Characterization of Porous β-Type Tricalcium Phosphate Ceramics Formed via Physical Foaming with Freeze-Drying
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Raw Powder
3.2. Preparation of Porous Materials via Freeze-Drying
3.3. Preparation of Porous Materials Using Nonionic Surfactants with Different HLB Values
3.4. Evaluation of Porous Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolk, A.; Handschel, J.; Drescher, W.; Rothamel, D.; Kloss, F.; Blessmann, M.; Heiland, M.; Wolff, K.D.; Smeets, R. Current trends and future perspectives of bone substitute materials–From space holders to innovative biomaterials. J. Cranio Maxillofac. Surg. 2012, 40, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Laurencin, C.; Khan, Y.; El-Amin, S.F. Bone graft substitutes. Expert Rev. Med. 2006, 3, 49–57. [Google Scholar] [CrossRef]
- Giannoudis, P.V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: An update. Injury 2005, 36, S20–S27. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving biocompatibility for next generation of metallic implants. Pro. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Bioceramics of calcium orthophosphates. Biomaterials 2010, 31, 1465–1485. [Google Scholar] [CrossRef]
- Bignon, A.; Chouteau, J.; Chevalier, J.; Fantozzi, G.; Carret, J.-P.; Chavassieux, P.; Boivin, G.; Melin, M.; Hartmann, D. Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response. J. Mater. Sci. Mater. Med. 2003, 14, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M.; Santoni, B.L.G.; Döbelin, N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020, 113, 23–41. [Google Scholar] [CrossRef]
- Owen, G.R.; Dard, M.; Larjava, H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics asregenerative material for the repair of complex bone defects. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2493–2512. [Google Scholar] [CrossRef] [PubMed]
- Legeros, R.Z.; Lin, S.; Rohanizadeh, R.; Mijares, D.; Legeros, J.P. Biphasic calcium phosphate bioceramics: Preparation, properties and applications. J. Mater. Sci. Mater. Med. 2003, 14, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Bouler, J.M.; Pilet, P.; Gauthier, O.; Verron, E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017, 53, 1–12. [Google Scholar] [CrossRef]
- Linhart, W.; Briem, D.; Amling, M.; Rueger, J.M.; Windolf, J. Mechanical failure of porous hydroxyapatite ceramics 7.5 years after implantation in the proximal tibial. Unfallchirurg 2004, 107, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Ogose, A.; Hotta, T.; Kawashima, H.; Kondo, N.; Gu, W.; Kamura, T.; Endo, N. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, K.; Mooney, V. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. J. Ortho. Res. 1985, 3, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Chang, H.J.; Kim, M.J.; Lee, L.H.; Lee, B.K. Efficacy of pure beta tricalcium phosphate graft in dentoalveolar surgery: A retrospective evaluation based on serial radiographic images. Maxillofac. Plast. Reconstr. Surg. 2023, 45, 25. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M.; Baroud, G.; Bernstein, A.; Döbelin, N.; Galea, L.; Hesse, B.; Heuberger, R.; Meille, S.; Michel, P.; von Rechenberg, B.; et al. Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes. Mater. Today 2017, 20, 106–115. [Google Scholar] [CrossRef]
- Bohner, M.; Lemaitre, J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009, 30, 2175–2179. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Ogose, A.; Tokunaga, K.; Ito, T.; Arai, K.; Kudo, N.; Inoue, H.; Irie, H.; Endo, N. Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle. Biomaterials 2005, 26, 5600–5608. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Fernandes, H.; Habibovic, P.; de Boer, J.; Barradas, A.M.C.; de Ruiter, A.; Walsh, W.R.; van Blitterswijk, C.A.; de Bruijn, J.D. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. USA 2010, 107, 13614–13619. [Google Scholar] [CrossRef]
- Dong, J.; Uemura, T.; Shirasaki, Y.; Tateishi, T. Promotion of bone formation using highly pure porous β-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 2002, 23, 4493–4502. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M.; Baumgart, F. Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 2004, 25, 3569–3582. [Google Scholar] [CrossRef] [PubMed]
- Mayr, H.O.; Klehm, J.; Schwan, S.; Hube, R.; Sudkamp, N.P.; Niemeyer, P.; Salzmann, G.; von Eisenhardt-Rothe, R.; Heilmann, A.; Bohner, M.; et al. Micropourous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defect: Biomechanical results. Acta Biomater. 2013, 9, 4845–4855. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Yang, M.; Kou, Y.; Jiang, B. Absorbable implants in sport medicine and arthroscopic surgery: A narrative review of recent development. Bioact. Mater. 2024, 31, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Levengood, S.K.L.; Polak, S.J.; Wheeler, M.B.; Maki, A.J.; Clark, S.G.; Jamison, R.D.; Johnson, A.J.W. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 2010, 31, 3552–3563. [Google Scholar] [CrossRef]
- Wang, X.; Lin, M.; Kang, Y. Engineering Porous β-Tricalcium Phosphate (β-TCP) Scaffolds with Multiple Channels to Promote Cell Migration, Proliferation, and Angiogenesis. ACS Appl. Mater. Interfaces 2019, 11, 9223–9232. [Google Scholar] [CrossRef]
- Park, M.; Lee, G.; Ryu, K.; Lim, W. Improvement of Bone Formation in Rats with Calvarial Defects by Modulating the Pore Size of Tricalcium Phosphate Scaffolds. Biotechnol. Bioproc. 2019, 24, 885–892. [Google Scholar] [CrossRef]
- Smoak, M.; Hogan, K.; Kriegh, L.; Chen, C.; Terrell, L.B.; Qureshi, A.T.; Monroe, W.T.; Gimble, J.M.; Hayes, D.J. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structutes. J. Nanopart. Res. 2015, 17, 182. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Zhu, X.D.; Tang, Z.R.; Yang, X.; Tan, Y.F.; Fan, Y.J.; Zhang, X.D. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: In vitro and in vivo evidence. Acta Biomater. 2015, 11, 435–448. [Google Scholar] [CrossRef]
- Darus, F.; Isa, R.-M.; Mamat, N.; Jaafar, M. Techniques for fabrication and construction of three-dimensional bioceramic scaffolds: Effect on pores size, porosity and compressive strength. Ceram. Inter. 2018, 44, 18400–18407. [Google Scholar] [CrossRef]
- Larionov, D.S.; Evdokimov, P.V.; Filippov, Y.Y.; Shibaev, A.V.; Philippova, O.E.; Shipunov, G.A.; Shcherbakov, I.M.; Dubrov, V.E.; Novoseletskaya, E.S.; Efimenko, A.Y.; et al. Mechanical Properties of Ca3(PO4)2-Based Macroporous Bioceramics. Russ. Metall. 2023, 2023, 433–438. [Google Scholar] [CrossRef]
- Firouzi, M.; Nguyen, A.V. The Gibbs-Marangoni stress and non DLVO forces are equally important for modeling bubble coalescence in salt solutions. Colloids Surf. A Physicochem. Eng. Asp. 2017, 515, 62–68. [Google Scholar] [CrossRef]
- Wang, H.; Wei, X.; Du, Y.; Wang, D. Effect of water-soluble polymers on the performance of dust-suppression foams: Wettability, surface viscosity and stability. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 92–98. [Google Scholar] [CrossRef]
- Clint, J.H. Surfactant Aggregation; Blackie & Son: New York, NY, USA, 1992; Chapter 11; pp. 250–276. [Google Scholar]
- Vafaei, S.; Wen, D. Modification of the Young–Laplace equation and prediction of bubble interface in the presence of nanoparticles. Adv. Colloid Interface Sci. 2015, 225, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dufner, L.; Oßwald, B.; Eberspaecher, J.; Riedel, B.; Kling, C.; Kern, F.; Seidenstuecker, M. Adjustment of Micro- and Macroporosity of ß-TCP Scaffolds Using Solid-Stabilized Foams as Bone Replacement. Bioengineering 2023, 10, 256. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Shibata, H.; Hashimoto, K. Fabrication of Porous β-Tricalcium Phosphate Using Cellulose-Nano-Fiber. J. Soc. Inorg. Mater. Jpn. 2020, 27, 155–162. (In Japanese) [Google Scholar]
- Mochida, R.; Shibata, H.; Hashimoto, K. Preparation and Evaluation of Porous β-Type Tricalcium Phosphate by Physical Foaming Method Using Acetylated Cellulose Nanofibers. J. Soc. Inorg. Mater. Jpn. 2022, 29, 250–257. (In Japanese) [Google Scholar]
- Toyota, G.; Shibata, H.; Hashimoto, K. Preparation of porous β-tricalcium phosphate by foaming method using cellulose nanofiber with different manufacturing methods as foam stabilizer. Phosphorus Res. Bull. 2022, 38, 32–36. [Google Scholar] [CrossRef]
- Hashimoto, K.; Fukuchi, M.; Shibata, H. Characterization of Porous β-Tricalcium Phosphate Fabricated by Physical Foaming with a Nonionic Surfactant: Effect of Adding a Thicken. J. Ceram. Soc. Jpn. 2024, 132, 275–279. [Google Scholar] [CrossRef]
- Griffin, W.C. Calculation of HLB Values of Non-Ionic Surfactants. J. Soc. Cosmet. Chem. 1954, 5, 249–256. [Google Scholar]
- Gibson, I.R.; Rehman, I.; Best, S.M.; Bonfield, W. Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. J. Mater. Sci. Mater. Med. 2000, 11, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Mei, J.; Xie, J. The Formation and Control of Ice Crystal and Its Impact on the Quality of Frozen Aquatic Products: A Review. Crystals 2021, 11, 68. [Google Scholar] [CrossRef]
- JISR 1634; Test Methods for Density and Apparent Porosity of Fine Ceramics. Japanese Industrial Standards Committee: Tokyo, Japan, 1998.
- JIS R 1608:2003; Testing Methods for Compressive Strength of Fine Ceramics. Japanese Industrial Standards Committee: Tokyo, Japan, 2003.
Location | Heat-Drying (40 °C, 72 h) | Freeze-Drying (30-20) |
---|---|---|
Top | 0.87 | 0.98 |
Center | 0.82 | 0.97 |
Bottom | 0.86 | 0.97 |
Average | 0.85 | 0.97 |
Hold Time | 0 s | 10 s | 20 s | 30 s | 240 s | |
---|---|---|---|---|---|---|
Immersion Time | ||||||
0 s | 240-0 | |||||
10 s | 0-10 | 10-10 | 20-10 | 30-10 | ||
20 s | 0-20 | 10-20 | 20-20 | 30-20 | ||
30 s | 0-30 | 10-30 | 20-30 | 30-30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, K.; Oikawa, H.; Shibata, H. Characterization of Porous β-Type Tricalcium Phosphate Ceramics Formed via Physical Foaming with Freeze-Drying. Int. J. Mol. Sci. 2024, 25, 5363. https://doi.org/10.3390/ijms25105363
Hashimoto K, Oikawa H, Shibata H. Characterization of Porous β-Type Tricalcium Phosphate Ceramics Formed via Physical Foaming with Freeze-Drying. International Journal of Molecular Sciences. 2024; 25(10):5363. https://doi.org/10.3390/ijms25105363
Chicago/Turabian StyleHashimoto, Kazuaki, Hiroto Oikawa, and Hirobumi Shibata. 2024. "Characterization of Porous β-Type Tricalcium Phosphate Ceramics Formed via Physical Foaming with Freeze-Drying" International Journal of Molecular Sciences 25, no. 10: 5363. https://doi.org/10.3390/ijms25105363
APA StyleHashimoto, K., Oikawa, H., & Shibata, H. (2024). Characterization of Porous β-Type Tricalcium Phosphate Ceramics Formed via Physical Foaming with Freeze-Drying. International Journal of Molecular Sciences, 25(10), 5363. https://doi.org/10.3390/ijms25105363