Blap-6, a Novel Antifungal Peptide from the Chinese Medicinal Beetle Blaps rhynchopetera against Cryptococcus neoformans
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Property
2.2. Hydrophobicity and Structure of Blap-6
2.3. Sequence Alignment and Phylogenetic Analysis
2.4. Antimicrobial Activity of Predicted Peptides
2.5. Killing Kinetics of Blap-6 against C. neoformans
2.6. Effects of Blap-6 on Biofilm
2.7. Mechanism of Blap-6 in C. neoformans Biofilm
2.8. Hemolysis and Cytotoxicity Assays
2.9. Plasma and Protease Stability
3. Discussion
4. Materials and Methods
4.1. Collection of Hemolymph of B. rhynchopetera and Transcriptome Sequencing
4.2. Antimicrobial Peptide Identification, Prediction, and Synthesis
4.3. Structure Prediction
4.4. Sequence Alignment and Phylogenetic Analysis
4.5. Bacteria and Fungi Preparation and Growth Condition
4.6. Determination of the Minimum Inhibitory Concentration
4.7. Transmission Electron Microscope (TEM)
4.8. Fungal-Killing Kinetics
4.9. Biofilm Inhibition
4.10. Biofilm Eradication
4.11. Two-Photon Laser Scanning Microscope (TPLSM)
4.12. Membrane Potential
4.13. Reactive Oxygen Species (ROS) Detection
4.14. Hemolytic Activity
4.15. Cell Cytotoxicity
4.16. Plasma Stability
4.17. The Effects of Protease on Blap-6
4.18. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemalatha, K.; Madhumitha, G.; Ravi, L.; Khanna, V.G.; Al-Dhabi, N.A.; Arasu, M.V. Binding mode of dihydroquinazolinones with lysozyme and its antifungal activity against Aspergillus species. J. Photochem. Photobiol. B 2016, 161, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Littman, M.L.; Borok, R. Relation of the pigeon to cryptococcosis: Natural carrier state, heat resistance and survival of Cryptococcus neoformans. Mycopathol. Mycol. Appl. 1968, 35, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Kamari, A.; Sepahvand, A.; Mohammadi, R. Isolation and molecular characterization of Cryptococcus species isolated from pigeon nests and Eucalyptus trees. Curr. Med. Mycol. 2017, 3, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Kronstad, J.W.; Attarian, R.; Cadieux, B.; Choi, J.; D’Souza, C.A.; Griffiths, E.J.; Geddes, J.M.; Hu, G.; Jung, W.H.; Kretschmer, M.; et al. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat. Rev. Microbiol. 2011, 9, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, E.J., 3rd; Bartlett, K.H.; Perfect, J.R.; Heitman, J. Cryptococcus gattii: An emerging fungal pathogen infecting humans and animals. Microbes. Infect. 2011, 13, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Bratton, E.W.; El Husseini, N.K.; Chastain, C.A.; Lee, M.S.; Poole, C.; Stürmer, T.; Juliano, J.J.; Weber, D.J.; Perfect, J.R. Comparison and temporal trends of three groups with cryptococcosis: HIV-infected, solid organ transplant, and HIV-negative/non-transplant. PLoS ONE 2012, 7, e43582. [Google Scholar] [CrossRef]
- Beardsley, J.; Sorrell, T.C.; Chen, S.C. Central nervous system cryptococcal infections in non-HIV infected patients. J. Fungi 2019, 5, 71. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zou, M.; Yin, J.; Liu, Z.; Lu, B. Microbiological, epidemiological, and clinical characteristics of patients with cryptococcal meningitis at a tertiary hospital in China: A 6-year retrospective analysis. Front. Microbiol. 2020, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef]
- Gutch, R.S.; Nawange, S.R.; Singh, S.M.; Yadu, R.; Tiwari, A.; Gumasta, R.; Kavishwar, A. Antifungal susceptibility of clinical and environmental Cryptococcus neoformans and Cryptococcus gattii isolates in Jabalpur, a city of Madhya Pradesh in central India. Braz. J. Microbiol. 2015, 46, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, C.; Lv, X.; Tang, X.; Zhao, X.; Yan, H.; Jiang, H.; Wang, X. Discovery of ferrocene-carborane derivatives as novel chemical antimicrobial agents against multidrug-resistant bacteria. Sci. China. Chem. 2012, 55, 2388–2395. [Google Scholar] [CrossRef]
- Manniello, M.D.; Moretta, A.; Salvia, R.; Scieuzo, C.; Lucchetti, D.; Vogel, H.; Sgambato, A.; Falabella, P. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 2021, 78, 4259–4282. [Google Scholar] [CrossRef] [PubMed]
- Faye, I.; Pye, A.; Rasmuson, T.; Boman, H.G.; Boman, I.A. Insect immunity. 11. Simultaneous induction of antibacterial activity and selection synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect. Immun. 1975, 12, 1426–1438. [Google Scholar] [CrossRef] [PubMed]
- Imler, J.L.; Bulet, P. Antimicrobial peptides in Drosophila: Structures, activities and gene regulation. Chem. Immunol. Allergy 2005, 86, 1–21. [Google Scholar] [PubMed]
- Xu, P.; Shi, M.; Chen, X.-x. Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana. PLoS ONE 2009, 4, e4239. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Zhao, P.; Liu, C.; Xu, P.; Gao, Z.; Xia, Q.; Xiang, Z. Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 2006, 87, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016, 4, 90–101. [Google Scholar]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Wang, K.F.; Nagarajan, R.; Camesano, T.A. Differentiating antimicrobial peptides interacting with lipid bilayer: Molecular signatures derived from quartz crystal microbalance with dissipation monitoring. Biophy. Chem. 2015, 196, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Rinaldi, A.; Rufo, A.; Bozzi, A.; Kinnunen, P.; Di Giulio, A. Structural and Charge Requirements for Antimicrobial Peptide Insertion into Biological and Model Membranes, 1st ed.; Harwood Academic Publishers: New York, NY, USA, 2003; pp. 151–177. [Google Scholar]
- Thangudu, R.R.; Manoharan, M.; Srinivasan, N.; Cadet, F.; Sowdhamini, R.; Offmann, B. Analysis on conservation of disulphide bonds and their structural features in homologous protein domain families. BMC Struct. Biol. 2008, 8, 55. [Google Scholar] [CrossRef]
- Yun, J.; Lee, D.G. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life 2016, 68, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Fehlbaum, P.; Bulet, P.; Chernysh, S.; Briand, J.P.; Roussel, J.P.; Letellier, L.; Hetru, C.; Hoffmann, J.A. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 1996, 93, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Casteels, P.; Ampe, C.; Jacobs, F.; Vaeck, M.; Tempst, P. Apidaecins: Antibacterial peptides from honeybees. Embo J. 1989, 8, 2387–2391. [Google Scholar] [CrossRef] [PubMed]
- Hultmark, D.; Engström, A.; Andersson, K.; Steiner, H.; Bennich, H.; Boman, H.G. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. Embo J. 1983, 2, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003, 3, 710–720. [Google Scholar] [CrossRef]
- Ratcliffe, N.A.; Mello, C.B.; Garcia, E.S.; Butt, T.M.; Azambuja, P. Insect natural products and processes: New treatments for human disease. Insect Biochem. Mol. Biol. 2011, 41, 747–769. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Wang, C.Y.; Sun, L.; Feng, Y. Mitochondrial genome of a medicinal beetle Blaps rhynchopetera (Coleoptera, Tenebrionidae) and phylogenetic analysis. Mitochondrial DNA Part B 2019, 4, 2583–2584. [Google Scholar] [CrossRef]
- Xu, F.; Huang, Y.; Liu, C.; Cai, X.; Ji, Z.; Sun, M.; Ding, S.; Gu, D.; Yang, Y. Rapid analysis of chemical composition in the active extract against α-amylase from Blaps rynchopetera fairmaire by GC-MS and in silico theoretical explanation. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 469–474. [Google Scholar] [CrossRef]
- Zhang, J.; Ling, X.; Cui, Y.; Chen, H. Current status and prospects of insect industrialization in China. Life Res. 2023, 6, 10. [Google Scholar] [CrossRef]
- Zhang, L.M.; Yang, M.; Zhou, S.W.; Zhang, H.; Feng, Y.; Shi, L.; Li, D.S.; Lu, Q.M.; Zhang, Z.H.; Zhao, M. Blapstin, a diapause-specific peptide-like peptide from the Chinese medicinal beetle Blaps rhynchopetera, has antifungal function. Microbiol. Spectr. 2023, 11, e0308922. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Guo, Z.; Xia, B.; Zhang, Y.; Liu, X.; Yu, Y.; Tang, N.; Tong, X.; Wang, M.; Ye, X.; et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat. Biotechnol. 2022, 40, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Zuegg, J.; Blaskovich, M.A.T.; Cooper, M.A. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect. 2016, 2, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Dimarcq, J.L.; Bulet, P.; Hetru, C.; Hoffmann, J. Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 1998, 47, 465–477. [Google Scholar] [CrossRef]
- Lamberty, M.; Zachary, D.; Lanot, R.; Bordereau, C.; Robert, A.; Hoffmann, J.A.; Bulet, P. Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J. Biol. Chem. 2001, 276, 4085–4092. [Google Scholar] [CrossRef] [PubMed]
- Lamberty, M.; Caille, A.; Landon, C.; Tassin-Moindrot, S.; Hetru, C.; Bulet, P.; Vovelle, F. Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 2001, 40, 11995–12003. [Google Scholar] [CrossRef]
- Yang, W.Y.; Wen, S.Y.; Huang, Y.D.; Ye, M.Q.; Deng, X.J.; Han, D.; Xia, Q.Y.; Cao, Y. Functional divergence of six isoforms of antifungal peptide Drosomycin in Drosophila melanogaster. Gene 2006, 379, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Zhao, H.; Wang, H.; Bian, J.; Zheng, R. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis. Toxicon 2010, 56, 101–106. [Google Scholar] [CrossRef]
- Hwang, J.S.; Lee, J.; Kim, Y.J.; Bang, H.S.; Yun, E.Y.; Kim, S.R.; Suh, H.J.; Kang, B.R.; Nam, S.H.; Jeon, J.P.; et al. Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, Copris tripartitus. Int. J. Pept. 2009, 2009, 136284. [Google Scholar] [CrossRef]
- Cornet, B.; Bonmatin, J.M.; Hetru, C.; Hoffmann, J.A.; Ptak, M.; Vovelle, F. Refined three-dimensional solution structure of insect defensin A. Structure 1995, 3, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, N.; Lowenberger, C.; Volf, P.; Ursic, R.; Sigutova, L.; Sabatier, L.; Svobodova, M.; Beverley, S.M.; Späth, G.; Brun, R.; et al. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect. Immun. 2004, 72, 7140–7146. [Google Scholar] [CrossRef] [PubMed]
- Schuhmann, B.; Seitz, V.; Vilcinskas, A.; Podsiadlowski, L. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect. Biochem. Physiol. 2003, 53, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Freed, S.; Gao, Y.F.; Jin, F.L.; Ju, W.Y.; Ouyang, L.N.; Wang, S.; Xu, X.X.; Yu, J.; Zhang, Y.Q. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis. Bull. Entomol. Res. 2016, 106, 790–800. [Google Scholar]
- Chen, S.-Y.; Chang, C.-K.; Lan, C.-Y. Antimicrobial peptide LL-37 disrupts plasma membrane and calcium homeostasis in Candida albicans via the Rim101 pathway. Microbiol. Spectrum. 2023, 11, e02551-23. [Google Scholar] [CrossRef] [PubMed]
- Athanasopoulou, K.; Daneva, G.N.; Adamopoulos, P.G.; Scorilas, A. Artificial Intelligence: The milestone in modern biomedical research. BioMedInformatics 2022, 2, 727–744. [Google Scholar] [CrossRef]
- Bhardwaj, K.K.; Banyal, S.; Sharma, D.K. Chapter 7—Artificial intelligence based diagnostics, therapeutics and applications in biomedical engineering and bioinformatics. In Internet of Things in Biomedical Engineering; Academic Press: New York, NY, USA, 2019; pp. 161–187. [Google Scholar]
- Sberro, H.; Fremin, B.J.; Zlitni, S.; Edfors, F.; Greenfield, N.; Snyder, M.P.; Pavlopoulos, G.A.; Kyrpides, N.C.; Bhatt, A.S. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 2019, 178, 1245–1259.e14. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Ren, H.; Lu, Y.; Fang, C.; Hou, G.; Yang, Z.; Chen, B.; Yang, F.; Zhao, Y.; Shi, Z.; et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine 2019, 47, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Fjell, C.D.; Hancock, R.E.; Cherkasov, A. AMPer: A database and an automated discovery tool for antimicrobial peptides. Bioinformatics 2007, 23, 1148–1155. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A database linking antimicrobial peptides. PLoS ONE 2013, 8, e66557. [Google Scholar] [CrossRef]
- Borchardt, R.T. Optimizing oral absorption of peptides using prodrug strategies. J. Control. Release 1999, 62, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Glocker, M.O.; Borchers, C.; Fiedler, W.; Suckau, D.; Przybylski, M. Molecular characterization of surface topology in protein tertiary structures by amino-acylation and mass spectrometric peptide mapping. Bioconjugate Chem. 1994, 5, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Xie, H.; Zhang, E.-L.; Ma, X.; Chen, J.; Yu, X.-C.; Li, H. Selective catalytic Hofmann N-alkylation of poor nucleophilic amines and amides with catalytic amounts of alkyl halides. Green. Chem. 2016, 18, 3940–3944. [Google Scholar] [CrossRef]
- Deming, T.J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786–808. [Google Scholar] [CrossRef]
- Pfaller, M.A. Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 2012, 125, S3–S13. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, D.; Watanabe, A.; Kamei, K.; Goldman, G.H. Epidemiological and genomic landscape of azole resistance mechanisms in Aspergillus fungi. Front. Microbiol. 2016, 7, 1382. [Google Scholar] [CrossRef]
- Paul, S.; Moye-Rowley, W.S. Multidrug resistance in fungi: Regulation of transporter-encoding gene expression. Front. Physiol. 2014, 5, 143. [Google Scholar] [CrossRef] [PubMed]
- Meister, M.; Lemaitre, B.; Hoffmann, J.A. Antimicrobial peptide defense in Drosophila. Bioessays 1997, 19, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Shia, A.K.; Glittenberg, M.; Thompson, G.; Weber, A.N.; Reichhart, J.M.; Ligoxygakis, P. Toll-dependent antimicrobial responses in Drosophila larval fat body require Spätzle secreted by haemocytes. J. Cell Sci. 2009, 122, 4505–4515. [Google Scholar] [CrossRef] [PubMed]
- Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K.O. The roles of antimicrobial peptides in innate host defense. Curr. Pharm. Des. 2009, 15, 2377–2392. [Google Scholar] [CrossRef]
- Saravanan, R.; Li, X.; Lim, K.; Mohanram, H.; Peng, L.; Mishra, B.; Basu, A.; Lee, J.M.; Bhattacharjya, S.; Leong, S.S. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Biotechnol. Bioeng. 2014, 111, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Sabiiti, W.; May, R.C.; Pursall, E.R. Experimental models of cryptococcosis. Int. J. Microbiol. 2012, 2012, 626745. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Desai, G.M.; Frases, S.; Cordero, R.J.; DeLeon-Rodriguez, C.M.; Eugenin, E.A.; Nosanchuk, J.D.; Martinez, L.R. Methamphetamine enhances Cryptococcus neoformans pulmonary infection and dissemination to the brain. mBio 2013, 4, e00400-13. [Google Scholar] [CrossRef]
- Haney, E.F.; Hancock, R.E. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 2013, 100, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Peptide Sci. 2019, 111, e24122. [Google Scholar] [CrossRef]
- Charoenkwan, P.; Chumnanpuen, P.; Schaduangrat, N.; Lio, P.; Moni, M.A.; Shoombuatong, W. Improved prediction and characterization of blood-brain barrier penetrating peptides using estimated propensity scores of dipeptides. J. Comput. Aided. Mol. Des. 2022, 36, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tian, Z.; Zhao, W.; Zhang, J.; Tian, C.; Zhou, L.; Jiao, Z.; Peng, J.; Guo, G. Novel antimicrobial peptide DvAMP serves as a promising antifungal agent against Cryptococcus neoformans. Bioorganic Chem. 2023, 138, 106679. [Google Scholar] [CrossRef] [PubMed]
- Brakel, A.; Grochow, T.; Fritsche, S.; Knappe, D.; Alber, G.; Hoffmann, R.; Müller, U. Evaluation of proline-rich antimicrobial peptides as potential lead structures for novel antimycotics against Cryptococcus neoformans. Front. Microbiol. 2024, 14, 1328890. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tian, Z.; Zhou, L.; Zhu, L.; Sun, C.; Huang, M.; Peng, J.; Guo, G. In vitro antifungal activity of a novel antimicrobial peptide AMP-17 against planktonic cells and biofilms of Cryptococcus neoformans. Infect. Drug. Resist. 2022, 15, 233–248. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Aronica, P.G.A.; Reid, L.M.; Desai, N.; Li, J.; Fox, S.J.; Yadahalli, S.; Essex, J.W.; Verma, C.S. Computational methods and tools in antimicrobial peptide research. J. Chem. Inf. Model. 2021, 61, 3172–3196. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yang, M.; Zhou, S.; Yang, S.; Chen, X.; Khalid, M.; Wang, K.; Fang, Y.; Wang, C.; Lai, R.; et al. Identification and characterization of RK22, a novel antimicrobial peptide from Hirudinaria manillensis against methicillin resistant Staphylococcus aureus. Int. J. Mol. Sci. 2023, 24, 13453. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Ambler, J.; Mitchell, S.L.; Castanheira, M.; Dingle, T.; Hindler, J.A.; Koeth, L.; Sei, K. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol. 2018, 56, e01934-17. [Google Scholar] [CrossRef] [PubMed]
- Te Winkel, J.D.; Gray, D.A.; Seistrup, K.H.; Hamoen, L.W.; Strahl, H. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell. Dev. Biol. 2016, 4, 29. [Google Scholar] [CrossRef]
- Ma, W.; Chen, X.; Fu, L.; Zhu, J.; Fan, M.; Chen, J.; Yang, C.; Yang, G.; Wu, L.; Mao, G.; et al. Ultra-efficient antibacterial system based on photodynamic therapy and CO gas therapy for synergistic antibacterial and ablation biofilms. ACS. Appl. Mater. Interfaces 2020, 12, 22479–22491. [Google Scholar] [CrossRef]
Peptides | Sequence | Length | Nc | Mw | GRAVY | Pr (n/%) | Nr (n/%) |
---|---|---|---|---|---|---|---|
blap-1 | YSKPTRWANFLMTLYPTICHITKVTLS | 27 | 3.1 | 3185.79 | 0.104 | 12/44.44 | 15/55.56 |
blap-2 | VILFHVACWIILLQLIRNFSSRRHGHGFFYIFSAA | 35 | 3.3 | 4133.92 | 0.929 | 13/37.14 | 22/62.86 |
blap-3 | PLRPSQRYWRGSKGPNGRVLYNIFHIRLRKIIKN | 34 | 9.1 | 4134.90 | −0.900 | 19/55.88 | 15/44.12 |
blap-4 | NTTPFYLFFLSGATGKFYYFWKVYFFLNTAAYHKS | 35 | 3.1 | 4241.86 | 0.129 | 14/40.00 | 21/60.00 |
blap-5 | IFIVLLFCLLRWGKRYTFSNTNRYWYPLILTKS | 33 | 5.0 | 4126.96 | 0.355 | 13/39.39 | 20/60.61 |
blap-6 | KRCRFRIYRWGFPRRRF | 17 | 8.0 | 2400.89 | −1.42 | 9/52.94 | 8/47.06 |
blap-7 | KRALSLPKMREDRLLYRGRA | 20 | 5.0 | 2429.92 | −1.035 | 11/55.0 | 9/45.0 |
blap-8 | RWKERKKWQKRWKRKKG | 17 | 10.0 | 2412.92 | −3.259 | 14/82.35 | 3/17.65 |
blap-9 | FIKKMLGNFSNYVRRPGKR | 19 | 6.0 | 2311.78 | −0.879 | 11/57.89 | 8/42.11 |
blap-10 | RWNTSRWLRL | 10 | 3.0 | 1387.61 | −1.270 | 6/60.00 | 4/40.00 |
blap-11 | PFVIFSNFLIGFIVRVVKLISPGKYYLSG | 29 | 3.0 | 3274.98 | 1.110 | 10/34.48 | 19/65.52 |
Peptides | E. coli | S. aureus | A. baumannii | P. aeruginosa | MRSA | C. albicans | C. neoformans |
---|---|---|---|---|---|---|---|
blap-1 | NA | NA | NA | NA | NA | NA | NA |
blap-2 | NA | NA | NA | NA | NA | NA | NA |
blap-3 | NA | NA | NA | NA | NA | NA | NA |
blap-4 | NA | NA | NA | NA | NA | NA | NA |
blap-5 | NA | NA | NA | NA | NA | NA | NA |
blap-6 | 9.77 | 9.77 | 19.54 | 9.70 | 4.89 | 1.22 | 0.81 |
blap-7 | NA | NA | NA | NA | NA | 156.30 | 312.50 |
blap-8 | 312.50 | 156.3 | 321.50 | 7.81 | 156.30 | 19.53 | 19.53 |
blap-9 | 81.10 | 81.10 | 81.10 | 81.10 | 81.10 | 40.55 | 81.10 |
blap-10 | NA | NA | NA | 312.50 | 19.54 | 156.30 | 312.5 |
blap-11 | NA | NA | NA | NA | NA | NA | NA |
Ampicillin | 31.56 | 63.12 | 31.56 | 31.56 | 126.24 | NA | NA |
Fluconazole | NA | NA | NA | NA | NA | 0.61 | 6.36 |
Amphotericin B | NA | NA | NA | NA | NA | 0.05 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-M.; Zhou, S.-W.; Huang, X.-S.; Chen, Y.-F.; Mwangi, J.; Fang, Y.-Q.; Du, T.; Zhao, M.; Shi, L.; Lu, Q.-M. Blap-6, a Novel Antifungal Peptide from the Chinese Medicinal Beetle Blaps rhynchopetera against Cryptococcus neoformans. Int. J. Mol. Sci. 2024, 25, 5336. https://doi.org/10.3390/ijms25105336
Zhang L-M, Zhou S-W, Huang X-S, Chen Y-F, Mwangi J, Fang Y-Q, Du T, Zhao M, Shi L, Lu Q-M. Blap-6, a Novel Antifungal Peptide from the Chinese Medicinal Beetle Blaps rhynchopetera against Cryptococcus neoformans. International Journal of Molecular Sciences. 2024; 25(10):5336. https://doi.org/10.3390/ijms25105336
Chicago/Turabian StyleZhang, La-Mei, Sheng-Wen Zhou, Xiao-Shan Huang, Yi-Fan Chen, James Mwangi, Ya-Qun Fang, Ting Du, Min Zhao, Lei Shi, and Qiu-Min Lu. 2024. "Blap-6, a Novel Antifungal Peptide from the Chinese Medicinal Beetle Blaps rhynchopetera against Cryptococcus neoformans" International Journal of Molecular Sciences 25, no. 10: 5336. https://doi.org/10.3390/ijms25105336
APA StyleZhang, L. -M., Zhou, S. -W., Huang, X. -S., Chen, Y. -F., Mwangi, J., Fang, Y. -Q., Du, T., Zhao, M., Shi, L., & Lu, Q. -M. (2024). Blap-6, a Novel Antifungal Peptide from the Chinese Medicinal Beetle Blaps rhynchopetera against Cryptococcus neoformans. International Journal of Molecular Sciences, 25(10), 5336. https://doi.org/10.3390/ijms25105336