Macrophage Functions in Psoriasis: Lessons from Mouse Models
Abstract
:1. Introduction
1.1. Macrophages in the Skin
Outlining the Polarization and Classification of Macrophages in Skin Tissue
2. Mouse Models of Psoriasis
2.1. Spontaneous versus Genetically-Induced Mouse Models
2.2. Human Skin Xenografts
2.3. Inducible Models
3. Macrophage Functions in Mouse Psoriatic Inflammation
3.1. Polarization of Macrophages in Psoriasis
3.1.1. Impact of Macrophage Polarization in Other Tissues on Psoriatic Inflammation
3.1.2. Macrophage Polarization towards Anti-Inflammatory M2 Phenotype
3.1.3. Mixed Macrophage Phenotypes in Psoriasis
3.2. Macrophage Involvement in Psoriasis-Related Oxidative Stress
3.3. Macrophages Drive Cytokine Signaling in Psoriatic Inflammation and Its Complications
4. Macrophages as Therapeutic Targets in Psoriasis
4.1. Therapeutic Balancing of the Macrophage Phenotype
4.2. Macrophages as Targets of Immune Regulatory microRNA (miR) Molecules
4.3. Therapeutic Targeting of Macrophage-Dependent Cytokine and Molecular Pathways
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Apeku, E.; Tantuoyir, M.M.; Zheng, R.; Tanye, N. Exploring the Polarization of M1 and M2 Macrophages in the Context of Skin Diseases. Mol. Biol. Rep. 2024, 51, 269. [Google Scholar] [CrossRef]
- Cieślik, M.; Bryniarski, K.; Nazimek, K. Biodelivery of Therapeutic Extracellular Vesicles: Should Mononuclear Phagocytes Always Be Feared? Front. Cell Dev. Biol. 2023, 11, 1211833. [Google Scholar] [CrossRef] [PubMed]
- Parisi, L.; Gini, E.; Baci, D.; Tremolati, M.; Fanuli, M.; Bassani, B.; Farronato, G.; Bruno, A.; Mortara, L. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J. Immunol. Res. 2018, 2018, 8917804. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.C.; Paixão, C.S.; Viana, D.L.; Rocha, B.d.O.; Saldanha, M.; da Mota, L.M.H.; Machado, P.R.L.; Pagliari, C.; de Oliveira, M.d.F.; Arruda, S.; et al. Mononuclear Phagocyte Activation Is Associated with the Immunopathology of Psoriasis. Front. Immunol. 2020, 11, 478. [Google Scholar] [CrossRef]
- Gomez Perdiguero, E.; Klapproth, K.; Schulz, C.; Busch, K.; Azzoni, E.; Crozet, L.; Garner, H.; Trouillet, C.; de Bruijn, M.F.; Geissmann, F.; et al. Tissue-Resident Macrophages Originate from Yolk-Sac-Derived Erythro-Myeloid Progenitors. Nature 2015, 518, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, Z.; Lan, W.; Xiang, B.; Liao, W.; Zhou, J.; Liu, X.; Wang, Y.; Zhang, S.; Lu, S.; et al. The Roles of Tissue Resident Macrophages in Health and Cancer. Exp. Hematol. Oncol. 2024, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Ginhoux, F.; Schultze, J.L.; Murray, P.J.; Ochando, J.; Biswas, S.K. New Insights into the Multidimensional Concept of Macrophage Ontogeny, Activation and Function. Nat. Immunol. 2016, 17, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Doebel, T.; Voisin, B.; Nagao, K. Langerhans Cells—The Macrophage in Dendritic Cell Clothing. Trends Immunol. 2017, 38, 817–828. [Google Scholar] [CrossRef]
- King, J.K.; Philips, R.L.; Eriksson, A.U.; Kim, P.J.; Halder, R.C.; Lee, D.J.; Singh, R.R. Langerhans Cells Maintain Local Tissue Tolerance in a Model of Systemic Autoimmune Disease. J. Immunol. 2015, 195, 464–476. [Google Scholar] [CrossRef]
- Clayton, K.; Vallejo, A.F.; Davies, J.; Sirvent, S.; Polak, M.E. Langerhans Cells-Programmed by the Epidermis. Front. Immunol. 2017, 8, 1676. [Google Scholar] [CrossRef]
- Eidsmo, L.; Martini, E. Human Langerhans Cells with Pro-Inflammatory Features Relocate within Psoriasis Lesions. Front. Immunol. 2018, 9, 300. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, R.; Luo, Y.; Wang, S.; Zhao, Y.; Qiu, Z.; Zhang, Y.; Liu, X.; Yao, X.; Li, X.; et al. Distinct Human Langerhans Cell Subsets Orchestrate Reciprocal Functions and Require Different Developmental Regulation. Immunity 2021, 54, 2305–2320.e11. [Google Scholar] [CrossRef]
- Yan, B.; Liu, N.; Li, J.; Li, J.; Zhu, W.; Kuang, Y.; Chen, X.; Peng, C. The Role of Langerhans Cells in Epidermal Homeostasis and Pathogenesis of Psoriasis. J. Cell Mol. Med. 2020, 24, 11646–11655. [Google Scholar] [CrossRef]
- Kaplan, D.H. Ontogeny and Function of Murine Epidermal Langerhans Cells. Nat. Immunol. 2017, 18, 1068–1075. [Google Scholar] [CrossRef]
- Sheng, J.; Chen, Q.; Wu, X.; Dong, Y.W.; Mayer, J.; Zhang, J.; Wang, L.; Bai, X.; Liang, T.; Sung, Y.H.; et al. Fate Mapping Analysis Reveals a Novel Murine Dermal Migratory Langerhans-like Cell Population. eLife 2021, 10, e65412. [Google Scholar] [CrossRef]
- Tamoutounour, S.; Guilliams, M.; Montanana Sanchis, F.; Liu, H.; Terhorst, D.; Malosse, C.; Pollet, E.; Ardouin, L.; Luche, H.; Sanchez, C.; et al. Origins and Functional Specialization of Macrophages and of Conventional and Monocyte-Derived Dendritic Cells in Mouse Skin. Immunity 2013, 39, 925–938. [Google Scholar] [CrossRef]
- Lee, S.H.; Charmoy, M.; Romano, A.; Paun, A.; Chaves, M.M.; Cope, F.O.; Ralph, D.A.; Sacks, D.L. Mannose Receptor High, M2 Dermal Macrophages Mediate Nonhealing Leishmania Major Infection in a Th1 Immune Environment. J. Exp. Med. 2018, 215, 357–375. [Google Scholar] [CrossRef]
- Lorthois, I.; Asselineau, D.; Seyler, N.; Pouliot, R. Contribution of In Vivo and Organotypic 3D Models to Understanding the Role of Macrophages and Neutrophils in the Pathogenesis of Psoriasis. Mediat. Inflamm. 2017, 2017, 7215072. [Google Scholar] [CrossRef]
- Yanez, D.A.; Lacher, R.K.; Vidyarthi, A.; Colegio, O.R. The Role of Macrophages in Skin Homeostasis. Pflug. Arch. 2017, 469, 455–463. [Google Scholar] [CrossRef]
- Deckers, J.; Hammad, H.; Hoste, E. Langerhans Cells: Sensing the Environment in Health and Disease. Front. Immunol. 2018, 9, 93. [Google Scholar] [CrossRef]
- Reynolds, G.; Vegh, P.; Fletcher, J.; Poyner, E.F.M.; Stephenson, E.; Goh, I.; Botting, R.A.; Huang, N.; Olabi, B.; Dubois, A.; et al. Developmental Cell Programs Are Co-Opted in Inflammatory Skin Disease. Science 2021, 371, eaba6500. [Google Scholar] [CrossRef]
- Gather, L.; Nath, N.; Falckenhayn, C.; Oterino-Sogo, S.; Bosch, T.; Wenck, H.; Winnefeld, M.; Grönniger, E.; Simm, S.; Siracusa, A. Macrophages Are Polarized toward an Inflammatory Phenotype by Their Aged Microenvironment in the Human Skin. J. Investig. Dermatol. 2022, 142, 3136–3145.e11. [Google Scholar] [CrossRef]
- Iskandar, I.Y.K.; Parisi, R.; Griffiths, C.E.M.; Ashcroft, D.M. Global Psoriasis Atlas Systematic Review Examining Changes over Time and Variation in the Incidence and Prevalence of Psoriasis by Age and Gender. Br. J. Dermatol. 2021, 184, 243–258. [Google Scholar] [CrossRef]
- Xia, T.; Fu, S.; Yang, R.; Yang, K.; Lei, W.; Yang, Y.; Zhang, Q.; Zhao, Y.; Yu, J.; Yu, L.; et al. Advances in the Study of Macrophage Polarization in Inflammatory Immune Skin Diseases. J. Inflamm. (Lond.) 2023, 20, 33. [Google Scholar] [CrossRef]
- Branisteanu, D.E.; Cojocaru, C.; Diaconu, R.; Porumb, E.A.; Alexa, A.I.; Nicolescu, A.C.; Brihan, I.; Bogdanici, C.M.; Branisteanu, G.; Dimitriu, A.; et al. Update on the Etiopathogenesis of Psoriasis (Review). Exp. Ther. Med. 2022, 23, 201. [Google Scholar] [CrossRef]
- Liang, Y.; Sarkar, M.K.; Tsoi, L.C.; Gudjonsson, J.E. Psoriasis: A Mixed Autoimmune and Autoinflammatory Disease. Curr. Opin. Immunol. 2017, 49, 1–8. [Google Scholar] [CrossRef]
- Sugiura, K. Role of Interleukin 36 in Generalised Pustular Psoriasis and Beyond. Dermatol. Ther. 2022, 12, 315–328. [Google Scholar] [CrossRef]
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef]
- Hernandez-Nicols, B.F.; Robledo-Pulido, J.J.; Alvarado-Navarro, A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol. Investig. 2024, 53, 348–415. [Google Scholar] [CrossRef]
- Bocheńska, K.; Smolińska, E.; Moskot, M.; Jakóbkiewicz-Banecka, J.; Gabig-Cimińska, M. Models in the Research Process of Psoriasis. Int. J. Mol. Sci. 2017, 18, 2514. [Google Scholar] [CrossRef]
- Gangwar, R.S.; Gudjonsson, J.E.; Ward, N.L. Mouse Models of Psoriasis: A Comprehensive Review. J. Investig. Dermatol. 2022, 142, 884–897. [Google Scholar] [CrossRef]
- Luo, T.; Ma, Y.; Wei, W. Murine Models of Psoriasis and Its Applications in Drug Development. J. Pharmacol. Toxicol. Methods 2020, 101, 106657. [Google Scholar] [CrossRef]
- Yawalkar, N.; Tscharner, G.G.; Hunger, R.E.; Hassan, A.S. Increased Expression of IL-12p70 and IL-23 by Multiple Dendritic Cell and Macrophage Subsets in Plaque Psoriasis. J. Dermatol. Sci. 2009, 54, 99–105. [Google Scholar] [CrossRef]
- Singh, T.P.; Zhang, H.H.; Hwang, S.T.; Farber, J.M. IL-23- and Imiquimod-Induced Models of Experimental Psoriasis in Mice. Curr. Protoc. Immunol. 2019, 125, e71. [Google Scholar] [CrossRef]
- Bieber, K.; Bezdek, S.; Gupta, Y.; Vorobyev, A.; Sezin, T.; Gross, N.; Prüssmann, J.; Sayegh, J.-P.; Becker, M.; Mousavi, S.; et al. Forward Genetics and Functional Analysis Highlight Itga11 as a Modulator of Murine Psoriasiform Dermatitis. J. Pathol. 2023, 261, 184–197. [Google Scholar] [CrossRef]
- Wu, H.; Ou, J.; Li, K.; Wang, T.; Nandakumar, K.S. Comparative Studies on Mannan and Imiquimod Induced Experimental Plaque Psoriasis Inflammation in Inbred Mice. Clin. Exp. Immunol. 2023, 211, 288–300. [Google Scholar] [CrossRef]
- Schlaak, J.F.; Buslau, M.; Jochum, W.; Hermann, E.; Girndt, M.; Gallati, H.; Meyer zum Büschenfelde, K.H.; Fleischer, B. T Cells Involved in Psoriasis Vulgaris Belong to the Th1 Subset. J. Investig. Dermatol. 1994, 102, 145–149. [Google Scholar] [CrossRef]
- Vollmer, S.; Menssen, A.; Trommler, P.; Schendel, D.; Prinz, J.C. T Lymphocytes Derived from Skin Lesions of Patients with Psoriasis Vulgaris Express a Novel Cytokine Pattern That Is Distinct from That of T Helper Type 1 and T Helper Type 2 Cells. Eur. J. Immunol. 1994, 24, 2377–2382. [Google Scholar] [CrossRef]
- Clark, R.A.; Kupper, T.S. Misbehaving Macrophages in the Pathogenesis of Psoriasis. J. Clin. Investig. 2006, 116, 2084–2087. [Google Scholar] [CrossRef]
- Stratis, A.; Pasparakis, M.; Rupec, R.A.; Markur, D.; Hartmann, K.; Scharffetter-Kochanek, K.; Peters, T.; van Rooijen, N.; Krieg, T.; Haase, I. Pathogenic Role for Skin Macrophages in a Mouse Model of Keratinocyte-Induced Psoriasis-like Skin Inflammation. J. Clin. Investig. 2006, 116, 2094–2104. [Google Scholar] [CrossRef]
- Wolfram, J.A.; Diaconu, D.; Hatala, D.A.; Rastegar, J.; Knutsen, D.A.; Lowther, A.; Askew, D.; Gilliam, A.C.; McCormick, T.S.; Ward, N.L. Keratinocyte but Not Endothelial Cell-Specific Overexpression of Tie2 Leads to the Development of Psoriasis. Am. J. Pathol. 2009, 174, 1443–1458. [Google Scholar] [CrossRef]
- Wang, H.; Peters, T.; Kess, D.; Sindrilaru, A.; Oreshkova, T.; Van Rooijen, N.; Stratis, A.; Renkl, A.C.; Sunderkötter, C.; Wlaschek, M.; et al. Activated Macrophages Are Essential in a Murine Model for T Cell-Mediated Chronic Psoriasiform Skin Inflammation. J. Clin. Investig. 2006, 116, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Yoshiki, R.; Kabashima, K.; Honda, T.; Nakamizo, S.; Sawada, Y.; Sugita, K.; Yoshioka, H.; Ohmori, S.; Malissen, B.; Tokura, Y.; et al. IL-23 from Langerhans Cells Is Required for the Development of Imiquimod-Induced Psoriasis-like Dermatitis by Induction of IL-17A-Producing Γδ T Cells. J. Investig. Dermatol. 2014, 134, 1912–1921. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Zhu, Z.; Sun, S.; Gao, J.; Fu, M.; Liu, Y.; Wang, G.; Yao, X.; Li, W. Activation of Langerhans Cells Promotes the Inflammation in Imiquimod-Induced Psoriasis-like Dermatitis. J. Dermatol. Sci. 2017, 85, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kim, S.H.; Kim, T.-G.; Park, J.; Lee, J.W.; Lee, M.-G. Resident and Monocyte-Derived Langerhans Cells Are Required for Imiquimod-Induced Psoriasis-like Dermatitis Model. J. Dermatol. Sci. 2018, 91, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Kataoka, S.; Sato, K.; Takaishi, M.; Yamamoto, M.; Nakajima, H.; Sano, S. Stat3 Activation in Epidermal Keratinocytes Induces Langerhans Cell Activation to Form an Essential Circuit for Psoriasis via IL-23 Production. J. Dermatol. Sci. 2019, 93, 82–91. [Google Scholar] [CrossRef]
- Eaton, L.H.; Mellody, K.T.; Pilkington, S.M.; Dearman, R.J.; Kimber, I.; Griffiths, C.E.M. Impaired Langerhans Cell Migration in Psoriasis Is Due to an Altered Keratinocyte Phenotype Induced by Interleukin-17. Br. J. Dermatol. 2018, 178, 1364–1372. [Google Scholar] [CrossRef]
- Nakai, K.; Haba, R.; Kushida, Y.; Kubota, Y. Macrophages Express βKlotho in Skin Lesions of Psoriatic Patients and the Skin of Imiquimod-Treated Mice. J. Dermatol. 2018, 45, 1475–1477. [Google Scholar] [CrossRef]
- Terhorst, D.; Chelbi, R.; Wohn, C.; Malosse, C.; Tamoutounour, S.; Jorquera, A.; Bajenoff, M.; Dalod, M.; Malissen, B.; Henri, S. Dynamics and Transcriptomics of Skin Dendritic Cells and Macrophages in an Imiquimod-Induced, Biphasic Mouse Model of Psoriasis. J. Immunol. 2015, 195, 4953–4961. [Google Scholar] [CrossRef]
- Lu, C.-H.; Lai, C.-Y.; Yeh, D.-W.; Liu, Y.-L.; Su, Y.-W.; Hsu, L.-C.; Chang, C.-H.; Catherine Jin, S.-L.; Chuang, T.-H. Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediat. Inflamm. 2018, 2018, 3523642. [Google Scholar] [CrossRef]
- Miki, H.; Han, K.H.; Scott, D.; Croft, M.; Kang, Y.J. 4-1BBL Regulates the Polarization of Macrophages, and Inhibition of 4-1BBL Signaling Alleviates Imiquimod-Induced Psoriasis. J. Immunol. 2020, 204, 1892–1903. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lu, J.; Liu, J.; Wu, J.; Zhang, X.; Meng, Y.; Wu, X.; Tai, Z.; Zhu, Q.; Chen, Z. Immune Cells in the Epithelial Immune Microenvironment of Psoriasis: Emerging Therapeutic Targets. Front. Immunol. 2023, 14, 1340677. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fu, Y.; Xiong, S. Keratinocyte Derived HMGB1 Aggravates Psoriasis Dermatitis via Facilitating Inflammatory Polarization of Macrophages and Hyperproliferation of Keratinocyte. Mol. Immunol. 2023, 163, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zhang, T.; Qiu, Y.; Liu, Q.; Chen, X.; Wang, Q.; Min, X.; Ouyang, L.; Jia, S.; Lu, Q.; et al. Keratinocyte-to-Macrophage Communication Exacerbate Psoriasiform Dermatitis via LRG1-Enriched Extracellular Vesicles. Theranostics 2024, 14, 1049–1064. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhong, Y.; Li, C.; Zhou, Y.; Liu, X.; Li, L.; Zou, Z.; Zhong, Z.; Ye, J. MAPK14 as a Key Gene for Regulating Inflammatory Response and Macrophage M1 Polarization Induced by Ferroptotic Keratinocyte in Psoriasis. Inflammation 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; He, Y.-Y.; Nishiyama, F.; Naruse, F.; Haba, R.; Kushida, Y.; Katsuki, N.; Moriue, T.; Yoneda, K.; Kubota, Y. IL-17A Induces Heterogeneous Macrophages, and It Does Not Alter the Effects of Lipopolysaccharides on Macrophage Activation in the Skin of Mice. Sci. Rep. 2017, 7, 12473. [Google Scholar] [CrossRef]
- Morimura, S.; Oka, T.; Sugaya, M.; Sato, S. CX3CR1 Deficiency Attenuates Imiquimod-Induced Psoriasis-like Skin Inflammation with Decreased M1 Macrophages. J. Dermatol. Sci. 2016, 82, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Zhao, W.; Li, H.; Xiao, S.; Hu, R.; Han, M.; Liu, H.; Liu, Y.; Otsu, K.; Liu, X.; et al. P38α Signaling in Langerhans Cells Promotes the Development of IL-17-Producing T Cells and Psoriasiform Skin Inflammation. Sci. Signal 2018, 11, eaao1685. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Mao, Y.; Chen, W.; Li, Z.; Yu, Y.; Luo, S.; Wang, D.; Bai, Y.; Fan, W.; Wang, Y.; et al. Stress Aggravates Imiquimod-Induced Psoriasiform Inflammation by Promoting M1 Macrophage Polarization. Int. Immunopharmacol. 2023, 124, 110899. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, C.; Zhou, Z.; Li, J.; Zhen, Y.; Wang, R.; Zhuang, Y.; Zhang, F. Pentraxin 3 Exacerbates Psoriasiform Dermatitis through Regulation of Macrophage Polarization. Int. Immunopharmacol. 2024, 130, 111805. [Google Scholar] [CrossRef]
- Tan, R.-Z.; Zhong, X.; Han, R.-Y.; Xie, K.-H.; Jia, J.; Yang, Y.; Cheng, M.; Yang, C.-Y.; Lan, H.-Y.; Wang, L. Macrophages Mediate Psoriasis via Mincle-Dependent Mechanism in Mice. Cell Death Discov. 2023, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Bambouskova, M.; Gorvel, L.; Lampropoulou, V.; Sergushichev, A.; Loginicheva, E.; Johnson, K.; Korenfeld, D.; Mathyer, M.E.; Kim, H.; Huang, L.-H.; et al. Electrophilic Properties of Itaconate and Derivatives Regulate the IκBζ-ATF3 Inflammatory Axis. Nature 2018, 556, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Lampropoulou, V.; Sergushichev, A.; Bambouskova, M.; Nair, S.; Vincent, E.E.; Loginicheva, E.; Cervantes-Barragan, L.; Ma, X.; Huang, S.C.-C.; Griss, T.; et al. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab. 2016, 24, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Wang, Y.; Cao, Y.; Xing, F.; Yang, X. Study of Dietary-induced Progression of Psoriasis-like Mice Based on Gut Macrophage Polarization. Exp. Ther. Med. 2023, 25, 278. [Google Scholar] [CrossRef] [PubMed]
- Pinget, G.V.; Tan, J.K.; Ni, D.; Taitz, J.; Daien, C.I.; Mielle, J.; Moore, R.J.; Stanley, D.; Simpson, S.; King, N.J.C.; et al. Dysbiosis in Imiquimod-Induced Psoriasis Alters Gut Immunity and Exacerbates Colitis Development. Cell Rep. 2022, 40, 111191. [Google Scholar] [CrossRef] [PubMed]
- Barros, G.; Duran, P.; Vera, I.; Bermúdez, V. Exploring the Links between Obesity and Psoriasis: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 7499. [Google Scholar] [CrossRef] [PubMed]
- Wolk, K.; Sabat, R. Adipokines in Psoriasis: An Important Link between Skin Inflammation and Metabolic Alterations. Rev. Endocr. Metab. Disord. 2016, 17, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yang, Y.; Liao, Y.; Shi, Y.; Zhang, L.-J. Emerging Roles of Adipose Tissue in the Pathogenesis of Psoriasis and Atopic Dermatitis in Obesity. JID Innov. 2022, 2, 100064. [Google Scholar] [CrossRef] [PubMed]
- Coban, M.; Tasli, L.; Turgut, S.; Özkan, S.; Tunç Ata, M.; Akın, F. Association of Adipokines, Insulin Resistance, Hypertension and Dyslipidemia in Patients with Psoriasis Vulgaris. Ann. Dermatol. 2016, 28, 74–79. [Google Scholar] [CrossRef]
- Porta, S.; Otero-Losada, M.; Kölliker Frers, R.A.; Cosentino, V.; Kerzberg, E.; Capani, F. Adipokines, Cardiovascular Risk, and Therapeutic Management in Obesity and Psoriatic Arthritis. Front. Immunol. 2020, 11, 590749. [Google Scholar] [CrossRef]
- Toussirot, E.; Aubin, F.; Dumoulin, G. Relationships between Adipose Tissue and Psoriasis, with or without Arthritis. Front. Immunol. 2014, 5, 368. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Jiang, L.; Cheng, Q.; Chen, H.; Yu, Y.; Lin, Y.; Yang, X.; Kong, N.; Zhu, X.; Xu, X.; et al. Adipokines in Psoriatic Arthritis Patients: The Correlations with Osteoclast Precursors and Bone Erosions. PLoS ONE 2012, 7, e46740. [Google Scholar] [CrossRef] [PubMed]
- Słuczanowska-Głabowska, S.; Staniszewska, M.; Marchlewicz, M.; Duchnik, E.; Łuczkowska, K.; Safranow, K.; Machaliński, B.; Pawlik, A. Adiponectin, Leptin and Resistin in Patients with Psoriasis. J. Clin. Med. 2023, 12, 663. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, F.; Peng, L.-W.; Chang, L.; Jiang, Y.-M. The Peritoneal Macrophages in Inflammatory Diseases and Abdominal Cancers. Oncol. Res. 2018, 26, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhu, L.; Tian, H.; Sun, H.-X.; Wang, R.; Zhang, L.; Zhao, Y. IL-23-Induced Macrophage Polarization and Its Pathological Roles in Mice with Imiquimod-Induced Psoriasis. Protein Cell 2018, 9, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Kamata, M.; Tada, Y. Dendritic Cells and Macrophages in the Pathogenesis of Psoriasis. Front. Immunol. 2022, 13, 941071. [Google Scholar] [CrossRef] [PubMed]
- Hagert, C.; Sareila, O.; Kelkka, T.; Jalkanen, S.; Holmdahl, R. The Macrophage Mannose Receptor Regulate Mannan-Induced Psoriasis, Psoriatic Arthritis, and Rheumatoid Arthritis-like Disease Models. Front. Immunol. 2018, 9, 114. [Google Scholar] [CrossRef]
- Kim, H.J.; Jang, J.; Lee, E.-H.; Jung, S.; Roh, J.Y.; Jung, Y. Decreased Expression of Response Gene to Complement 32 in Psoriasis and Its Association with Reduced M2 Macrophage Polarization. J. Dermatol. 2019, 46, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, Y.; Li, C.; Zhang, X.; Cheng, L.; Dai, L.; Wang, Y.; Wang, F.; Shi, G.; Li, Y.; et al. IL-35 Decelerates the Inflammatory Process by Regulating Inflammatory Cytokine Secretion and M1/M2 Macrophage Ratio in Psoriasis. J. Immunol. 2016, 197, 2131–2144. [Google Scholar] [CrossRef]
- Tanaka, R.; Ichimura, Y.; Kubota, N.; Konishi, R.; Nakamura, Y.; Mizuno, S.; Takahashi, S.; Fujimoto, M.; Nomura, T.; Okiyama, N. The Role of PD-L1 on Langerhans Cells in the Regulation of Psoriasis. J. Investig. Dermatol. 2022, 142, 3167–3174.e9. [Google Scholar] [CrossRef]
- Yeh, C.-Y.; Su, S.-H.; Tan, Y.F.; Tsai, T.-F.; Liang, P.-H.; Kelel, M.; Weng, H.-J.; Hsiao, Y.-P.; Lu, C.-H.; Tsai, C.-H.; et al. PD-L1 Enhanced by Cis-Urocanic Acid on Langerhans Cells Inhibits Vγ4+ γδT17 Cells in Imiquimod-Induced Skin Inflammation. J. Investig. Dermatol. 2023, 143, 1449–1460. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, M.; DeTomaso, D.; Schnell, A.; Meyer Zu Horste, G.; Lee, Y.; Nyman, J.; Dionne, D.; Regan, B.M.L.; Singh, V.; Delorey, T.; et al. Induction of a Colitogenic Phenotype in Th1-like Cells Depends on Interleukin-23 Receptor Signaling. Immunity 2022, 55, 1663–1679.e6. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Wang, M.; Gao, H.; Zheng, A.; Li, J.; Mu, D.; Tong, J. The Role of Helper T Cells in Psoriasis. Front. Immunol. 2021, 12, 788940. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Edelmayer, R.; Wetter, J.; Salte, K.; Gauvin, D.; Leys, L.; Paulsboe, S.; Su, Z.; Weinberg, I.; Namovic, M.; et al. Monocytes/Macrophages Play a Pathogenic Role in IL-23 Mediated Psoriasis-like Skin Inflammation. Sci. Rep. 2019, 9, 5310. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, B.F.; Patsinakidis, N.; Raap, U. Role of the Pruritic Cytokine IL-31 in Autoimmune Skin Diseases. Front. Immunol. 2019, 10, 1383. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, M.; Numata, T.; Saito, R.; Yanagida, N.; Ishikawa, C.; Uchida, K.; Kawaguchi, T.; Yanase, Y.; Ishiuji, Y.; McGrath, J.; et al. Oncostatin M Suppresses IL31RA Expression in Dorsal Root Ganglia and Interleukin-31-Induced Itching. Front. Immunol. 2023, 14, 1251031. [Google Scholar] [CrossRef] [PubMed]
- Kodji, X.; Arkless, K.L.; Kee, Z.; Cleary, S.J.; Aubdool, A.A.; Evans, E.; Caton, P.; Pitchford, S.C.; Brain, S.D. Sensory Nerves Mediate Spontaneous Behaviors in Addition to Inflammation in a Murine Model of Psoriasis. FASEB J. 2019, 33, 1578–1594. [Google Scholar] [CrossRef]
- Mizuguchi, S.; Gotoh, K.; Nakashima, Y.; Setoyama, D.; Takata, Y.; Ohga, S.; Kang, D. Mitochondrial Reactive Oxygen Species Are Essential for the Development of Psoriatic Inflammation. Front. Immunol. 2021, 12, 714897. [Google Scholar] [CrossRef]
- Nakai, K.; Tsuruta, D. What Are Reactive Oxygen Species, Free Radicals, and Oxidative Stress in Skin Diseases? Int. J. Mol. Sci. 2021, 22, 10799. [Google Scholar] [CrossRef]
- Zhou, Q.; Mrowietz, U.; Rostami-Yazdi, M. Oxidative Stress in the Pathogenesis of Psoriasis. Free Radic. Biol. Med. 2009, 47, 891–905. [Google Scholar] [CrossRef]
- Wroński, A.; Wójcik, P. Impact of ROS-Dependent Lipid Metabolism on Psoriasis Pathophysiology. Int. J. Mol. Sci. 2022, 23, 12137. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-R.; Lee, A.; Choi, E.-J.; Hong, M.-P.; Kie, J.-H.; Lim, W.; Lee, H.K.; Moon, B.-I.; Seoh, J.-Y. Reactive Oxygen Species Prevent Imiquimod-Induced Psoriatic Dermatitis through Enhancing Regulatory T Cell Function. PLoS ONE 2014, 9, e91146. [Google Scholar] [CrossRef] [PubMed]
- Khmaladze, I.; Kelkka, T.; Guerard, S.; Wing, K.; Pizzolla, A.; Saxena, A.; Lundqvist, K.; Holmdahl, M.; Nandakumar, K.S.; Holmdahl, R. Mannan Induces ROS-Regulated, IL-17A-Dependent Psoriasis Arthritis-like Disease in Mice. Proc. Natl. Acad. Sci. USA 2014, 111, E3669–E3678. [Google Scholar] [CrossRef] [PubMed]
- Khmaladze, I.; Nandakumar, K.S.; Holmdahl, R. Reactive Oxygen Species in Psoriasis and Psoriasis Arthritis: Relevance to Human Disease. Int. Arch. Allergy Immunol. 2015, 166, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Kulkarni, N.N.; Takahashi, T.; Alimohamadi, H.; Dokoshi, T.; Liu, E.; Shia, M.; Numata, T.; Luo, E.W.; Gombart, A.F.; et al. Increased LL37 in Psoriasis and Other Inflammatory Disorders Promotes LDL Uptake and Atherosclerosis. J. Clin. Investig. 2024, 134, e172578. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Hu, Z.; Wei, X.; Wang, Z.; Guan, T.; Liu, N.; Liu, X.; Ye, N.; Deng, G.; Luo, C.; et al. IL-37 Ameliorates the Inflammatory Process in Psoriasis by Suppressing Proinflammatory Cytokine Production. J. Immunol. 2014, 192, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Madonna, S.; Girolomoni, G.; Dinarello, C.A.; Albanesi, C. The Significance of IL-36 Hyperactivation and IL-36R Targeting in Psoriasis. Int. J. Mol. Sci. 2019, 20, 3318. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Jia, Y.; Kan, X.; Chen, J.; Xu, J.; Xu, H.; Shao, S.; Ni, B.; Tang, J. Identification of ADAM23 as a Potential Signature for Psoriasis Using Integrative Machine-Learning and Experimental Verification. Int. J. Gen. Med. 2023, 16, 6051–6064. [Google Scholar] [CrossRef] [PubMed]
- Elizondo, D.M.; Andargie, T.E.; Marshall, K.M.; Zariwala, A.M.; Lipscomb, M.W. Dendritic Cell Expression of ADAM23 Governs T Cell Proliferation and Cytokine Production through the α(v)β(3) Integrin Receptor. J. Leukoc. Biol. 2016, 100, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Uva, L.; Miguel, D.; Pinheiro, C.; Antunes, J.; Cruz, D.; Ferreira, J.; Filipe, P. Mechanisms of Action of Topical Corticosteroids in Psoriasis. Int. J. Endocrinol. 2012, 2012, 561018. [Google Scholar] [CrossRef]
- Wang, F.; Stappenbeck, F.; Tang, L.-Y.; Zhang, Y.E.; Hui, S.T.; Lusis, A.J.; Parhami, F. Oxy210, a Semi-Synthetic Oxysterol, Exerts Anti-Inflammatory Effects in Macrophages via Inhibition of Toll-like Receptor (TLR) 4 and TLR2 Signaling and Modulation of Macrophage Polarization. Int. J. Mol. Sci. 2022, 23, 5478. [Google Scholar] [CrossRef]
- Huang, J.-H.; Lin, Y.-L.; Wang, L.-C.; Chiang, B.-L. M2-like Macrophages Polarized by Foxp3- Treg-of-B Cells Ameliorate Imiquimod-Induced Psoriasis. J. Cell Mol. Med. 2023, 27, 1477–1492. [Google Scholar] [CrossRef]
- Yang, L.; Fu, J.; Han, X.; Zhang, C.; Xia, L.; Zhu, R.; Huang, S.; Xiao, W.; Yu, H.; Gao, Y.; et al. Hsa_circ_0004287 Inhibits Macrophage-Mediated Inflammation in an N6-Methyladenosine-Dependent Manner in Atopic Dermatitis and Psoriasis. J. Allergy Clin. Immunol. 2022, 149, 2021–2033. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, Z.; Wang, J.; Xu, X.; Zhang, M.; Liang, Y.; Huang, Y.; Yu, Z.; Gong, Y.; Zhou, L.; et al. Engineering Extracellular Vesicles with Macrophage Membrane Fusion for Ameliorating Imiquimod-Induced Psoriatic Skin Inflammation. J. Dermatol. Treat. 2023, 34, 2220445. [Google Scholar] [CrossRef]
- Jiang, X.; Shi, R.; Ma, R.; Tang, X.; Gong, Y.; Yu, Z.; Shi, Y. The Role of microRNA in Psoriasis: A Review. Exp. Dermatol. 2023, 32, 1598–1612. [Google Scholar] [CrossRef]
- Masalha, M.; Sidi, Y.; Avni, D. The Contribution of Feedback Loops between miRNAs, Cytokines and Growth Factors to the Pathogenesis of Psoriasis. Exp. Dermatol. 2018, 27, 603–610. [Google Scholar] [CrossRef]
- Van Raemdonck, K.; Umar, S.; Palasiewicz, K.; Romay, B.; Volkov, S.; Arami, S.; Sweiss, N.; Shahrara, S. TLR7 Endogenous Ligands Remodel Glycolytic Macrophages and Trigger Skin-to-Joint Crosstalk in Psoriatic Arthritis. Eur. J. Immunol. 2021, 51, 714–720. [Google Scholar] [CrossRef]
- Lin, Z.-C.; Hung, C.-F.; Aljuffali, I.A.; Lin, M.-H.; Fang, J.-Y. RNA-Based Antipsoriatic Gene Therapy: An Updated Review Focusing on Evidence from Animal Models. Drug Des. Dev. Ther. 2024, 18, 1277–1296. [Google Scholar] [CrossRef]
- Nazimek, K.; Bryniarski, K.; Ptak, W.; Groot Kormelink, T.; Askenase, P.W. Orally Administered Exosomes Suppress Mouse Delayed-Type Hypersensitivity by Delivering miRNA-150 to Antigen-Primed Macrophage APC Targeted by Exosome-Surface Anti-Peptide Antibody Light Chains. Int. J. Mol. Sci. 2020, 21, 5540. [Google Scholar] [CrossRef]
- Nazimek, K.; Bustos-Morán, E.; Blas-Rus, N.; Nowak, B.; Ptak, W.; Askenase, P.W.; Sánchez-Madrid, F.; Bryniarski, K. Syngeneic Red Blood Cell-Induced Extracellular Vesicles Suppress Delayed-Type Hypersensitivity to Self-Antigens in Mice. Clin. Exp. Allergy 2019, 49, 1487–1499. [Google Scholar] [CrossRef]
- Nazimek, K.; Askenase, P.W.; Bryniarski, K. Antibody Light Chains Dictate the Specificity of Contact Hypersensitivity Effector Cell Suppression Mediated by Exosomes. Int. J. Mol. Sci. 2018, 19, 2656. [Google Scholar] [CrossRef] [PubMed]
- Nazimek, K.; Ptak, W.; Nowak, B.; Ptak, M.; Askenase, P.W.; Bryniarski, K. Macrophages Play an Essential Role in Antigen-Specific Immune Suppression Mediated by T CD8+ Cell-Derived Exosomes. Immunology 2015, 146, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Nazimek, K.; Bustos-Morán, E.; Blas-Rus, N.; Nowak, B.; Totoń-Żurańska, J.; Seweryn, M.T.; Wołkow, P.; Woźnicka, O.; Szatanek, R.; Siedlar, M.; et al. Antibodies Enhance the Suppressive Activity of Extracellular Vesicles in Mouse Delayed-Type Hypersensitivity. Pharmaceuticals 2021, 14, 734. [Google Scholar] [CrossRef]
- Wąsik, M.; Nazimek, K.; Nowak, B.; Askenase, P.W.; Bryniarski, K. Delayed-Type Hypersensitivity Underlying Casein Allergy Is Suppressed by Extracellular Vesicles Carrying miRNA-150. Nutrients 2019, 11, 907. [Google Scholar] [CrossRef]
- Bryniarski, K.; Ptak, W.; Jayakumar, A.; Püllmann, K.; Caplan, M.J.; Chairoungdua, A.; Lu, J.; Adams, B.D.; Sikora, E.; Nazimek, K.; et al. Antigen-Specific, Antibody-Coated, Exosome-like Nanovesicles Deliver Suppressor T-Cell microRNA-150 to Effector T Cells to Inhibit Contact Sensitivity. J. Allergy Clin. Immunol. 2013, 132, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Bryniarski, K.; Ptak, W.; Martin, E.; Nazimek, K.; Szczepanik, M.; Sanak, M.; Askenase, P.W. Free Extracellular miRNA Functionally Targets Cells by Transfecting Exosomes from Their Companion Cells. PLoS ONE 2015, 10, e0122991. [Google Scholar] [CrossRef] [PubMed]
- Caputo, V.; Strafella, C.; Cosio, T.; Lanna, C.; Campione, E.; Novelli, G.; Giardina, E.; Cascella, R. Pharmacogenomics: An Update on Biologics and Small-Molecule Drugs in the Treatment of Psoriasis. Genes 2021, 12, 1398. [Google Scholar] [CrossRef]
- Dodson, J.; Lio, P.A. Biologics and Small Molecule Inhibitors: An Update in Therapies for Allergic and Immunologic Skin Diseases. Curr. Allergy Asthma Rep. 2022, 22, 183–193. [Google Scholar] [CrossRef]
- Tseng, J.-C.; Chang, Y.-C.; Huang, C.-M.; Hsu, L.-C.; Chuang, T.-H. Therapeutic Development Based on the Immunopathogenic Mechanisms of Psoriasis. Pharmaceutics 2021, 13, 1064. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Tsai, T.-F. Anti-Interleukin and Interleukin Therapies for Psoriasis: Current Evidence and Clinical Usefulness. Ther. Adv. Musculoskelet. Dis. 2017, 9, 277–294. [Google Scholar] [CrossRef]
- Desplat-Jégo, S.; Burkly, L.; Putterman, C. Targeting TNF and Its Family Members in Autoimmune/Inflammatory Disease. Mediat. Inflamm. 2014, 2014, 628748. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, M.; Chen, X.; Sun, W. Etanercept Alleviates Psoriasis by Reducing the Th17/Treg Ratio and Promoting M2 Polarization of Macrophages. Immun. Inflamm. Dis. 2022, 10, e734. [Google Scholar] [CrossRef] [PubMed]
- Grän, F.; Kerstan, A.; Serfling, E.; Goebeler, M.; Muhammad, K. Current Developments in the Immunology of Psoriasis. Yale J. Biol. Med. 2020, 93, 97–110. [Google Scholar] [PubMed]
- Mehta, H.; Mashiko, S.; Angsana, J.; Rubio, M.; Hsieh, Y.-C.M.; Maari, C.; Reich, K.; Blauvelt, A.; Bissonnette, R.; Muñoz-Elías, E.J.; et al. Differential Changes in Inflammatory Mononuclear Phagocyte and T-Cell Profiles within Psoriatic Skin during Treatment with Guselkumab vs. Secukinumab. J. Investig. Dermatol. 2021, 141, 1707–1718.e9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, D.; Li, Z.; Luan, X.; Yang, J.; Tang, S.; Song, Y. A Nanoinhibitor Targeting cGAS-STING Pathway to Reverse the Homeostatic Imbalance of Inflammation in Psoriasis. Angew. Chem. Int. Ed. Engl. 2024, 63, e202316007. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, X.; Yuan, R.; Shen, A.; Wang, P.; Li, H.; Zhang, J.; Tian, C.; Jiang, Z.; Li, W.; et al. A Co-Assembly Platform Engaging Macrophage Scavenger Receptor A for Lysosome-Targeting Protein Degradation. Nat. Commun. 2024, 15, 1663. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.L.; Kumari, S.; Kaur, S.; Khosrotehrani, K. Macrophages in Skin Wounds: Functions and Therapeutic Potential. Biomolecules 2022, 12, 1659. [Google Scholar] [CrossRef]
- Jiang, W.; Zhu, F.-G.; Bhagat, L.; Yu, D.; Tang, J.X.; Kandimalla, E.R.; La Monica, N.; Agrawal, S. A Toll-like Receptor 7, 8, and 9 Antagonist Inhibits Th1 and Th17 Responses and Inflammasome Activation in a Model of IL-23-Induced Psoriasis. J. Investig. Dermatol. 2013, 133, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Bai, M.; Guo, M.; Li, Z.; Liu, W.; Fan, X.; Sun, R.; Yang, X.; Yuan, D.; Shi, Y.; et al. Inhibition of Serum- and Glucocorticoid-Regulated Protein Kinase-1 Aggravates Imiquimod-Induced Psoriatic Dermatitis and Enhances Proinflammatory Cytokine Expression through the NF-kB Pathway. J. Investig. Dermatol. 2023, 143, 954–964. [Google Scholar] [CrossRef]
- Lee, W.H.; Rho, J.G.; Yang, Y.; Lee, S.; Kweon, S.; Kim, H.-M.; Yoon, J.; Choi, H.; Lee, E.; Kim, S.H.; et al. Hyaluronic Acid Nanoparticles as a Topical Agent for Treating Psoriasis. ACS Nano 2022, 16, 20057–20074. [Google Scholar] [CrossRef]
- Leite Dantas, R.; Masemann, D.; Schied, T.; Bergmeier, V.; Vogl, T.; Loser, K.; Brachvogel, B.; Varga, G.; Ludwig, S.; Wixler, V. Macrophage-Mediated Psoriasis Can Be Suppressed by Regulatory T Lymphocytes. J. Pathol. 2016, 240, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Amalia, S.N.; Baral, H.; Fujiwara, C.; Uchiyama, A.; Inoue, Y.; Yamazaki, S.; Ishikawa, M.; Kosaka, K.; Sekiguchi, A.; Yokoyama, Y.; et al. TRPV4 Regulates the Development of Psoriasis by Controlling Adenosine Triphosphate Expression in Keratinocytes and the Neuroimmune System. J. Investig. Dermatol. 2023, 143, 2356–2365.e5. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, C.; Feng, F.; Hu, X.; Zhao, N.; Zhao, J.; Di, T.; Meng, Y.; Yang, D.; Zhu, H.; et al. Resveratrol Ameliorates Imiquimod-Induced Psoriasis-Like Mouse Model via Reducing Macrophage Infiltration and Inhibiting Glycolysis. J. Inflamm. Res. 2023, 16, 3823–3836. [Google Scholar] [CrossRef] [PubMed]
- Pinget, G.V.; Tan, J.; Niewold, P.; Mazur, E.; Angelatos, A.S.; King, N.J.C.; Macia, L. Immune Modulation of Monocytes Dampens the IL-17+ Γδ T Cell Response and Associated Psoriasis Pathology in Mice. J. Investig. Dermatol. 2020, 140, 2398–2407.e1. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Hu, S.; Lou, Z.; Gao, J. The Macrophage Polarization in Inflammatory Dermatosis and Its Potential Drug Candidates. Biomed. Pharmacother. 2023, 161, 114469. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-F.; Lin, M.-H.; Hung, C.-F.; Alshetaili, A.; Tsai, Y.-F.; Jhong, C.-L.; Fang, J.-Y. The Anti-Inflammatory Activity of Flavonoids and Alkaloids from Sophora Flavescens Alleviates Psoriasiform Lesions: Prenylation and Methoxylation Beneficially Enhance Bioactivity and Skin Targeting. Phytother. Res. 2024, 38, 1951–1970. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, H.-Y.; Zhong, X.-Q.; Lu, Y.; Wei, J.; Li, L.; Chen, H.; Lu, C.; Han, L. PSORI-CM02 Formula Alleviates Imiquimod-Induced Psoriasis via Affecting Macrophage Infiltration and Polarization. Life Sci. 2020, 243, 117231. [Google Scholar] [CrossRef]
- Tao, T.; Chen, Y.; Lai, B.; Wang, J.; Wang, W.; Xiao, W.; Cha, X. Shikonin Combined with Methotrexate Regulate Macrophage Polarization to Treat Psoriasis. Bioengineered 2022, 13, 11146–11155. [Google Scholar] [CrossRef]
- Takuathung, M.N.; Potikanond, S.; Sookkhee, S.; Mungkornasawakul, P.; Jearanaikulvanich, T.; Chinda, K.; Wikan, N.; Nimlamool, W. Anti-Psoriatic and Anti-Inflammatory Effects of Kaempferia Parviflora in Keratinocytes and Macrophage Cells. Biomed. Pharmacother. 2021, 143, 112229. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Lu, Y.; Sun, X.-Y.; Ze, K.; Zhou, Y.-Q.; Li, W.; Li, X.; Li, H.-J.; Li, B. Celastrol Gel Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis in Mice by Targeting Langerhans Cells. Biomed. Pharmacother. 2022, 147, 112644. [Google Scholar] [CrossRef]
- Kusuba, N.; Kitoh, A.; Dainichi, T.; Honda, T.; Otsuka, A.; Egawa, G.; Nakajima, S.; Miyachi, Y.; Kabashima, K. Inhibition of IL-17-Committed T Cells in a Murine Psoriasis Model by a Vitamin D Analogue. J. Allergy Clin. Immunol. 2018, 141, 972–981.e10. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Li, X.; Yin, Z.; Dai, Y.; Zhang, H.; Li, H.; Peng, C.; Chen, W. Yogurt Alleviates Imiquimod-Induced Psoriasis by Activating the Lactate/GPR81 Signaling Axis in Mice. J. Agric. Food Chem. 2024, 72, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, A.V.; Arnardottir, H.; Svirydava, M.; Ng, Q.; Baumer, Y.; Berg, A.; Pantoja, C.J.; Florida, E.M.; Teague, H.L.; Yang, Z.-H.; et al. Comparison of the Dietary Omega-3 Fatty Acids Impact on Murine Psoriasis-like Skin Inflammation and Associated Lipid Dysfunction. J. Nutr. Biochem. 2023, 117, 109348. [Google Scholar] [CrossRef] [PubMed]
- Ghoreschi, K.; Brück, J.; Kellerer, C.; Deng, C.; Peng, H.; Rothfuss, O.; Hussain, R.Z.; Gocke, A.R.; Respa, A.; Glocova, I.; et al. Fumarates Improve Psoriasis and Multiple Sclerosis by Inducing Type II Dendritic Cells. J. Exp. Med. 2011, 208, 2291–2303. [Google Scholar] [CrossRef]
- Chan, T.C.; Hawkes, J.E.; Krueger, J.G. Interleukin 23 in the Skin: Role in Psoriasis Pathogenesis and Selective Interleukin 23 Blockade as Treatment. Ther. Adv. Chronic Dis. 2018, 9, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Eberle, F.C.; Brück, J.; Holstein, J.; Hirahara, K.; Ghoreschi, K. Recent Advances in Understanding Psoriasis. F1000Res 2016, 5, F1000 Faculty Rev-770. [Google Scholar] [CrossRef] [PubMed]
- Kuraitis, D.; Rosenthal, N.; Boh, E.; McBurney, E. Macrophages in Dermatology: Pathogenic Roles and Targeted Therapeutics. Arch. Dermatol. Res. 2022, 314, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Tittes, J.; Brell, J.; Fritz, P.; Jonak, C.; Stary, G.; Ressler, J.M.; Künig, S.; Weninger, W.; Stöckl, J. Regulation of the Immune Cell Repertoire in Psoriasis Patients Upon Blockade of IL-17A or TNFα. Dermatol. Ther. 2024, 14, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Atmatzidis, D.H.; Lambert, W.C.; Lambert, M.W. Langerhans Cell: Exciting Developments in Health and Disease. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1817–1824. [Google Scholar] [CrossRef]
- Kim, J.H.; Hu, Y.; Tang, Y.; Kim, J.; Hughes, V.A.; Le Nours, J.; Marquez, E.A.; Purcell, A.W.; Wan, Q.; Sugita, M.; et al. CD1a on Langerhans Cells Controls Inflammatory Skin Disease. Nat. Immunol. 2016, 17, 1159–1166. [Google Scholar] [CrossRef]
Mouse Model | Strengths and Advantages | Limitations and Disadvantages |
---|---|---|
spontaneous | best reflects the keratinocyte pathology (e.g., hyperkeratosis), allows the study of cell migration to the skin | difficulties in investigating T cell involvement and drug activity |
genetically-modified strains | allows for detailed analysis of the role of individual genes and their products | does not reflect the polygenic basis of the disease and requires the use of expensive mouse strains |
induced with cytokines (e.g., IL-23) | enables detailed analysis of the role of a given cytokine and the downstream signaling pathway involving targeted immune cell populations, with little impact on animal welfare | limited to activation of a given signaling cascade and high costs |
induced with imiquimod | allows for detailed and multi-aspect analysis of pathomechanism at low costs and ease of use | induction of acute rather than chronic inflammation, with a transient but serious impact on animal welfare |
xenotransplantation | accurate reflection of the condition of the patient’s skin tissue, enabling assessment of the effectiveness of drug candidates | no possibility of inducing systemic inflammation, with a serious impact on animal welfare |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazimek, K.; Bryniarski, K. Macrophage Functions in Psoriasis: Lessons from Mouse Models. Int. J. Mol. Sci. 2024, 25, 5306. https://doi.org/10.3390/ijms25105306
Nazimek K, Bryniarski K. Macrophage Functions in Psoriasis: Lessons from Mouse Models. International Journal of Molecular Sciences. 2024; 25(10):5306. https://doi.org/10.3390/ijms25105306
Chicago/Turabian StyleNazimek, Katarzyna, and Krzysztof Bryniarski. 2024. "Macrophage Functions in Psoriasis: Lessons from Mouse Models" International Journal of Molecular Sciences 25, no. 10: 5306. https://doi.org/10.3390/ijms25105306
APA StyleNazimek, K., & Bryniarski, K. (2024). Macrophage Functions in Psoriasis: Lessons from Mouse Models. International Journal of Molecular Sciences, 25(10), 5306. https://doi.org/10.3390/ijms25105306