The Role of Inflammasomes in Heart Failure
Abstract
:1. Introduction
2. Physiology of Inflammasomes
3. Inflammasomes in the Pathophysiology of Heart Failure
4. Inflammasomes and Their Components as Biomarkers in Heart Failure
4.1. Inflammasome Components IL-1b and IL-18
4.2. IL-6
5. Inflammasome Modulation in Heart Failure
5.1. Colchicine
5.2. MCC950
5.3. Other NLRP3 Inflammasome Inhibitors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoes, A.W.; Mosterd, A.; Grobbee, D.E. An epidemic of heart failure? Recent evidence from Europe. Eur. Heart J. 1998, 19 (Suppl. L), L2–L9. [Google Scholar] [PubMed]
- Bonneux, L.; Barendregt, J.J.; Meeter, K.; Bonsel, G.J.; van der Maas, P.J. Estimating clinical morbidity due to ischemic heart disease and congestive heart failure: The future rise of heart failure. Am. J. Public Health 1994, 84, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhu, S.; Yin, X.; Xie, C.; Xue, J.; Zhu, M.; Weng, F.; Zhu, S.; Xiang, B.; Zhou, X.; et al. Burden, Trends, and Inequalities of Heart Failure Globally, 1990 to 2019: A Secondary Analysis Based on the Global Burden of Disease 2019 Study. J. Am. Heart Assoc. 2023, 12, e027852. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- Borlaug, B.A. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction. Circ. J. Off. J. Jpn. Circ. Soc. 2014, 78, 20–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Bauersachs, J.; Langer, H.F. Immune mechanisms in heart failure. Eur. J. Heart Fail. 2017, 19, 1379–1389. [Google Scholar] [CrossRef]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L., Jr. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
- Rauchhaus, M.; Doehner, W.; Francis, D.P.; Davos, C.; Kemp, M.; Liebenthal, C.; Niebauer, J.; Hooper, J.; Volk, H.D.; Coats, A.J.; et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 2000, 102, 3060–3067. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, K.; Zhu, L. Emerging Roles of Inflammasomes in Cardiovascular Diseases. Front. Immunol. 2022, 13, 834289. [Google Scholar] [CrossRef]
- Douglas, S.A.; Sreenivasan, D.; Carman, F.H.; Bunn, S.J. Cytokine interactions with adrenal medullary chromaffin cells. Cell. Mol. Neurobiol. 2010, 30, 1467–1475. [Google Scholar] [CrossRef]
- Nakayama, H.; Otsu, K. Mitochondria and sterile inflammation in the heart. Curr. Opin. Physiol. 2018, 1, 68–74. [Google Scholar] [CrossRef]
- Brubaker, S.W.; Bonham, K.S.; Zanoni, I.; Kagan, J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol 2015, 33, 257–290. [Google Scholar] [CrossRef]
- Olsen, M.B.; Gregersen, I.; Sandanger, O.; Yang, K.; Sokolova, M.; Halvorsen, B.E.; Gullestad, L.; Broch, K.; Aukrust, P.; Louwe, M.C. Targeting the Inflammasome in Cardiovascular Disease. JACC. Basic Transl. Sci. 2022, 7, 84–98. [Google Scholar] [CrossRef]
- Ding, J.; Wang, K.; Liu, W.; She, Y.; Sun, Q.; Shi, J.; Sun, H.; Wang, D.C.; Shao, F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016, 535, 111–116. [Google Scholar] [CrossRef]
- Marcuzzi, A.; Melloni, E.; Zauli, G.; Romani, A.; Secchiero, P.; Maximova, N.; Rimondi, E. Autoinflammatory Diseases and Cytokine Storms-Imbalances of Innate and Adaptative Immunity. Int. J. Mol. Sci. 2021, 22, 11241. [Google Scholar] [CrossRef]
- Swanson, K.V.; Deng, M.; Ting, J.P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef]
- Abbate, A.; Toldo, S.; Marchetti, C.; Kron, J.; Van Tassell, B.W.; Dinarello, C.A. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ. Res. 2020, 126, 1260–1280. [Google Scholar] [CrossRef]
- Feijoo-Bandin, S.; Aragon-Herrera, A.; Otero-Santiago, M.; Anido-Varela, L.; Morana-Fernandez, S.; Tarazon, E.; Rosello-Lleti, E.; Portoles, M.; Gualillo, O.; Gonzalez-Juanatey, J.R.; et al. Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int. J. Mol. Sci. 2022, 23, 5634. [Google Scholar] [CrossRef]
- Burdette, B.E.; Esparza, A.N.; Zhu, H.; Wang, S. Gasdermin D in pyroptosis. Acta Pharm. Sin. B 2021, 11, 2768–2782. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Manolis, A.S. Neurohumoral Activation in Heart Failure. Int. J. Mol. Sci. 2023, 24, 15472. [Google Scholar] [CrossRef]
- von Haehling, S.; Schefold, J.C.; Lainscak, M.; Doehner, W.; Anker, S.D. Inflammatory biomarkers in heart failure revisited: Much more than innocent bystanders. Heart Fail. Clin. 2009, 5, 549–560. [Google Scholar] [CrossRef]
- Man, S.M.; Kanneganti, T.D. Regulation of inflammasome activation. Immunol. Rev. 2015, 265, 6–21. [Google Scholar] [CrossRef]
- Zhao, Z.Z.; Zheng, X.L.; Jiang, Z.S. Emerging roles of absent in melanoma 2 in cardiovascular diseases. Clin. Chim. Acta Int. J. Clin. Chem. 2020, 511, 14–23. [Google Scholar] [CrossRef]
- Durga Devi, T.; Babu, M.; Makinen, P.; Kaikkonen, M.U.; Heinaniemi, M.; Laakso, H.; Yla-Herttuala, E.; Rieppo, L.; Liimatainen, T.; Naumenko, N.; et al. Aggravated Postinfarct Heart Failure in Type 2 Diabetes Is Associated with Impaired Mitophagy and Exaggerated Inflammasome Activation. Am. J. Pathol. 2017, 187, 2659–2673. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.; Liu, H.; Zhang, M.; Liu, D.; Lu, L.; Tian, J.; Liu, M.; Jin, T.; An, F. AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model. Life Sci. 2019, 221, 249–258. [Google Scholar] [CrossRef]
- Onodi, Z.; Ruppert, M.; Kucsera, D.; Sayour, A.A.; Toth, V.E.; Koncsos, G.; Novak, J.; Brenner, G.B.; Makkos, A.; Baranyai, T.; et al. AIM2-driven inflammasome activation in heart failure. Cardiovasc. Res. 2021, 117, 2639–2651. [Google Scholar] [CrossRef]
- Suetomi, T.; Willeford, A.; Brand, C.S.; Cho, Y.; Ross, R.S.; Miyamoto, S.; Brown, J.H. Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca2+/Calmodulin-Dependent Protein Kinase II delta Signaling in Cardiomyocytes Are Essential for Adverse Cardiac Remodeling. Circulation 2018, 138, 2530–2544. [Google Scholar] [CrossRef]
- Wu, J.; Dong, E.; Zhang, Y.; Xiao, H. The Role of the Inflammasome in Heart Failure. Front. Physiol. 2021, 12, 709703. [Google Scholar] [CrossRef]
- Tang, X.; Pan, L.; Zhao, S.; Dai, F.; Chao, M.; Jiang, H.; Li, X.; Lin, Z.; Huang, Z.; Meng, G.; et al. SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)-Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation. Circulation 2020, 141, 984–1000. [Google Scholar] [CrossRef]
- Adamo, L.; Rocha-Resende, C.; Prabhu, S.D.; Mann, D.L. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 2020, 17, 269–285. [Google Scholar] [CrossRef]
- Kong, P.; Christia, P.; Frangogiannis, N.G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. CMLS 2014, 71, 549–574. [Google Scholar] [CrossRef]
- Gao, R.; Shi, H.; Chang, S.; Gao, Y.; Li, X.; Lv, C.; Yang, H.; Xiang, H.; Yang, J.; Xu, L.; et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction. Int. Immunopharmacol. 2019, 74, 105575. [Google Scholar] [CrossRef]
- Xiao, H.; Li, H.; Wang, J.J.; Zhang, J.S.; Shen, J.; An, X.B.; Zhang, C.C.; Wu, J.M.; Song, Y.; Wang, X.Y.; et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon beta-adrenergic insult. Eur. Heart J. 2018, 39, 60–69. [Google Scholar] [CrossRef]
- Dang, S.; Zhang, Z.Y.; Li, K.L.; Zheng, J.; Qian, L.L.; Liu, X.Y.; Wu, Y.; Zhang, C.Y.; Zhao, X.X.; Yu, Z.M.; et al. Blockade of beta-adrenergic signaling suppresses inflammasome and alleviates cardiac fibrosis. Ann. Transl. Med. 2020, 8, 127. [Google Scholar] [CrossRef]
- Zeng, C.; Duan, F.; Hu, J.; Luo, B.; Huang, B.; Lou, X.; Sun, X.; Li, H.; Zhang, X.; Yin, S.; et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol. 2020, 34, 101523. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, J.; Zeng, Y.; Chen, K.; Wang, C.; Yang, S.; Sun, N.; Chen, H.; Duan, K.; Zeng, G. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease. Clin. Chim. Acta 2020, 510, 62–72. [Google Scholar] [CrossRef]
- Shen, J.; Wu, J.M.; Hu, G.M.; Li, M.Z.; Cong, W.W.; Feng, Y.N.; Wang, S.X.; Li, Z.J.; Xu, M.; Dong, E.D.; et al. Membrane nanotubes facilitate the propagation of inflammatory injury in the heart upon overactivation of the beta-adrenergic receptor. Cell Death Dis. 2020, 11, 958. [Google Scholar] [CrossRef]
- Yao, C.; Veleva, T.; Scott, L., Jr.; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-Taha, I.D.; et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation 2018, 138, 2227–2242. [Google Scholar] [CrossRef]
- Heijman, J.; Muna, A.P.; Veleva, T.; Molina, C.E.; Sutanto, H.; Tekook, M.; Wang, Q.; Abu-Taha, I.H.; Gorka, M.; Kunzel, S.; et al. Atrial Myocyte NLRP3/CaMKII Nexus Forms a Substrate for Postoperative Atrial Fibrillation. Circ. Res. 2020, 127, 1036–1055. [Google Scholar] [CrossRef]
- Kounatidis, D.; Vallianou, N.; Evangelopoulos, A.; Vlahodimitris, I.; Grivakou, E.; Kotsi, E.; Dimitriou, K.; Skourtis, A.; Mourouzis, I. SGLT-2 Inhibitors and the Inflammasome: What’s Next in the 21st Century? Nutrients 2023, 15, 2294. [Google Scholar] [CrossRef] [PubMed]
- van Hout, G.P.J.; Bosch, L. The Inflammasomes in Cardiovascular Disease. Exp. Suppl. 2018, 108, 9–40. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Wang, F.; Li, B.; Dong, Z.; Liu, X.; Zhang, C.; An, F. Association of nucleotide-binding oligomerization domain-like receptor 3 inflammasome and adverse clinical outcomes in patients with idiopathic dilated cardiomyopathy. Clin. Chem. Lab. Med. 2013, 51, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Aleksova, A.; Beltrami, A.P.; Carriere, C.; Barbati, G.; Lesizza, P.; Perrieri-Montanino, M.; Isola, M.; Gentile, P.; Salvioni, E.; Not, T.; et al. Interleukin-1beta levels predict long-term mortality and need for heart transplantation in ambulatory patients affected by idiopathic dilated cardiomyopathy. Oncotarget 2017, 8, 25131–25140. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, J.; Huang, D.; Ke, J.; Wu, W. A meta-analysis of proinflammatory cytokines in chronic heart failure. Heart Asia 2014, 6, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Belperio, J.; Horwich, T.; Abraham, W.T.; Fonarow, G.C.; Gorcsan, J., 3rd; Bersohn, M.M.; Singh, J.P.; Sonel, A.; Lee, L.Y.; Halilovic, J.; et al. Inflammatory Mediators and Clinical Outcome in Patients With Advanced Heart Failure Receiving Cardiac Resynchronization Therapy. Am. J. Cardiol. 2016, 117, 617–625. [Google Scholar] [CrossRef]
- Butts, B.; Butler, J.; Dunbar, S.B.; Corwin, E.J.; Gary, R.A. ASC Methylation and Interleukin-1beta Are Associated with Aerobic Capacity in Heart Failure. Med. Sci. Sports Exerc. 2017, 49, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Figal, D.A.; Bayes-Genis, A.; Asensio-Lopez, M.C.; Hernandez-Vicente, A.; Garrido-Bravo, I.; Pastor-Perez, F.; Diez, J.; Ibanez, B.; Lax, A. The Interleukin-1 Axis and Risk of Death in Patients With Acutely Decompensated Heart Failure. J. Am. Coll. Cardiol. 2019, 73, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Tsujino, T.; Fujioka, Y.; Ohyanagi, M.; Okamura, H.; Iwasaki, T. Increased circulating interleukin-18 in patients with congestive heart failure. Heart 2002, 88, 296–297. [Google Scholar] [CrossRef]
- Yamaoka-Tojo, M.; Tojo, T.; Inomata, T.; Machida, Y.; Osada, K.; Izumi, T. Circulating levels of interleukin 18 reflect etiologies of heart failure: Th1/Th2 cytokine imbalance exaggerates the pathophysiology of advanced heart failure. J. Card. Fail. 2002, 8, 21–27. [Google Scholar] [CrossRef]
- Jia, X.; Buckley, L.; Sun, C.; Al Rifai, M.; Yu, B.; Nambi, V.; Virani, S.S.; Selvin, E.; Matsushita, K.; Hoogeveen, R.C.; et al. Association of interleukin-6 and interleukin-18 with cardiovascular disease in older adults: Atherosclerosis Risk in Communities study. Eur. J. Prev. Cardiol. 2023, 30, 1731–1740. [Google Scholar] [CrossRef]
- Remmelzwaal, S.; Yeung, S.M.H.; Blom, M.T.; de Borst, M.H.; Elders, P.J.M.; Beulens, J.W.J. Increased interleukin-6 is associated with higher risk of heart failure in people with type 2 diabetes. ESC Heart Fail. 2024, 1–5. [Google Scholar] [CrossRef]
- Bertero, E.; Carmisciano, L.; Jonasson, C.; Butler, J.; Maack, C.; Ameri, P. Association of inflammatory markers with incident heart failure or cancer in the HUNT3 and Health ABC population studies. Eur. J. Prev. Cardiol. 2024, zwae089. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Vasques-Novoa, F.; Neves, J.S.; Zannad, F.; Leite-Moreira, A. Comparison of interleukin-6 and high-sensitivity C-reactive protein for cardiovascular risk assessment: Findings from the MESA study. Atherosclerosis 2024, 390, 117461. [Google Scholar] [CrossRef] [PubMed]
- Alogna, A.; Koepp, K.E.; Sabbah, M.; Espindola Netto, J.M.; Jensen, M.D.; Kirkland, J.L.; Lam, C.S.P.; Obokata, M.; Petrie, M.C.; Ridker, P.M.; et al. Interleukin-6 in Patients With Heart Failure and Preserved Ejection Fraction. JACC. Heart Fail. 2023, 11, 1549–1561. [Google Scholar] [CrossRef]
- Michou, E.; Wussler, D.; Belkin, M.; Simmen, C.; Strebel, I.; Nowak, A.; Kozhuharov, N.; Shrestha, S.; Lopez-Ayala, P.; Sabti, Z.; et al. Quantifying inflammation using interleukin-6 for improved phenotyping and risk stratification in acute heart failure. Eur. J. Heart Fail. 2023, 25, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Vasques-Novoa, F.; Pedro Ferreira, J.; Marques, P.; Sergio Neves, J.; Vale, C.; Ribeirinho-Soares, P.; Marques, J.; Martins, S.; Tiago Guimaraes, J.; Barros, A.S.; et al. Interleukin-6, infection and cardiovascular outcomes in acute heart failure: Findings from the EDIFICA registry. Cytokine 2022, 160, 156053. [Google Scholar] [CrossRef] [PubMed]
- Mooney, L.; Jackson, C.E.; Adamson, C.; McConnachie, A.; Welsh, P.; Myles, R.C.; McMurray, J.J.V.; Jhund, P.S.; Petrie, M.C.; Lang, N.N. Adverse Outcomes Associated With Interleukin-6 in Patients Recently Hospitalized for Heart Failure With Preserved Ejection Fraction. Circ. Heart Fail. 2023, 16, e010051. [Google Scholar] [CrossRef]
- Theofilis, P.; Oikonomou, E.; Chasikidis, C.; Tsioufis, K.; Tousoulis, D. Inflammasomes in Atherosclerosis-From Pathophysiology to Treatment. Pharmaceuticals 2023, 16, 1211. [Google Scholar] [CrossRef]
- Lazaros, G.; Imazio, M.; Brucato, A.; Vlachopoulos, C.; Lazarou, E.; Vassilopoulos, D.; Tousoulis, D. The Role of Colchicine in Pericardial Syndromes. Curr. Pharm. Des. 2018, 24, 702–709. [Google Scholar] [CrossRef]
- Cicogna, A.C.; Robinson, K.G.; Conrad, C.H.; Singh, K.; Squire, R.; Okoshi, M.P.; Bing, O.H. Direct effects of colchicine on myocardial function: Studies in hypertrophied and failing spontaneously hypertensive rats. Hypertension 1999, 33, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Saji, K.; Fukumoto, Y.; Suzuki, J.; Fukui, S.; Nawata, J.; Shimokawa, H. Colchicine, a microtubule depolymerizing agent, inhibits myocardial apoptosis in rats. Tohoku J. Exp. Med. 2007, 213, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Akodad, M.; Fauconnier, J.; Sicard, P.; Huet, F.; Blandel, F.; Bourret, A.; de Santa Barbara, P.; Aguilhon, S.; LeGall, M.; Hugon, G.; et al. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. Int. J. Cardiol. 2017, 240, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Fujisue, K.; Sugamura, K.; Kurokawa, H.; Matsubara, J.; Ishii, M.; Izumiya, Y.; Kaikita, K.; Sugiyama, S. Colchicine Improves Survival, Left Ventricular Remodeling, and Chronic Cardiac Function After Acute Myocardial Infarction. Circ. J. 2017, 81, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Duan, J.; Gong, C.; Feng, Y.; Hu, J.; Gu, R.; Xu, B. Colchicine Ameliorates Dilated Cardiomyopathy Via SIRT2-Mediated Suppression of NLRP3 Inflammasome Activation. J. Am. Heart Assoc. 2022, 11, e025266. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Duan, J.; Hu, J.; Qi, Y.; Kang, L.; Wang, K.; Chen, J.; Wu, X.; Xu, B.; Gu, R. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction. Eur. J. Pharmacol. 2022, 929, 175126. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Hodge, H.S.; Ferrario, C.M.; Groban, L. NLRP3 inhibition improves heart function in GPER knockout mice. Biochem. Biophys. Res. Commun. 2019, 514, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhang, J.; Xu, Y.; Liu, J.; Ye, J.; Wang, Z.; Ye, D.; Feng, Y.; Xu, S.; Pan, W.; et al. Selective Inhibition of NLRP3 Inflammasome Reverses Pressure Overload-Induced Pathological Cardiac Remodeling by Attenuating Hypertrophy, Fibrosis, and Inflammation. Int. Immunopharmacol. 2021, 99, 108046. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhao, L.; Wang, J.; Liu, S.; Zhang, Y.; Qin, Q. The selective NLRP3 inflammasome inhibitor MCC950 improves isoproterenol-induced cardiac dysfunction by inhibiting cardiomyocyte senescence. Eur. J. Pharmacol. 2022, 937, 175364. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhao, H.; Wen, X.; Li, G.; Guo, S.; Zhang, D. NLRP3-inflammasome inhibition by MCC950 attenuates cardiac and pulmonary artery remodelling in heart failure with preserved ejection fraction. Life Sci. 2023, 333, 122185. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, F.; Ou, D.; Huang, L.; Li, H.; Lang, M. MCC950 ameliorates ventricular arrhythmia vulnerability induced by heart failure. Bioengineered 2022, 13, 8593–8604. [Google Scholar] [CrossRef] [PubMed]
- Tousif, S.; Singh, A.P.; Umbarkar, P.; Galindo, C.; Wheeler, N.; Toro Cora, A.; Zhang, Q.; Prabhu, S.D.; Lal, H. Ponatinib Drives Cardiotoxicity by S100A8/A9-NLRP3-IL-1beta Mediated Inflammation. Circ. Res. 2023, 132, 267–289. [Google Scholar] [CrossRef] [PubMed]
- Aliaga, J.; Bonaventura, A.; Mezzaroma, E.; Dhakal, Y.; Mauro, A.G.; Abbate, A.; Toldo, S. Preservation of Contractile Reserve and Diastolic Function by Inhibiting the NLRP3 Inflammasome with OLT1177((R)) (Dapansutrile) in a Mouse Model of Severe Ischemic Cardiomyopathy Due to Non-Reperfused Anterior Wall Myocardial Infarction. Molecules 2021, 26, 3534. [Google Scholar] [CrossRef] [PubMed]
- Deftereos, S.; Giannopoulos, G.; Panagopoulou, V.; Bouras, G.; Raisakis, K.; Kossyvakis, C.; Karageorgiou, S.; Papadimitriou, C.; Vastaki, M.; Kaoukis, A.; et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: A prospective, randomized study. JACC Heart Fail. 2014, 2, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Wohlford, G.F.; Van Tassell, B.W.; Billingsley, H.E.; Kadariya, D.; Canada, J.M.; Carbone, S.; Mihalick, V.L.; Bonaventura, A.; Vecchie, A.; Chiabrando, J.G.; et al. Phase 1B, Randomized, Double-Blinded, Dose Escalation, Single-Center, Repeat Dose Safety and Pharmacodynamics Study of the Oral NLRP3 Inhibitor Dapansutrile in Subjects With NYHA II-III Systolic Heart Failure. J. Cardiovasc. Pharmacol 2020, 77, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Ismael, S.; Nasoohi, S.; Ishrat, T. MCC950, the Selective Inhibitor of Nucleotide Oligomerization Domain-Like Receptor Protein-3 Inflammasome, Protects Mice against Traumatic Brain Injury. J. Neurotrauma 2018, 35, 1294–1303. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, M.; Yu, J.; Xu, Y.; Zhang, J.; Liu, J.; Zheng, Z.; Ye, J.; Wang, Z.; Ye, D.; et al. MCC950, a Selective NLRP3 Inhibitor, Attenuates Adverse Cardiac Remodeling Following Heart Failure Through Improving the Cardiometabolic Dysfunction in Obese Mice. Front. Cardiovasc. Med. 2022, 9, 727474. [Google Scholar] [CrossRef]
Animal Studies | ||||
---|---|---|---|---|
Drug Name | Target | Animal Model | Main Findings | References |
Colchicine | Interference with microtubule polymerization, subsequently disrupting cellular processes involved in the assembly and activation of the NLRP3 inflammasome | Spontaneously hypertensive rats | No effect on active tension or passive stiffness of the left ventricular papillary muscles. | [61] |
ATII-infused Wistar rats and cardiomyocytes | Improvement in apoptosis markers. | [62] | ||
I/R injury mouse model | Reduced myocardial infarct size, fibrosis, and inflammatory biomarkers. Improvement in cardiac output. No change in LVEF or diastolic function. | [63] | ||
AMI mouse model | Improved LVEDD, LVEF. Lower natriuretic peptides and mortality. Reduced tissue expression of inflammasome components. | [64] | ||
Doxorubicin-induced cardiomyopathy mouse model | Improved LVEDD, LVESD, LVEF. Decreased natriuretic peptides, fibrosis area, and expression of NLRP3 inflammasome components. | [65] | ||
Hypertension-induced HFpEF rat model | Ameliorated functional capacity and survival. Improved LVEDP, LV mass, BNP. Reduced myocardial inflammation and fibrosis. | [66] | ||
MCC950 | Selective NLRP3 inflammasome inhibitor through the prevention of the oligomerization process of NLRP3 | Postmenopausal heart disease mouse model | Attenuated hypertrophy and improvements in myocardial relaxation, fractional shortening, and natriuretic peptides. | [67] |
Transient aortic constriction-induced pressure overload mouse model | Improved LVEF and cardiac dimensions. Diminished hypertrophy, oxidative stress, inflammation, and fibrosis. | [68] | ||
Isoproterenol-induced cardiomyopathy | Improvements in cardiac function, inflammation, oxidative stress, and fibrosis. | [69] | ||
HFpEF model | Improved pulmonary artery pressure and remodeling. | [70] | ||
Transient aortic constriction-induced HFpEF mouse model | Lower QTc duration, action potential duration 90, threshold for APD alternans. Decreased rate of ventricular arrhythmia induction. | [71] | ||
CY-09 | Prevention of the interaction between NLRP3 and the adapter protein ASC, which is crucial for the assembly and activation of the inflammasome | Ponatinib-induced cardiotoxicity in mice after transient aortic constriction | Improved LVEF and fractional shortening. Diminished myocardial inflammation. | [72] |
Dapansutrile | Binding to the NLRP3 protein, preventing its oligomerization, which is necessary for the formation of the inflammasome complex | Non-reperfused ischemic cardiomyopathy mouse model | Improved myocardial contractile reserve, ameliorated diastolic function. | [73] |
Colchicine | Interference with microtubule polymerization, subsequently disrupting cellular processes involved in the assembly and activation of the NLRP3 inflammasome | RCT of patients with stable congestive HFrEF | No change in functional capacity, hospitalization rates, or mortality. Improved LV dimensions and inflammatory markers. | [74] |
Dapansutrile | Binding to the NLRP3 protein, preventing its oligomerization, which is necessary for the formation of the inflammasome complex. | Phase 1 RCT of patients with HFrEF and impaired functional capacity | Improved LVEF and exercise capacity. | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachakis, P.K.; Theofilis, P.; Kachrimanidis, I.; Giannakopoulos, K.; Drakopoulou, M.; Apostolos, A.; Kordalis, A.; Leontsinis, I.; Tsioufis, K.; Tousoulis, D. The Role of Inflammasomes in Heart Failure. Int. J. Mol. Sci. 2024, 25, 5372. https://doi.org/10.3390/ijms25105372
Vlachakis PK, Theofilis P, Kachrimanidis I, Giannakopoulos K, Drakopoulou M, Apostolos A, Kordalis A, Leontsinis I, Tsioufis K, Tousoulis D. The Role of Inflammasomes in Heart Failure. International Journal of Molecular Sciences. 2024; 25(10):5372. https://doi.org/10.3390/ijms25105372
Chicago/Turabian StyleVlachakis, Panayotis K., Panagiotis Theofilis, Ioannis Kachrimanidis, Konstantinos Giannakopoulos, Maria Drakopoulou, Anastasios Apostolos, Athanasios Kordalis, Ioannis Leontsinis, Konstantinos Tsioufis, and Dimitris Tousoulis. 2024. "The Role of Inflammasomes in Heart Failure" International Journal of Molecular Sciences 25, no. 10: 5372. https://doi.org/10.3390/ijms25105372
APA StyleVlachakis, P. K., Theofilis, P., Kachrimanidis, I., Giannakopoulos, K., Drakopoulou, M., Apostolos, A., Kordalis, A., Leontsinis, I., Tsioufis, K., & Tousoulis, D. (2024). The Role of Inflammasomes in Heart Failure. International Journal of Molecular Sciences, 25(10), 5372. https://doi.org/10.3390/ijms25105372