In Silico Search for Drug Candidates Targeting the PAX8–PPARγ Fusion Protein in Thyroid Cancer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Protocol for Structure Search for Reliable Docking
2.2. Application to the PPFP
3. Materials and Methods
3.1. Protein Structures for Docking
3.1.1. PPARγ Structures
3.1.2. PPFP Structures
3.2. Compound Sets for Docking
3.2.1. UAPs
3.2.2. PPARγ Ligands Registered in ChEMBL
3.2.3. TZD Backbone Compounds Registered in the DrugBank Database
3.3. Computational Methods
3.3.1. Docking
3.3.2. MM/PBSA Method
3.3.3. How to Calculate the Correlation Coefficient
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tahara, M. Genomic Medicine in Thyroid Cancer toward Precision Medicine. Folia Endocrinol. Jpn. 2020, 37, 110–114. [Google Scholar] [CrossRef]
- Subbiah, V.; Velcheti, V.; Tuch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; et al. Selective RET Kinase Inhibition for Patients with RET-Altered Cancers. Ann. Oncol. 2018, 29, 1869–1876. [Google Scholar] [CrossRef]
- Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; et al. Precision Targeted Therapy with BLU-667 for RET -Driven Cancers. Cancer Discov. 2018, 8, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A.; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; et al. Vandetanib in Patients with Locally Advanced or Metastatic Medullary Thyroid Cancer: A Randomized, Double-Blind Phase III Trial. J. Clin. Oncol. 2012, 30, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus Placebo in Radioiodine-Refractory Thyroid Cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; et al. Sorafenib in Radioactive Iodine-Refractory, Locally Advanced or Metastatic Differentiated Thyroid Cancer: A Randomised, Double-Blind, Phase 3 Trial. Lancet 2014, 384, 319–328. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in Patients with Advanced or Metastatic NTRK Fusion-Positive Solid Tumours: Integrated Analysis of Three Phase 1–2 Trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Klemke, M.; Drieschner, N.; Laabs, A.; Rippe, V.; Belge, G.; Bullerdiek, J.; Sendt, W. On the Prevalence of the PAX8-PPARG Fusion Resulting from the Chromosomal Translocation t(2;3)(Q13;P25) in Adenomas of the Thyroid. Cancer Genet. 2011, 204, 334–339. [Google Scholar] [CrossRef]
- Kroll, T.G. PAX8-PPARgamma 1 Fusion in Oncogene Human Thyroid Carcinoma. Science 2000, 289, 1357–1360. [Google Scholar] [CrossRef]
- Pasca di Magliano, M.; Di Lauro, R.; Zannini, M. Pax8 Has a Key Role in Thyroid Cell Differentiation. Proc. Natl. Acad. Sci. USA 2000, 97, 13144–13149. [Google Scholar] [CrossRef]
- Rosen, E.D.; Sarraf, P.; Troy, A.E.; Bradwin, G.; Moore, K.; Milstone, D.S.; Spiegelman, B.M.; Mortensen, R.M. PPARγ Is Required for the Differentiation of Adipose Tissue in Vivo and in Vitro. Mol. Cell 1999, 4, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Kamon, J.; Waki, H.; Murakami, K.; Motojima, K.; Komeda, K.; Ide, T.; Kubota, N.; Terauchi, Y.; Tobe, K.; et al. The Mechanisms by Which Both Heterozygous Peroxisome Proliferator-Activated Receptor γ (PPARγ) Deficiency and PPARγ Agonist Improve Insulin Resistance. J. Biol. Chem. 2001, 276, 41245–41254. [Google Scholar] [CrossRef] [PubMed]
- Dobson, M.E.; Diallo-Krou, E.; Grachtchouk, V.; Yu, J.; Colby, L.A.; Wilkinson, J.E.; Giordano, T.J.; Koenig, R.J. Pioglitazone Induces a Proadipogenic Antitumor Response in Mice with PAX8–PPARγ Fusion Protein Thyroid Carcinoma. Endocrinology 2011, 152, 4455–4465. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; O’Donnell, M.; O’Donnell, J.; Yu, J.; Zhang, Y.; Sartor, M.A.; Koenig, R.J. Adipogenic Differentiation of Thyroid Cancer Cells through the PAX8–PPARγ Fusion Protein Is Regulated by Thyroid Transcription Factor 1 (TTF-1). J. Biol. Chem. 2016, 291, 19274–19286. [Google Scholar] [CrossRef] [PubMed]
- Giordano, T.J.; Haugen, B.R.; Sherman, S.I.; Shah, M.H.; Caoili, E.M.; Koenig, R.J. Pioglitazone Therapy of PAX8–PPARγ Fusion Protein Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2018, 103, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Giordano, T.J. Delineation, Functional Validation, and Bioinformatic Evaluation of Gene Expression in Thyroid Follicular Carcinomas with the Pax8-Pparg Translocation. Clin. Cancer Res. 2006, 12, 1983–1993. [Google Scholar] [CrossRef]
- Kumar, H.; Tang, L.; Yang, C.; Kim, P. FusionPDB: A knowledgebase of human fusion proteins. Nucleic Acids Res. 2024, 52, D1289–D1304. [Google Scholar] [CrossRef] [PubMed]
- Shamriz, S.; Ofoghi, H. Design, Structure Prediction and Molecular Dynamics Simulation of a Fusion Construct Containing Malaria Pre-Erythrocytic Vaccine Candidate, PfCelTOS, and Human Interleukin 2 as Adjuvant. BMC Bioinform. 2016, 17, 71. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, K.; Okiyama, Y.; Tanaka, S. In Silico Modeling of PAX8–PPARγ Fusion Protein in Thyroid Carcinoma: Influence of Structural Perturbation by Fusion on Ligand-Binding Affinity. J. Comput.-Aided Mol. Des. 2021, 35, 629–642. [Google Scholar] [CrossRef]
- Raman, P.; Koenig, R.J. Pax-8-PPAR-γ Fusion Protein in Thyroid Carcinoma. Nat. Rev. Endocrinol. 2014, 10, 616–623. [Google Scholar] [CrossRef]
- Vuttariello, E.; Biffali, E.; Pannone, R.; Capiluongo, A.; Monaco, M.; Sica, V.; Aiello, C.; Matuozzo, M.; Chiofalo, M.G.; Botti, G.; et al. Rapid Methods to Create a Positive Control and Identify the PAX8/PPARγ Rearrangement in FNA Thyroid Samples by Molecular Biology. Oncotarget 2018, 9, 19255–19262. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein Complex Prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar] [CrossRef]
- Tian, S.; Sun, H.; Pan, P.; Li, D.; Zhen, X.; Li, Y.; Hou, T. Assessing an Ensemble Docking-Based Virtual Screening Strategy for Kinase Targets by Considering Protein Flexibility. J. Chem. Inf. Model. 2014, 54, 2664–2679. [Google Scholar] [CrossRef] [PubMed]
- Uehara, S.; Tanaka, S. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations. J. Chem. Inf. Model. 2017, 57, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Fukunishi, Y.; Ohno, K.; Orita, M.; Nakamura, H. Selection of In Silico Drug Screening Results by Using Universal Active Probes (UAPs). J. Chem. Inf. Model. 2010, 50, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Chemical Computing Group ULC. Molecular Operating Environment (MOE); Chemical Computing Group ULC, McGill University: Montreal, QC, Canada, 2020. [Google Scholar]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Cheng, Y.; Prusoff, W.H. Relationship between the Inhibition Constant (KI) and the Concentration of Inhibitor Which Causes 50 per Cent Inhibition (I50) of an Enzymatic Reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [Google Scholar] [CrossRef]
- Miyamae, Y. Insights into Dynamic Mechanism of Ligand Binding to Peroxisome Proliferator-Activated Receptor γ toward Potential Pharmacological Applications. Biol. Pharm. Bull. 2021, 44, 1185–1195. [Google Scholar] [CrossRef]
- Stank, A.; Kokh, D.B.; Fuller, J.C.; Wade, R.C. Protein Binding Pocket Dynamics. Acc. Chem. Res. 2016, 49, 809–815. [Google Scholar] [CrossRef]
- Kishimoto, M. Teneligliptin: A DPP-4 Inhibitor for the Treatment of Type 2 Diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2013, 6, 187. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings 1PII of Original Article: S0169-409X(96)00423-1. The Article Was Originally Published in Advanced Drug Delivery Reviews 23 (1997). Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.R.; Mcgee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996. [Google Scholar]
- Sahakyan, H. Improving Virtual Screening Results with MM/GBSA and MM/PBSA Rescoring. J. Comput. Aided Mol. Des. 2021, 35, 731–736. [Google Scholar] [CrossRef]
Score Rank | Sum of Scores | Structure ID | Origin of Structure |
---|---|---|---|
1 | −1339.0 | A11 | X-ray crystal structure with PDB ID: 3VJI |
2 | −1319.3 | A09 | X-ray crystal structure with PDB ID: 3ADS |
3 | −1291.9 | A06 | Centroid of second cluster for MD trajectory of complex structure with rosiglitazone |
4 | −1288.0 | A07 | X-ray crystal structure with PDB ID: 1I7I |
5 | −1283.8 | A10 | X-ray crystal structure with PDB ID: 3H0A |
6 | −1258.5 | A01 | Centroid of first cluster for MD trajectory of apo structure |
7 | −1236.8 | A08 | X-ray crystal structure with PDB ID: 2ZK1 |
8 | −1231.1 | A05 | Centroid of first cluster for MD trajectory of complex structure with rosiglitazone |
9 | −1186.2 | A03 | Centroid of third cluster for MD trajectory of apo structure |
10 | −1184.4 | A04 | Centroid of fourth cluster for MD trajectory of apo structure |
11 | −1075.7 | A02 | Centroid of second cluster for MD trajectory of apo structure |
Structure ID | IC50 | Kd | Ki | ||||
---|---|---|---|---|---|---|---|
All | TZD | PA | All | All | TZD | PA | |
A01 | 0.057 | 0.000 | 0.0115 | 0.165 | 0.176 | 0.321 | 0.584 |
A02 | 0.052 | 0.010 | 0.0019 | 0.033 | 0.081 | 0.201 | 0.026 |
A03 | 0.065 | 0.000 | 0.0371 | 0.376 | 0.169 | 0.482 | 0.500 |
A04 | 0.006 | 0.226 | 0.1212 | 0.014 | 0.091 | 0.160 | 0.560 |
A05 | 0.067 | 0.003 | 0.0543 | 0.055 | 0.118 | 0.481 | 0.519 |
A06 | 0.070 | 0.000 | 0.0588 | 0.378 | 0.171 | 0.491 | 0.571 |
A07 | 0.052 | 0.019 | 0.0066 | 0.063 | 0.052 | 0.390 | 0.576 |
A08 | 0.050 | 0.001 | 0.0553 | 0.242 | 0.113 | 0.243 | 0.482 |
A09 | 0.021 | 0.002 | 0.0606 | 0.103 | 0.147 | 0.334 | 0.513 |
A10 | 0.013 | 0.029 | 0.0016 | 0.002 | 0.134 | 0.232 | 0.672 |
A11 | 0.049 | 0.022 | 0.0809 | 0.372 | 0.048 | 0.309 | 0.492 |
Score Rank | Sum of Scores | Structure ID | Origin of Structure |
---|---|---|---|
1 | −1303.2 | B14 | Centroid of 14th cluster for MD trajectory of apo structure |
2 | −1278.6 | B06 | Centroid of 6th cluster for MD trajectory of apo structure |
3 | −1276.8 | B02 | Centroid of 2nd cluster for MD trajectory of apo structure |
4 | −1276.0 | B16 | Centroid of 2nd cluster for MD trajectory of complex structure with rosiglitazone |
5 | −1271.3 | B04 | Centroid of 4th cluster for MD trajectory of apo structure |
6 | −1253.0 | B12 | Centroid of 12th cluster for MD trajectory of apo structure |
7 | −1250.8 | B10 | Centroid of 10th cluster for MD trajectory of apo structure |
8 | −1242.3 | B15 | Centroid of 1st cluster for MD trajectory of complex structure with rosiglitazone |
9 | −1240.9 | B08 | Centroid of 8th cluster for MD trajectory of apo structure |
10 | −1236.3 | B11 | Centroid of 11th cluster for MD trajectory of apo structure |
11 | −1229.1 | B17 | Centroid of 3rd cluster for MD trajectory of complex structure with rosiglitazone |
12 | −1225.7 | B18 | Centroid of 4th cluster for MD trajectory of complex structure with rosiglitazone |
13 | −1220.5 | B19 | Centroid of 5th cluster for MD trajectory of complex structure with rosiglitazone |
14 | −1219.4 | B05 | Centroid of 5th cluster for MD trajectory of apo structure |
15 | −1217.0 | B13 | Centroid of 13th cluster for MD trajectory of apo structure |
16 | −1213.6 | B09 | Centroid of 9th cluster for MD trajectory of apo structure |
17 | −1213.3 | B07 | Centroid of 7th cluster for MD trajectory of apo structure |
18 | −1177.6 | B01 | Centroid of 1st cluster for MD trajectory of apo structure |
19 | −1170.1 | B03 | Centroid of 3rd cluster for MD trajectory of apo structure |
Score Rank | Docking Score * | Ligand ID | Generic Name | 2D |
---|---|---|---|---|
1 | −9.837 | L62 | Lobeglitazone | |
2 | −9.387 | L03 | Piperacillin | |
3 | −9.346 | L21 | Bacampicillin | |
4 | −9.248 | L96 | Ebopiprant | |
5 | −9.162 | L29 | JE-2147 | |
6 | −9.133 | L72 | Teneligliptin | |
7 | −9.119 | L87 | Talampicillin | |
8 | −9.080 | L13 | Mezlocillin | |
9 | −8.931 | L23 | Pivampicillin | |
10 | −8.693 | L58 | (5R)-5-(4-{[(2R)-6-HYDROXY-2,5,7,8-TETRAMETHYL-3,4-DIHYDRO-2H-CHROMEN-2-YL]METHOXY}BENZYL)-1,3-THIAZOLIDINE-2,4-DIONE | |
28 | −8.009 | L18 | Pioglitazone | |
43 | −7.643 | L04 | Rosiglitazone |
Ligand ID | Delta Total Mean (s.d.) | Score Rank |
---|---|---|
L72 | −25.21 (3.05) | 6 |
L29 | −22.82 (4.44) | 5 |
L21 | −22.73 (4.49) | 3 |
L03 | −21.76 (3.69) | 2 |
L62 | −21.15 (3.36) | 1 |
L96 | −21.09 (3.49) | 4 |
L04 | −20.89 (3.10) | 43 |
L87 | −20.32 (3.66) | 7 |
L58 | −20.22 (3.25) | 10 |
L23 | −17.79 (4.57) | 9 |
L18 | −17.22 (2.99) | 28 |
L13 | −11.98 (4.40) | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakaguchi, K.; Okiyama, Y.; Tanaka, S. In Silico Search for Drug Candidates Targeting the PAX8–PPARγ Fusion Protein in Thyroid Cancer. Int. J. Mol. Sci. 2024, 25, 5347. https://doi.org/10.3390/ijms25105347
Sakaguchi K, Okiyama Y, Tanaka S. In Silico Search for Drug Candidates Targeting the PAX8–PPARγ Fusion Protein in Thyroid Cancer. International Journal of Molecular Sciences. 2024; 25(10):5347. https://doi.org/10.3390/ijms25105347
Chicago/Turabian StyleSakaguchi, Kaori, Yoshio Okiyama, and Shigenori Tanaka. 2024. "In Silico Search for Drug Candidates Targeting the PAX8–PPARγ Fusion Protein in Thyroid Cancer" International Journal of Molecular Sciences 25, no. 10: 5347. https://doi.org/10.3390/ijms25105347
APA StyleSakaguchi, K., Okiyama, Y., & Tanaka, S. (2024). In Silico Search for Drug Candidates Targeting the PAX8–PPARγ Fusion Protein in Thyroid Cancer. International Journal of Molecular Sciences, 25(10), 5347. https://doi.org/10.3390/ijms25105347