Group | p-Group x Time Interaction |
---|---|---|---|---|---|---|---|---|---|
MDA (NV 1.86–3.94 μmol/L) | 6.45 ± 2.30 | 9.90 ± 2.92 | 6.63 ± 0.56 | 8.31 ± 3.34 | 6.09 ± 2.11 | 8.00 ± 2.52 | 0.18 | 0.09 | 0.29 |
Variable | TA XELOX | TC XELOX | TA FOLFOX | TC FOLFOX | Δ (TC−TA) XELOX | Δ (TC−TA) FOLFOX | p TC vs. TA XELOX | p TC vs. TA FOLFX |
---|---|---|---|---|---|---|---|---|
Aspartic acid | 9.44 ± 2.42 | 10.18 ± 3.29 | 8.21 ± 3.95 | 6.51 ± 2.75 | 0.74 ± 3.58 | −1.70 ± 3.49 | 1.00 | 0.25 |
Glutamic acid | 137.1 ± 27.9 | 164.5 ± 46.8 | 147.1 ± 31.4 | 136.2 ± 29.6 | 27.5 ± 37.4 | −10.9 ± 41.7 | 0.31 | 0.50 |
Asparagine | 41.0 ± 13.0 | 62.5 ± 25.2 | 55.7 ± 19.0 | 47.8 ± 14.4 | 21.5 ± 27.1 | −7.9 ± 11.4 | 0.13 | 0.055 |
Serine | 39.3 ± 13.3 | 48.3 ± 12.8 | 46.0 ± 11.2 | 33.7 ± 7.9 | 9.0 ± 15.7 | −12.2 ± 11.0 | 0.31 | 0.020 |
Glutamine | 329.6 ± 160.7 | 431.4 ± 149.7 | 275.6 ± 111.4 | 265.5 ± 130.7 | 101.8 ± 101.2 | −10.1 ± 80.9 | 0.063 | 0.82 |
Histidine | 96.9 ± 24.2 | 132.4 ± 44.5 | 126.9 ± 42.3 | 125.0 ± 40.8 | 35.5 ± 43.3 | −1.9 ± 41.6 | 0.063 | 0.91 |
Glycine | 120.9 ± 33.6 | 150.2 ± 28.6 | 136.3 ± 62.1 | 138.0 ± 46.9 | 29.3 ± 37.4 | 1.8 ± 47.5 | 0.063 | 0.91 |
Threonine | 77.7 ± 32.1 | 94.8 ± 23.2 | 88.5 ± 24.2 | 75.2 ± 17.7 | 17.1 ± 31.0 | −13.3 ± 19.5 | 0.31 | 0.10 |
Citrulline | 18.1 ± 7.9 | 26.2 ± 12.0 | 21.4 ± 5.8 | 17.1 ± 8.3 | 8.2 ± 9.7 | −4.3 ± 7.2 | 0.13 | 0.10 |
Alanine | 317.5 ± 78.8 | 469.5 ± 196.5 | 371.5 ± 98.1 | 287.4 ± 78.4 | 151.9 ± 246.5 | −84.0 ± 133.1 | 0.063 | 0.13 |
Arginine | 55.3 ± 13.8 | 50.5 ± 12.3 | 65.1 ± 19.7 | 38.8 ± 16.5 | −4.7 ± 14.1 | −26.2 ± 17.9 | 0.44 | 0.004 |
Tyrosine | 48.4 ± 12.6 | 75.1 ± 29.3 | 64.3 ± 16.0 | 49.8 ± 18.2 | 26.7 ± 38.9 | −14.5 ± 23.2 | 0.19 | 0.10 |
Tryptophan | 48.3 ± 15.4 | 65.5 ± 13.2 | 55.4 ± 12.2 | 43.0 ± 9.2 | 17.2 ± 24.5 | −12.4 ± 13.7 | 0.31 | 0.039 |
Phenylalanine | 47.2 ± 7.8 | 74.6 ± 25.9 | 56.9 ± 11.3 | 51.3 ± 12.9 | 27.4 ± 29.3 | −5.6 ± 17.0 | 0.063 | 0.30 |
Isoleucine | 58.8 ± 13.0 | 76.7 ± 30.0 | 67.9 ± 16.0 | 44.9 ± 12.4 | 17.9 ± 32.2 | −23.0 ± 20.3 | 0.63 | 0.012 |
Leucine | 92.5 ± 23.6 | 116.4 ± 53.0 | 110.8 ± 31.7 | 59.9 ± 19.0 | 23.8 ± 53.0 | −51.0 ± 31.2 | 0.63 | 0.004 |
Lysine | 101.3 ± 43.6 | 145.7 ± 83.1 | 127.9 ± 34.9 | 80.2 ± 17.5 | 44.4 ± 71.8 | −47.8 ± 37.7 | 0.063 | 0.004 |
Ornithine | 106.2 ± 29.2 | 137.4 ± 40.6 | 97.7 ± 21.4 | 69.3 ± 13.1 | 31.2 ± 50.4 | −28.5 ± 26.3 | 0.31 | 0.012 |
Cysteine | 179.9 ± 66.8 | 193.0 ± 47.6 | 198.4 ± 78.6 | 196.8 ± 65.8 | 13.1 ± 44.2 | −1.6 ± 67.0 | 0.81 | 0.57 |
Valine | 174.0 ± 42.6 | 226.0 ± 98.9 | 208.1 ± 51.4 | 122.6 ± 27.2 | 52.0 ± 108.3 | −85.5 ± 46.1 | 0.44 | 0.004 |
Methionine | 21.5 ± 7.2 | 35.9 ± 14.1 | 29.9 ± 7.4 | 26.1 ± 8.6 | 14.4 ± 16.0 | −3.8 ± 11.4 | 0.13 | 0.30 |
TAAs | 2128 ± 518 | 2791 ± 750 | 2366 ± 498 | 1920 ± 396 | 664 ± 974 | −446 ± 583 | 0.13 | 0.10 |
EAAs | 718 ± 183 | 968 ± 351 | 872 ± 172 | 628 ± 105 | 250 ± 393 | −244 ± 191 | 0.19 | 0.004 |
BCAAs | 325.4 ± 77.0 | 419.1 ± 180.5 | 386.8 ± 97.0 | 227.4 ± 56.4 | 93.7 ± 193.1 | −159.5 ± 94.3 | 0.63 | 0.004 |
NEAAs | 1409 ± 384 | 1823 ± 426 | 1493 ± 359 | 1292 ± 323 | 414 ± 585 | −202 ± 411 | 0.063 | 0.25 |
Arginine/TAAs | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.01 | 0.02 ± 0.01 | −0.01 ± 0.00 | −0.01 ± 0.01 | 0.063 | 0.008 |
BCAAs/EAAs | 0.45 ± 0.02 | 0.43 ± 0.03 | 0.44 ± 0.05 | 0.36 ± 0.05 | −0.03 ± 0.02 | −0.08 ± 0.06 | 0.063 | 0.004 |
EAAs/TAAs | 0.34 ± 0.05 | 0.34 ± 0.04 | 0.37 ± 0.03 | 0.33 ± 0.04 | 0.00 ± 0.02 | −0.04 ± 0.03 | 1.00 | 0.012 |
BCAAs/TAAs | 0.15 ± 0.02 | 0.15 ± 0.03 | 0.16 ± 0.02 | 0.12 ± 0.03 | −0.01 ± 0.01 | −0.04 ± 0.03 | 0.19 | 0.004 |
(Gln+Ala)/BCAAs | 2.00 ± 0.56 | 2.26 ± 0.46 | 1.66 ± 0.39 | 2.26 ± 0.53 | 0.26 ± 0.31 | 0.60 ± 0.60 | 0.13 | 0.008 |
NEAAs/TAAs | 0.66 ± 0.05 | 0.66 ± 0.04 | 0.63 ± 0.03 | 0.67 ± 0.04 | −0.00 ± 0.02 | 0.04 ± 0.03 | 1.00 | 0.012 |
Reduced AAs | Body Compartments | Impaired Metabolic Activities | Increased Clinical Risks |
---|---|---|---|
BCAAs (leucine, valine, isoleucine) | Immune system [105] |
|
|
Bone marrow [106] |
|
| |
Myocardium [60] |
|
| |
Brain [75] |
|
| |
|
| ||
Gut |
| ||
Tryptophan | Immune system [110] |
|
|
Brain [75] |
|
| |
Arginine | Immune system |
|
|
| |||
Skeletal muscle |
|
| |
Liver |
|
| |
Brain [75] |
|
| |
Serine | Immune system |
| |
Aromatic amino acids (phenylalanine, tyrosine) | Brain |
|
|
FOLFOX | |
Muscle: | Extra-muscle districts: |
• Mitochondrial BCAA/EAA overutilization | • Increased BCAA/EAA uptake by: |
• Increased ROS | - myocardium |
• Increased proteolysis pathways | - intestine |
• Decreased protein synthesis rate | - brain |
• Prevalence of protein/AA hypercatabolism | - adaptive immune system |
Reductions in plasma AAs |
Patients | Differentiation Grades | TNM Staging Classification [141] |
---|---|---|
FOLFOX | ||
1 | G2 | pT3pN1a (stage III) |
2 | G3 | pT4apN2b (stage III) |
3 | G2/G3 | pT4apN1b (stage III) |
4 | G3 | pT4apN2b (stage III) |
5 | G3 | pT4apN0 (stage III) |
6 | G2 | pT2pN2a (stage III) |
7 | G2 | pT2pN2a (stage III) |
8 | G2 | pT4apN0 (stage II) |
9 | G2/G3 | pT4apN0 (stage II) |
XELOX | ||
1 | G3 | pT4apN2b (stage III) |
2 | G2/G3 | pT2pN1b (stage III) |
3 | G2 | pT3N1b (stage III) |
4 | G2 | pT3pN1b (stage III) |
5 | G2 | pT4pN1a (stage III) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquilani, R.; Brugnatelli, S.; Maestri, R.; Iadarola, P.; Corallo, S.; Pagani, A.; Serra, F.; Bellini, A.; Buonocore, D.; Dossena, M.; et al. Chemotherapy-Induced Changes in Plasma Amino Acids and Lipid Oxidation of Resected Patients with Colorectal Cancer: A Background for Future Studies. Int. J. Mol. Sci. 2024, 25, 5300. https://doi.org/10.3390/ijms25105300
Aquilani R, Brugnatelli S, Maestri R, Iadarola P, Corallo S, Pagani A, Serra F, Bellini A, Buonocore D, Dossena M, et al. Chemotherapy-Induced Changes in Plasma Amino Acids and Lipid Oxidation of Resected Patients with Colorectal Cancer: A Background for Future Studies. International Journal of Molecular Sciences. 2024; 25(10):5300. https://doi.org/10.3390/ijms25105300
Chicago/Turabian StyleAquilani, Roberto, Silvia Brugnatelli, Roberto Maestri, Paolo Iadarola, Salvatore Corallo, Anna Pagani, Francesco Serra, Anna Bellini, Daniela Buonocore, Maurizia Dossena, and et al. 2024. "Chemotherapy-Induced Changes in Plasma Amino Acids and Lipid Oxidation of Resected Patients with Colorectal Cancer: A Background for Future Studies" International Journal of Molecular Sciences 25, no. 10: 5300. https://doi.org/10.3390/ijms25105300
APA StyleAquilani, R., Brugnatelli, S., Maestri, R., Iadarola, P., Corallo, S., Pagani, A., Serra, F., Bellini, A., Buonocore, D., Dossena, M., Boschi, F., & Verri, M. (2024). Chemotherapy-Induced Changes in Plasma Amino Acids and Lipid Oxidation of Resected Patients with Colorectal Cancer: A Background for Future Studies. International Journal of Molecular Sciences, 25(10), 5300. https://doi.org/10.3390/ijms25105300