Endometrial Proliferative Phase-Centered View of Transcriptome Dynamics across the Menstrual Cycle
Abstract
:1. Introduction
2. Results
2.1. The Transcriptional Landscape of the Endometrial Cycle Unveiled Distinct Changes during the LP and MS Phases
2.2. Genomic Distribution of DEGs Identified Dynamic Patterns across the Endometrial Cycle
2.3. Functional Enrichment Exhibits Significant Alterations throughout the Endometrial Cycle
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Endometrial Biopsies and RNA Extraction
4.3. RNA Sequencing and Bioinformatics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noyes, R.W.; Hertig, A.T.; Rock, J. Dating the endometrial biopsy. Am. J. Obstet. Gynecol. 1975, 122, 262–263. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Bernal, M.A.; Fazleabas, A.T. Physiologic Events of Embryo Implantation and Decidualization in Human and Non-Human Primates. Int. J. Mol. Sci. 2020, 21, 1973. [Google Scholar] [CrossRef] [PubMed]
- Ben Rafael, Z. Endometrial Receptivity Analysis (ERA) test: An unproven technology. Hum. Reprod. Open 2021, 2021, hoab010. [Google Scholar] [CrossRef] [PubMed]
- Suhorutshenko, M.; Kukushkina, V.; Velthut-Meikas, A.; Altmäe, S.; Peters, M.; Mägi, R.; Krjutškov, K.; Koel, M.; Codoñer, F.M.; Martinez-Blanch, J.F.; et al. Endometrial receptivity revisited: Endometrial transcriptome adjusted for tissue cellular heterogeneity. Hum. Reprod. 2018, 33, 2074–2086. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.R.; McGrane, M.; Aplin, J.D.; Brison, D.R.; Ruane, P.T. A systematic review of transcriptomic studies of the human endometrium reveals inconsistently reported differentially expressed genes. Reprod. Fertil. 2023, 4, e220115. [Google Scholar] [CrossRef] [PubMed]
- Kao, L.C.; Tulac, S.; Lobo, S.; Imani, B.; Yang, J.P.; Germeyer, A.; Osteen, K.; Taylor, R.N.; Lessey, B.A.; Giudice, L.C. Global Gene Profiling in Human Endometrium during the Window of Implantation. Endocrinology 2002, 143, 2119–2138. [Google Scholar] [CrossRef] [PubMed]
- Talbi, S.; Hamilton, A.E.; Vo, K.C.; Tulac, S.; Overgaard, M.T.; Dosiou, C.; Le Shay, N.; Nezhat, C.N.; Kempson, R.; Lessey, B.A.; et al. Molecular Phenotyping of Human Endometrium Distinguishes Menstrual Cycle Phases and Underlying Biological Processes in Normo-Ovulatory Women. Endocrinology 2006, 147, 1097–1121. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, A.Y.; Andrade, P.M.; Villanova, F.E.; Borra, R.C.; Silva, I.D.C.G. Human endometrium mRNA profile assessed by oligonucleotide three-dimensional microarray. Gynecol. Endocrinol. 2007, 23, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Haouzi, D.; Mahmoud, K.; Fourar, M.; Bendhaou, K.; Dechaud, H.; De Vos, J.; Reme, T.; Dewailly, D.; Hamamah, S. Identification of new biomarkers of human endometrial receptivity in the natural cycle. Hum. Reprod. 2008, 24, 198–205. [Google Scholar] [CrossRef]
- Mirkin, S.; Arslan, M.; Churikov, D.; Corica, A.; Diaz, J.; Williams, S.; Bocca, S.; Oehninger, S. In search of candidate genes critically expressed in the human endometrium during the window of implantation. Hum. Reprod. 2005, 20, 2104–2117. [Google Scholar] [CrossRef]
- Hu, S.; Yao, G.; Wang, Y.; Xu, H.; Ji, X.; He, Y.; Zhu, Q.; Chen, Z.; Sun, Y. Transcriptomic Changes During the Pre-Receptive to Receptive Transition in Human Endometrium Detected by RNA-Seq. J. Clin. Endocrinol. Metab. 2014, 99, E2744–E2753. [Google Scholar] [CrossRef] [PubMed]
- Sigurgeirsson, B.; Åmark, H.; Jemt, A.; Ujvari, D.; Westgren, M.; Lundeberg, J.; Gidlöf, S. Comprehensive RNA sequencing of healthy human endometrium at two time points of the menstrual cycle †. Biol. Reprod. 2016, 96, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vilella, F.; Alama, P.; Moreno, I.; Mignardi, M.; Isakova, A.; Pan, W.; Simon, C.; Quake, S.R. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat. Med. 2020, 26, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alonso, L.; Handfield, L.-F.; Roberts, K.; Nikolakopoulou, K.; Fernando, R.C.; Gardner, L.; Woodhams, B.; Arutyunyan, A.; Polanski, K.; Hoo, R.; et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet. 2021, 53, 1698–1711. [Google Scholar] [CrossRef] [PubMed]
- Altmäe, S.; Koel, M.; Võsa, U.; Adler, P.; Suhorutšenko, M.; Laisk-Podar, T.; Kukushkina, V.; Saare, M.; Velthut-Meikas, A.; Krjutškov, K.; et al. Meta-signature of human endometrial receptivity: A meta-analysis and validation study of transcriptomic biomarkers. Sci. Rep. 2017, 7, 10077. [Google Scholar] [CrossRef] [PubMed]
- Petracco, R.G.; Kong, A.; Grechukhina, O.; Krikun, G.; Taylor, H.S. Global Gene Expression Profiling of Proliferative Phase Endometrium Reveals Distinct Functional Subdivisions. Reprod. Sci. 2012, 19, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, R.; Wang, R.; Huang, H.-X.; Zhong, K. Local injury to the endometrium in controlled ovarian hyperstimulation cycles improves implantation rates. Fertil. Steril. 2008, 89, 1166–1176. [Google Scholar] [CrossRef] [PubMed]
- Koot, Y.E.M.; van Hooff, S.R.; Boomsma, C.M.; van Leenen, D.; Koerkamp, M.J.A.G.; Goddijn, M.; Eijkemans, M.J.C.; Fauser, B.C.J.M.; Holstege, F.C.P.; Macklon, N.S. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci. Rep. 2016, 6, 19411. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gimeno, P.; Horcajadas, J.A.; Martinez-Conejero, J.A.; Esteban, F.J.; Alama, P.; Pellicer, A.; Simon, C. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil. Steril. 2011, 95, 50–60.e15. [Google Scholar] [CrossRef]
- Marzluff, W.F.; Gongidi, P.; Woods, K.R.; Jin, J.; Maltais, L.J. The Human and Mouse Replication-Dependent Histone Genes. Genomics 2002, 80, 487–498. [Google Scholar] [CrossRef]
- Critchley, H.O.D.; Maybin, J.A.; Armstrong, G.M.; Williams, A.R.W. Physiology of the Endometrium and Regulation of Men-struation. Physiol. Rev. 2020, 100, 1149–1179. [Google Scholar] [CrossRef]
- Munro, S.K.; Farquhar, C.M.; Mitchell, M.D.; Ponnampalam, A.P. Epigenetic regulation of endometrium during the menstrual cycle. Mol. Hum. Reprod. 2010, 16, 297–310. [Google Scholar] [CrossRef]
- Gujral, P.; Mahajan, V.; Lissaman, A.C.; Ponnampalam, A.P. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod. Biol. Endocrinol. 2020, 18, 84. [Google Scholar] [CrossRef]
- Huang, Z.-H.; Du, Y.-P.; Wen, J.-T.; Lu, B.-F.; Zhao, Y. snoRNAs: Functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 2022, 8, 259. [Google Scholar] [CrossRef]
- Tseng, L.-H.; Chen, I.; Chen, M.-Y.; Yan, H.; Wang, C.-N.; Lee, C.-L. Genome-based expression profiling as a single standardized microarray platform for the diagnosis of endometrial disorder: An array of 126-gene model. Fertil. Steril. 2010, 94, 114–119. [Google Scholar] [CrossRef]
- Bolumar, D.; Moncayo-Arlandi, J.; Gonzalez-Fernandez, J.; Ochando, A.; Moreno, I.; Marin, C.; Diez, A.; Fabra, P.; Checa, M.Á.; Espinos, J.J.; et al. Vertical Transmission of Maternal Mitochondrial DNA through Extracellular Vesicles Modulates Embryo Bioenergetics. eLife 2023, 12, RP88008. [Google Scholar] [CrossRef]
- Zhai, J.; Li, S.; Hu, J.; Gao, M.; Sun, Y.; Chen, Z.-J.; Giudice, L.C.; Du, Y. In Silico, In Vitro, and In Vivo Analysis Identifies Endometrial Circadian Clock Genes in Recurrent Implantation Failure. J. Clin. Endocrinol. Metab. 2021, 106, 2077–2091. [Google Scholar] [CrossRef]
- Maekawa, R.; Taketani, T.; Mihara, Y.; Sato, S.; Okada, M.; Tamura, I.; Jozaki, K.; Kajimura, T.; Asada, H.; Tamura, H.; et al. Thin endometrium transcriptome analysis reveals a potential mechanism of implantation failure. Reprod. Med. Biol. 2017, 16, 206–227. [Google Scholar] [CrossRef]
- Culleton, J.; O’Brien, N.; Ryan, B.M.; Hill, A.D.; McDermott, E.; O’Higgins, N.; Duffy, M.J. Lipophilin B: A gene preferentially expressed in breast tissue and upregulated in breast cancer. Int. J. Cancer 2006, 120, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Riesewijk, A.; Martín, J.; van Os, R.; Horcajadas, J.A.; Polman, J.; Pellicer, A.; Mosselman, S.; Simón, C. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol. Hum. Reprod. 2003, 9, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Sun, Z.; Li, B.; Zhao, H.; Wang, Y.; Yao, G.; Li, X.; Bian, X.; Li, T.C.; Vankelecom, H.; et al. iTRAQ-based Proteomic Analysis Unveils ACSL4 as a Novel Potential Regulator of Human Endometrial Receptivity. Endocrinology 2023, 164, bqad012. [Google Scholar] [CrossRef]
- Gaware, V.; Kotade, K.; Dhamak, K.; Somawanshi, S. Ceruloplasmin its role and significance: A review. Int. J. Biomed. Res. 2011, 1, 153–162. [Google Scholar] [CrossRef]
- Hood, B.L.; Liu, B.; Alkhas, A.; Shoji, Y.; Challa, R.; Wang, G.; Ferguson, S.; Oliver, J.; Mitchell, D.; Bateman, N.W.; et al. Proteomics of the Human Endometrial Glandular Epithelium and Stroma from the Proliferative and Secretory Phases of the Menstrual Cycle1. Biol. Reprod. 2015, 92, 106. [Google Scholar] [CrossRef]
- Chen, Q.; Xin, A.; Qu, R.; Zhang, W.; Li, L.; Chen, J.; Lu, X.; Gu, Y.; Li, J.; Sun, X. Expression of ENPP3 in human cyclic endometrium: A novel molecule involved in embryo implantation. Reprod. Fertil. Dev. 2018, 30, 1277–1285. [Google Scholar] [CrossRef]
- Boggavarapu, N.R.; Lalitkumar, S.; Joshua, V.; Kasvandik, S.; Salumets, A.; Lalitkumar, P.G.; Gemzell-Danielsson, K. Compartmentalized gene expression profiling of receptive endometrium reveals progesterone regulated ENPP3 is differentially expressed and secreted in glycosylated form. Sci. Rep. 2016, 6, srep33811. [Google Scholar] [CrossRef]
- Kozlov, A. D-101 Expression of evolutionarily novel genes in tumors—The possible role of tumors in evolution. Am. J. Ther. 2019, 81, 39. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, B. Evolutionary Origin and Human-Specific Expansion of a Cancer/Testis Antigen Gene Family. Mol. Biol. Evol. 2014, 31, 2365–2375. [Google Scholar] [CrossRef]
- Koch, J.; Dübel, S.; Usener, D.; Schadendorf, D.; Eichmüller, S. cTAGE: A Cutaneous T Cell Lymphoma Associated Antigen Family with Tumor-Specific Splicing. J. Investig. Dermatol. 2003, 121, 198–206. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Karin, M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010, 21, 11–19. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, M.; Kumar, S.; Zhu, L.-J.; Chen, D.; Bagchi, M.K.; Bagchi, I.C. Identification and Implantation Stage-Specific Expression of an Interferon-α-Regulated Gene in Human and Rat Endometrium. Endocrinology 2001, 142, 2390–2400. [Google Scholar] [CrossRef]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, Interferon-like Cytokines, and Their Receptors. Immunol Rev 2004, 202. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Han, S.J. Interferon Signaling in the Endometrium and in Endometriosis. Biomolecules 2022, 12, 1554. [Google Scholar] [CrossRef] [PubMed]
- Wira, C.R.; Rodriguez-Garcia, M.; Patel, M.V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 2015, 15, 217–230. [Google Scholar] [CrossRef] [PubMed]
- D’Hauterive, S.P.; Charlet-Renard, C.; Berndt, S.; Dubois, M.; Munaut, C.; Goffin, F.; Hagelstein, M.-T.; Noël, A.; Hazout, A.; Foidart, J.-M.; et al. Human chorionic gonadotropin and growth factors at the embryonic–endometrial interface control leukemia inhibitory factor (LIF) and interleukin 6 (IL-6) secretion by human endometrial epithelium. Hum. Reprod. 2004, 19, 2633–2643. [Google Scholar] [CrossRef]
- Shen, Z.; Rodriguez-Garcia, M.; Patel, M.V.; Wira, C.R. Direct and Indirect endocrine-mediated suppression of human endometrial CD8+T cell cytotoxicity. Sci. Rep. 2021, 11, 1773. [Google Scholar] [CrossRef]
- Kitazawa, J.; Kimura, F.; Nakamura, A.; Morimune, A.; Takahashi, A.; Takashima, A.; Amano, T.; Tsuji, S.; Kaku, S.; Kasahara, K.; et al. Endometrial Immunity for Embryo Implantation and Pregnancy Establishment. Tohoku J. Exp. Med. 2020, 250, 49–60. [Google Scholar] [CrossRef]
- Lobo, S.C.; Huang, S.J.; Germeyer, A.; Dosiou, C.; Vo, K.C.; Tulac, S.; Nayak, N.R.; Giudice, L.C. The Immune Environment in Human Endometrium during the Window of Implantation. Am. J. Reprod. Immunol. 2004, 52, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. Hisat2. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. feature Counts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Cheng, X.; Yan, J.; Liu, Y.; Wang, J.; Taubert, S. eVITTA: A web-based visualization and inference toolbox for transcriptome analysis. Nucleic Acids Res. 2021, 49, W207–W215. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Son, E.W.; Yao, R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform. 2018, 19, 534. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
Gene Name | log2 FC | P adj | Study |
---|---|---|---|
MS vs. MP | |||
ATP12A | 10.67 | 8.93 × 10−11 | [12] |
GLYATL3 * | 9.02 | 1.39 × 10−8 | [11,12] |
SULT1E1 | 8.93 | 8.52 × 10−14 | [12] |
PLA2G2A | 8.52 | 7.36 × 10−6 | [6,11,12] |
CYP26A1 | 8.42 | 2.01 × 10−32 | [11,12] |
GAST | 8.27 | 6.37 × 10−5 | [11,12,19] |
LRRC26 | 8.15 | 1.46 × 10−10 | [11] |
MT1H | 8.13 | 9.43 × 10−27 | [11,12,19] |
PLA2G4F | 8.06 | 5.05 × 10−30 | [11,12] |
MT1HL1 | 7.88 | 4.04 × 10−10 | - |
IGFN1 | −7.35 | 1.27 × 10−28 | [11,12] |
CDH4 * | −6.23 | 1.14 × 10−7 | [11] |
CSMD3 | −6.2 | 1.84 × 10−14 | [12] |
DPP10 | −6.07 | 1.74 × 10−13 | [12] |
LINC03010 * | −6.02 | 1.00 × 10−4 | - |
GAPDHP71 | −5.95 | 1.02 × 10−6 | - |
ASIC2 | −5.9 | 2.25 × 10−9 | [11,12] |
ECEL1P2 * | −5.85 | 8.07 × 10−21 | - |
BPIFB1 * | −5.83 | 1.87 × 10−5 | - |
SERPINB3 * | −5.83 | 2.66 × 10−4 | - |
LP vs. MP | |||
RNA5-8SN3 * | 7.61 | 2.38 × 10−5 | - |
SNORD14B * | 6.19 | 1.93 × 10−12 | - |
FRG1 | 6.08 | 3.24 × 10−4 | - |
NLGN4Y | 6.06 | 2.10 × 10−2 | - |
SNORA63C * | 5.80 | 5.43 × 10−5 | - |
PLA2G4F | 5.80 | 9.48 × 10−4 | - |
GLRXP2 | 5.74 | 6.36 × 10−4 | - |
TRPC6P8 * | 5.48 | 1.10 × 10−3 | - |
BRDTP1 * | 5.43 | 2.02 × 10−4 | - |
HMGCS2 | 5.36 | 7.80 × 10−4 | - |
PPBP * | −5.89 | 5.64 × 10−3 | - |
LRRC15 * | −5.02 | 3.99 × 10−5 | - |
TRGJP2 * | −4.98 | 1.05 × 10−2 | - |
TCL1A | −4.73 | 3.28 × 10−2 | - |
CCL22 | −4.55 | 6.42 × 10−7 | - |
FOSB * | −4.46 | 1.67 × 10−4 | - |
KRTAP10-12 | −4.33 | 3.92 × 10−2 | - |
CEACAM5 | −4.27 | 6.35 × 10−3 | - |
CD70 * | −4.24 | 4.01 × 10−2 | - |
FOS * | −4.11 | 4.45 × 10−7 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolov, A.; Naydenov, M.; Kalinina, A.; Nikolova, M.; Saare, M.; Aleksejeva, E.; Milova, N.; Milov, A.; Salumets, A.; Baev, V.; et al. Endometrial Proliferative Phase-Centered View of Transcriptome Dynamics across the Menstrual Cycle. Int. J. Mol. Sci. 2024, 25, 5320. https://doi.org/10.3390/ijms25105320
Apostolov A, Naydenov M, Kalinina A, Nikolova M, Saare M, Aleksejeva E, Milova N, Milov A, Salumets A, Baev V, et al. Endometrial Proliferative Phase-Centered View of Transcriptome Dynamics across the Menstrual Cycle. International Journal of Molecular Sciences. 2024; 25(10):5320. https://doi.org/10.3390/ijms25105320
Chicago/Turabian StyleApostolov, Apostol, Mladen Naydenov, Aive Kalinina, Maria Nikolova, Merli Saare, Elina Aleksejeva, Nadezhda Milova, Antoan Milov, Andres Salumets, Vesselin Baev, and et al. 2024. "Endometrial Proliferative Phase-Centered View of Transcriptome Dynamics across the Menstrual Cycle" International Journal of Molecular Sciences 25, no. 10: 5320. https://doi.org/10.3390/ijms25105320
APA StyleApostolov, A., Naydenov, M., Kalinina, A., Nikolova, M., Saare, M., Aleksejeva, E., Milova, N., Milov, A., Salumets, A., Baev, V., & Yahubyan, G. (2024). Endometrial Proliferative Phase-Centered View of Transcriptome Dynamics across the Menstrual Cycle. International Journal of Molecular Sciences, 25(10), 5320. https://doi.org/10.3390/ijms25105320