Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors
Abstract
:1. Introduction
2. GPCR Structure and Function
3. Biased Signaling Mechanisms of GPCRs
3.1. Heterotrimeric G Proteins Are Initial Transducers of GPCR Signaling
3.2. GPCR Kinases and Arrestins Mediate Biased Signaling
3.3. Non-Canonical Biased Signaling
4. Genetically Encoded Biosensors for Functional GPCR Assays
4.1. Classification of GPCR Assays
4.2. Singleplex GPCR Assays
4.2.1. Resonance Energy Transfer-Based Techniques
GPCR Activity Assays Using FRET and BRET
Assay | Donor | Acceptor | Substrate | Advantage | Disadvantage |
---|---|---|---|---|---|
BRET1 [74] | Rluc | YFP | Coelenterazine | Strong signal, long lifetime | Poor spectral resolution due to small emission/excitation gap of only 45–55 nm |
eBRET2 [53] | Rluc8 | GFP2 | Coelenterazine 400a | 5 to 30-fold increase in eBRET2 signal intensity and duration | None |
BiFC-RET [79,80] | Rluc | N-YFP and C-YFP | Coelenterazine h | Measures interaction between more than two proteins | The orientation of the test proteins fused to YFP fragments can prevent a proper complementation of YFP even when the test proteins are interacting |
BiLC-RET [81] | Rluc8-1 and Rluc8-2 (complementation) | YFP/ mVenus | Coelenterazine h | Measures interaction between more than two proteins | The orientation of the test proteins fused to Rluc8 fragments can prevent a proper complementation even when the test proteins are interacting |
Conformational GPCR Assays Using FRET or BRET with GFP Superfolder Variants
4.2.2. Split Fluorescent Protein Assays
4.2.3. Split Luciferase Assays
4.2.4. Split TEV GPCR β-Arrestin-2 Recruitment Assays
4.2.5. Full TEV GPCR β-Arrestin-2 Recruitment Assays
4.2.6. TGF-α Shedding Assay
4.2.7. Assays for Second Messengers and Effectors
4.2.8. GPCR Pathway Assays
4.3. Multiplex GPCR Assays
Signaling Level | Target Mechanism | Assay Technique | Readout | References |
---|---|---|---|---|
Receptor | Dimerization | BiFC | Fluorescence | [79,80] |
Receptor | Dimerization | BiFC, eBRET2 | Fluorescence, Luminescence | [129] |
Receptor + Transducer | Dimerization + β-arrestin recruitment | BiLC, eBRET2 | Fluorescence, Luminescence | [81] |
Transducer | β-arrestin-2 recruitment | Split TEV assay | NGS (barcodes) | [130] |
β-arrestin-2 recruitment | Full TEV assay | NGS (barcodes) | [131] | |
Transcription | Transcription factors | Pathway assay | NGS (barcodes) | [132] |
Transducer + transcription | β-arrestin-2 recruitment + transcription factors | Split TEV + Pathway assay | NGS (barcodes) | [133] |
4.3.1. Barcoded GPCR Receptor Assays
4.3.2. Barcoded GPCR Pathway Assays
4.3.3. Multiplex BiFC and BiLC Assays
5. Advantages and Limitations of Genetically Encoded Reporter Systems
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; et al. G Protein-Coupled Receptors: Structure- and Function-Based Drug Discovery. Signal Transduct. Target. Ther. 2021, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [Google Scholar] [CrossRef]
- Pándy-Szekeres, G.; Caroli, J.; Mamyrbekov, A.; Kermani, A.A.; Keserű, G.M.; Kooistra, A.J.; Gloriam, D.E. GPCRdb in 2023: State-Specific Structure Models Using AlphaFold2 and New Ligand Resources. Nucleic Acids Res. 2023, 51, D395–D402. [Google Scholar] [CrossRef] [PubMed]
- Sriram, K.; Insel, P.A. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol. Pharmacol. 2018, 93, 251–258. [Google Scholar] [CrossRef]
- Ma, H.; Huang, B.; Zhang, Y. Recent Advances in Multitarget-Directed Ligands Targeting G-Protein-Coupled Receptors. Drug Discov. Today 2020, 25, 1682–1692. [Google Scholar] [CrossRef]
- Van Vleet, T.R.; Liguori, M.J.; Lynch, J.J.; Rao, M.; Warder, S. Screening Strategies and Methods for Better Off-Target Liability Prediction and Identification of Small-Molecule Pharmaceuticals. SLAS Discov. 2019, 24, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, R.J. A Brief History of G-Protein Coupled Receptors (Nobel Lecture). Angew. Chem. Int. Ed. 2013, 52, 6366–6378. [Google Scholar] [CrossRef]
- Lappano, R.; Maggiolini, M. G Protein-Coupled Receptors: Novel Targets for Drug Discovery in Cancer. Nat. Rev. Drug Discov. 2011, 10, 47–60. [Google Scholar] [CrossRef]
- Grant, C.E.; Flis, A.L.; Ryan, B.M. Understanding the Role of Dopamine in Cancer: Past, Present and Future. Carcinogenesis 2022, 43, 517–527. [Google Scholar] [CrossRef]
- Denton, K.M. GPCRs (G-Protein–Coupled Receptors) as Microprocessors. Hypertension 2021, 77, 432–434. [Google Scholar] [CrossRef]
- Sebastiani, G.; Ceccarelli, E.; Castagna, M.G.; Dotta, F. G-Protein-Coupled Receptors (GPCRs) in the Treatment of Diabetes: Current View and Future Perspectives. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.; Stoveken, H.M.; Cao, Y.; Martemyanov, K.A. The Role of Orphan Receptor GPR139 in Neuropsychiatric Behavior. Neuropsychopharmacology 2022, 47, 902–913. [Google Scholar] [CrossRef] [PubMed]
- Mantas, I.; Saarinen, M.; Xu, Z.-Q.D.; Svenningsson, P. Update on GPCR-Based Targets for the Development of Novel Antidepressants. Mol. Psychiatry 2022, 27, 534–558. [Google Scholar] [CrossRef] [PubMed]
- Kolb, P.; Kenakin, T.; Alexander, S.P.H.; Bermudez, M.; Bohn, L.M.; Breinholt, C.S.; Bouvier, M.; Hill, S.J.; Kostenis, E.; Martemyanov, K.A.; et al. Community Guidelines for GPCR Ligand Bias: IUPHAR Review 32. Br. J. Pharmacol. 2022, 179, 3651–3674. [Google Scholar] [CrossRef] [PubMed]
- Vargas, M.V.; Dunlap, L.E.; Dong, C.; Carter, S.J.; Tombari, R.J.; Jami, S.A.; Cameron, L.P.; Patel, S.D.; Hennessey, J.J.; Saeger, H.N.; et al. Psychedelics Promote Neuroplasticity through the Activation of Intracellular 5-HT2A Receptors. Science 2023, 379, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, M.; Merten, N.; Malfacini, D.; Inoue, A.; Preis, P.; Simon, K.; Rüttiger, N.; Ziegler, N.; Benkel, T.; Schmitt, N.K.; et al. Lack of Beta-Arrestin Signaling in the Absence of Active G Proteins. Nat. Commun. 2018, 9, 341. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Mehta, S.; Clark, M.; Walters, G.; Zhong, Y.; Lee, H.N.; Sunahara, R.K.; Zhang, J. Non-Canonical β-Adrenergic Activation of ERK at Endosomes. Nature 2022, 611, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.H.; Thomsen, A.R.B.; Cahill, T.J.; Huang, R.; Huang, L.-Y.; Marcink, T.; Clarke, O.B.; Heissel, S.; Masoudi, A.; Ben-Hail, D.; et al. Structure of an Endosomal Signaling GPCR-G Protein-β-Arrestin Megacomplex. Nat. Struct. Mol. Biol. 2019, 26, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Oakley, R.H.; Laporte, S.A.; Holt, J.A.; Caron, M.G.; Barak, L.S. Differential Affinities of Visual Arrestin, βArrestin1, and βArrestin2 for G Protein-Coupled Receptors Delineate Two Major Classes of Receptors. J. Biol. Chem. 2000, 275, 17201–17210. [Google Scholar] [CrossRef]
- Hauser, A.S.; Kooistra, A.J.; Munk, C.; Heydenreich, F.M.; Veprintsev, D.B.; Bouvier, M.; Babu, M.M.; Gloriam, D.E. GPCR Activation Mechanisms across Classes and Macro/Microscales. Nat. Struct. Mol. Biol. 2021, 28, 879–888. [Google Scholar] [CrossRef]
- Kim, Y.; Gumpper, R.H.; Liu, Y.; Kocak, D.D.; Xiong, Y.; Cao, C.; Deng, Z.; Krumm, B.E.; Jain, M.K.; Zhang, S.; et al. Bitter Taste Receptor Activation by Cholesterol and an Intracellular Tastant. Nature 2024, 628, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Thibeault, P.E.; Ramachandran, R. Role of the Helix-8 and C-Terminal Tail in Regulating Proteinase Activated Receptor 2 Signaling. ACS Pharmacol. Transl. Sci. 2020, 3, 868–882. [Google Scholar] [CrossRef] [PubMed]
- Sadler, F.; Ma, N.; Ritt, M.; Sharma, Y.; Vaidehi, N.; Sivaramakrishnan, S. Autoregulation of GPCR Signalling through the Third Intracellular Loop. Nature 2023, 615, 734–741. [Google Scholar] [CrossRef]
- Duan, J.; Liu, H.; Zhao, F.; Yuan, Q.; Ji, Y.; Cai, X.; He, X.; Li, X.; Li, J.; Wu, K.; et al. GPCR Activation and GRK2 Assembly by a Biased Intracellular Agonist. Nature 2023, 620, 676–681. [Google Scholar] [CrossRef]
- Violin, J.D.; Lefkowitz, R.J. β-Arrestin-Biased Ligands at Seven-Transmembrane Receptors. Trends Pharmacol. Sci. 2007, 28, 416–422. [Google Scholar] [CrossRef]
- Rajagopal, K.; Whalen, E.J.; Violin, J.D.; Stiber, J.A.; Rosenberg, P.B.; Premont, R.T.; Coffman, T.M.; Rockman, H.A.; Lefkowitz, R.J. β-Arrestin2-Mediated Inotropic Effects of the Angiotensin II Type 1A Receptor in Isolated Cardiac Myocytes. Proc. Natl. Acad. Sci. USA 2006, 103, 16284–16289. [Google Scholar] [CrossRef]
- Kenakin, T. Biased Receptor Signaling in Drug Discovery. Pharmacol. Rev. 2019, 71, 267–315. [Google Scholar] [CrossRef] [PubMed]
- Labus, J.; Röhrs, K.-F.; Ackmann, J.; Varbanov, H.; Müller, F.E.; Jia, S.; Jahreis, K.; Vollbrecht, A.-L.; Butzlaff, M.; Schill, Y.; et al. Amelioration of Tau Pathology and Memory Deficits by Targeting 5-HT7 Receptor. Prog. Neurobiol. 2021, 197, 101900. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Eishingdrelo, A.; Kongsamut, S.; Eishingdrelo, H. G-Protein-Coupled Receptors Mediate 14-3-3 Signal Transduction. Signal Transduct. Target. Ther. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Treppiedi, D.; Jobin, M.-L.; Peverelli, E.; Giardino, E.; Sungkaworn, T.; Zabel, U.; Arosio, M.; Spada, A.; Mantovani, G.; Calebiro, D. Single-Molecule Microscopy Reveals Dynamic FLNA Interactions Governing SSTR2 Clustering and Internalization. Endocrinology 2018, 159, 2953–2965. [Google Scholar] [CrossRef]
- Peverelli, E.; Giardino, E.; Treppiedi, D.; Vitali, E.; Cambiaghi, V.; Locatelli, M.; Lasio, G.B.; Spada, A.; Lania, A.G.; Mantovani, G. Filamin A (FLNA) Plays an Essential Role in Somatostatin Receptor 2 (SST2) Signaling and Stabilization after Agonist Stimulation in Human and Rat Somatotroph Tumor Cells. Endocrinology 2014, 155, 2932–2941. [Google Scholar] [CrossRef] [PubMed]
- Flores-Otero, J.; Ahn, K.H.; Delgado-Peraza, F.; Mackie, K.; Kendall, D.A.; Yudowski, G.A. Ligand-Specific Endocytic Dwell Times Control Functional Selectivity of the Cannabinoid Receptor 1. Nat. Commun. 2014, 5, 4589. [Google Scholar] [CrossRef] [PubMed]
- Culhane, K.J.; Gupte, T.M.; Madhugiri, I.; Gadgil, C.J.; Sivaramakrishnan, S. Kinetic Model of GPCR-G Protein Interactions Reveals Allokairic Modulation of Signaling. Nat. Commun. 2022, 13, 1202. [Google Scholar] [CrossRef] [PubMed]
- Klein Herenbrink, C.; Sykes, D.A.; Donthamsetti, P.; Canals, M.; Coudrat, T.; Shonberg, J.; Scammells, P.J.; Capuano, B.; Sexton, P.M.; Charlton, S.J.; et al. The Role of Kinetic Context in Apparent Biased Agonism at GPCRs. Nat. Commun. 2016, 7, 10842. [Google Scholar] [CrossRef] [PubMed]
- Masuho, I.; Skamangas, N.K.; Muntean, B.S.; Martemyanov, K.A. Diversity of the Gβγ Complexes Defines Spatial and Temporal Bias of GPCR Signaling. Cell Syst. 2021, 12, 324–337.e5. [Google Scholar] [CrossRef] [PubMed]
- Clapham, D.E.; Neer, E.J. G PROTEIN Βγ SUBUNITS. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 167–203. [Google Scholar] [CrossRef] [PubMed]
- Smrcka, A.V. G Protein Βγ Subunits: Central Mediators of G Protein-Coupled Receptor Signaling. Cell. Mol. Life Sci. 2008, 65, 2191–2214. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.; Min, A.; Gora, S.; Houranieh, G.M.; Campden, R.; Robitaille, M.; Trieu, P.; Pétrin, D.; Jacobi, A.M.; Behlke, M.A.; et al. Gβ4γ1 as a Modulator of M3 Muscarinic Receptor Signalling and Novel Roles of Gβ1 Subunits in the Modulation of Cellular Signalling. Cell. Signal. 2015, 27, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Garnovskaya, M.N.; van Biesen, T.; Hawe, B.; Casañas Ramos, S.; Lefkowitz, R.J.; Raymond, J.R. Ras-Dependent Activation of Fibroblast Mitogen-Activated Protein Kinase by 5-HT1A Receptor via a G Protein βγ-Subunit-Initiated Pathway. Biochemistry 1996, 35, 13716–13722. [Google Scholar] [CrossRef]
- Sulon, S.M.; Benovic, J.L. Targeting G Protein–Coupled Receptor Kinases to G Protein–Coupled Receptors. Curr. Opin. Endocr. Metab. Res. 2021, 16, 56–65. [Google Scholar] [CrossRef]
- Gurevich, E.V.; Gurevich, V.V. Arrestins: Ubiquitous Regulators of Cellular Signaling Pathways. Genome Biol. 2006, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Head, B.P.; Patel, H.H.; Insel, P.A. Interaction of Membrane/Lipid Rafts with the Cytoskeleton: Impact on Signaling and Function: Membrane/Lipid Rafts, Mediators of Cytoskeletal Arrangement and Cell Signaling. Biochim. Biophys. Acta 2014, 1838, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Head, B.P.; Patel, H.H.; Roth, D.M.; Murray, F.; Swaney, J.S.; Niesman, I.R.; Farquhar, M.G.; Insel, P.A. Microtubules and Actin Microfilaments Regulate Lipid Raft/Caveolae Localization of Adenylyl Cyclase Signaling Components. J. Biol. Chem. 2006, 281, 26391–26399. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Meng, J.; Xu, C.; Liu, J. Multiple GPCR Functional Assays Based on Resonance Energy Transfer Sensors. Front. Cell Dev. Biol. 2021, 9, 611443. [Google Scholar] [CrossRef]
- Cheng, Z.; Garvin, D.; Paguio, A.; Stecha, P.; Wood, K.; Fan, F. Luciferase Reporter Assay System for Deciphering GPCR Pathways. Curr. Chem. Genom. 2010, 4, 84–91. [Google Scholar] [CrossRef]
- Namkung, Y.; Le Gouill, C.; Lukashova, V.; Kobayashi, H.; Hogue, M.; Khoury, E.; Song, M.; Bouvier, M.; Laporte, S.A. Monitoring G Protein-Coupled Receptor and β-Arrestin Trafficking in Live Cells Using Enhanced Bystander BRET. Nat. Commun. 2016, 7, 12178. [Google Scholar] [CrossRef] [PubMed]
- Patriarchi, T.; Cho, J.R.; Merten, K.; Howe, M.W.; Marley, A.; Xiong, W.-H.; Folk, R.W.; Broussard, G.J.; Liang, R.; Jang, M.J.; et al. Ultrafast Neuronal Imaging of Dopamine Dynamics with Designed Genetically Encoded Sensors. Science 2018, 360, eaat4422. [Google Scholar] [CrossRef]
- Sun, F.; Zeng, J.; Jing, M.; Zhou, J.; Feng, J.; Owen, S.F.; Luo, Y.; Li, F.; Wang, H.; Yamaguchi, T.; et al. A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice. Cell 2018, 174, 481–496.e19. [Google Scholar] [CrossRef] [PubMed]
- Asher, W.B.; Geggier, P.; Holsey, M.D.; Gilmore, G.T.; Pati, A.K.; Meszaros, J.; Terry, D.S.; Mathiasen, S.; Kaliszewski, M.J.; McCauley, M.D.; et al. Single-Molecule FRET Imaging of GPCR Dimers in Living Cells. Nat. Methods 2021, 18, 397–405. [Google Scholar] [CrossRef]
- El Khamlichi, C.; Cobret, L.; Arrang, J.-M.; Morisset-Lopez, S. BRET Analysis of GPCR Dimers in Neurons and Non-Neuronal Cells: Evidence for Inactive, Agonist, and Constitutive Conformations. Int. J. Mol. Sci. 2021, 22, 10638. [Google Scholar] [CrossRef]
- Wright, S.C.; Lukasheva, V.; Le Gouill, C.; Kobayashi, H.; Breton, B.; Mailhot-Larouche, S.; Blondel-Tepaz, É.; Antunes Vieira, N.; Costa-Neto, C.; Héroux, M.; et al. BRET-Based Effector Membrane Translocation Assay Monitors GPCR-Promoted and Endocytosis-Mediated Gq Activation at Early Endosomes. Proc. Natl. Acad. Sci. USA 2021, 118, e2025846118. [Google Scholar] [CrossRef] [PubMed]
- Hein, P.; Frank, M.; Hoffmann, C.; Lohse, M.J.; Bünemann, M. Dynamics of Receptor/G Protein Coupling in Living Cells. EMBO J. 2005, 24, 4106–4114. [Google Scholar] [CrossRef] [PubMed]
- Avet, C.; Mancini, A.; Breton, B.; Le Gouill, C.; Hauser, A.S.; Normand, C.; Kobayashi, H.; Gross, F.; Hogue, M.; Lukasheva, V.; et al. Effector Membrane Translocation Biosensors Reveal G Protein and Βarrestin Coupling Profiles of 100 Therapeutically Relevant GPCRs. Elife 2022, 11, e74101. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.H.J.; DiBerto, J.F.; English, J.G.; Glaudin, A.M.; Krumm, B.E.; Slocum, S.T.; Che, T.; Gavin, A.C.; McCorvy, J.D.; Roth, B.L.; et al. TRUPATH, an Open-Source Biosensor Platform for Interrogating the GPCR Transducerome. Nat. Chem. Biol. 2020, 16, 841–849. [Google Scholar] [CrossRef]
- Mores, K.L.; Cassell, R.J.; van Rijn, R.M. Arrestin Recruitment and Signaling by G Protein-Coupled Receptor Heteromers. Neuropharmacology 2019, 152, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, W.K.; Sassano, M.F.; Huang, X.-P.; Lansu, K.; McCorvy, J.D.; Giguère, P.M.; Sciaky, N.; Roth, B.L. PRESTO-Tango as an Open-Source Resource for Interrogation of the Druggable Human GPCRome. Nat. Struct. Mol. Biol. 2015, 22, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Barnea, G.; Strapps, W.; Herrada, G.; Berman, Y.; Ong, J.; Kloss, B.; Axel, R.; Lee, K.J. The Genetic Design of Signaling Cascades to Record Receptor Activation. Proc. Natl. Acad. Sci. USA 2008, 105, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Djannatian, M.S.; Galinski, S.; Fischer, T.M.; Rossner, M.J. Studying G Protein-Coupled Receptor Activation Using Split-Tobacco Etch Virus Assays. Anal. Biochem. 2011, 412, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Raimondi, F.; Kadji, F.M.N.; Singh, G.; Kishi, T.; Uwamizu, A.; Ono, Y.; Shinjo, Y.; Ishida, S.; Arang, N.; et al. Illuminating G-Protein-Coupling Selectivity of GPCRs. Cell 2019, 177, 1933–1947.e25. [Google Scholar] [CrossRef]
- Inoue, A.; Ishiguro, J.; Kitamura, H.; Arima, N.; Okutani, M.; Shuto, A.; Higashiyama, S.; Ohwada, T.; Arai, H.; Makide, K.; et al. TGFα Shedding Assay: An Accurate and Versatile Method for Detecting GPCR Activation. Nat. Methods 2012, 9, 1021–1029. [Google Scholar] [CrossRef]
- Robichaux, W.G.; Cheng, X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol. Rev. 2018, 98, 919–1053. [Google Scholar] [CrossRef] [PubMed]
- Koschinski, A.; Zaccolo, M. Activation of PKA in Cell Requires Higher Concentration of cAMP than in Vitro: Implications for Compartmentalization of cAMP Signalling. Sci. Rep. 2017, 7, 14090. [Google Scholar] [CrossRef] [PubMed]
- Wigdal, S.S.; Anderson, J.L.; Vidugiris, G.J.; Shultz, J.; Wood, K.V.; Fan, F. A Novel Bioluminescent Protease Assay Using Engineered Firefly Luciferase. Curr. Chem. Genom. 2008, 2, 16–28. [Google Scholar] [CrossRef]
- Fan, F.; Binkowski, B.F.; Butler, B.L.; Stecha, P.F.; Lewis, M.K.; Wood, K.V. Novel Genetically Encoded Biosensors Using Firefly Luciferase. ACS Chem. Biol. 2008, 3, 346–351. [Google Scholar] [CrossRef]
- Chen, T.-W.; Wardill, T.J.; Sun, Y.; Pulver, S.R.; Renninger, S.L.; Baohan, A.; Schreiter, E.R.; Kerr, R.A.; Orger, M.B.; Jayaraman, V.; et al. Ultrasensitive Fluorescent Proteins for Imaging Neuronal Activity. Nature 2013, 499, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rózsa, M.; Liang, Y.; Bushey, D.; Wei, Z.; Zheng, J.; Reep, D.; Broussard, G.J.; Tsang, A.; Tsegaye, G.; et al. Fast and Sensitive GCaMP Calcium Indicators for Imaging Neural Populations. Nature 2023, 615, 884–891. [Google Scholar] [CrossRef]
- Pertz, O.; Hodgson, L.; Klemke, R.L.; Hahn, K.M. Spatiotemporal Dynamics of RhoA Activity in Migrating Cells. Nature 2006, 440, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
- Mahlandt, E.K.; Arts, J.J.G.; van der Meer, W.J.; van der Linden, F.H.; Tol, S.; van Buul, J.D.; Gadella, T.W.J.; Goedhart, J. Visualizing Endogenous Rho Activity with an Improved Localization-Based, Genetically Encoded Biosensor. J. Cell Sci. 2021, 134, jcs258823. [Google Scholar] [CrossRef]
- Greenwald, E.C.; Mehta, S.; Zhang, J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem. Rev. 2018, 118, 11707–11794. [Google Scholar] [CrossRef]
- Jones-Tabah, J.; Martin, R.D.; Chen, J.J.; Tanny, J.C.; Clarke, P.B.S.; Hébert, T.E. A Role for BET Proteins in Regulating Basal, Dopamine-Induced and cAMP/PKA-Dependent Transcription in Rat Striatal Neurons. Cell. Signal. 2022, 91, 110226. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, X. Tools for GPCR Drug Discovery. Acta Pharmacol. Sin. 2012, 33, 372–384. [Google Scholar] [CrossRef]
- Algar, W.R.; Hildebrandt, N.; Vogel, S.S.; Medintz, I.L. FRET as a Biomolecular Research Tool—Understanding Its Potential While Avoiding Pitfalls. Nat. Methods 2019, 16, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Stoddart, L.A.; Johnstone, E.K.M.; Wheal, A.J.; Goulding, J.; Robers, M.B.; Machleidt, T.; Wood, K.V.; Hill, S.J.; Pfleger, K.D.G. Application of BRET to Monitor Ligand Binding to GPCRs. Nat. Methods 2015, 12, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.E.; Blumer, J.B.; Hepler, J.R. Bioluminescence Resonance Energy Transfer to Detect Protein-Protein Interactions in Live Cells. Methods Mol. Biol. 2015, 1278, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Pfleger, K.D.G.; Eidne, K.A. Illuminating Insights into Protein-Protein Interactions Using Bioluminescence Resonance Energy Transfer (BRET). Nat. Methods 2006, 3, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Loening, A.M.; Fenn, T.D.; Wu, A.M.; Gambhir, S.S. Consensus Guided Mutagenesis of Renilla Luciferase Yields Enhanced Stability and Light Output. Protein Eng. Des. Sel. 2006, 19, 391–400. [Google Scholar] [CrossRef]
- Schihada, H.; Nemec, K.; Lohse, M.J.; Maiellaro, I. Bioluminescence in G Protein-Coupled Receptors Drug Screening Using Nanoluciferase and Halo-Tag Technology. Methods Mol. Biol. 2021, 2268, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, E.K.M.; Pfleger, K.D.G. Receptor-Heteromer Investigation Technology and Its Application Using BRET. Front. Endocrinol. 2012, 3, 101. [Google Scholar] [CrossRef] [PubMed]
- Vidi, P.-A.; Chemel, B.R.; Hu, C.-D.; Watts, V.J. Ligand-Dependent Oligomerization of Dopamine D(2) and Adenosine A(2A) Receptors in Living Neuronal Cells. Mol. Pharmacol. 2008, 74, 544–551. [Google Scholar] [CrossRef]
- Przybyla, J.A.; Watts, V.J. Ligand-Induced Regulation and Localization of Cannabinoid CB1 and Dopamine D2L Receptor Heterodimers. J. Pharmacol. Exp. Ther. 2010, 332, 710–719. [Google Scholar] [CrossRef]
- Sahlholm, K.; Gómez-Soler, M.; Valle-León, M.; López-Cano, M.; Taura, J.J.; Ciruela, F.; Fernández-Dueñas, V. Antipsychotic-Like Efficacy of Dopamine D2 Receptor-Biased Ligands Is Dependent on Adenosine A2A Receptor Expression. Mol. Neurobiol. 2018, 55, 4952–4958. [Google Scholar] [CrossRef] [PubMed]
- Vilardaga, J.-P.; Bünemann, M.; Krasel, C.; Castro, M.; Lohse, M.J. Measurement of the Millisecond Activation Switch of G Protein-Coupled Receptors in Living Cells. Nat. Biotechnol. 2003, 21, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Rochais, F.; Vilardaga, J.-P.; Nikolaev, V.O.; Bünemann, M.; Lohse, M.J.; Engelhardt, S. Real-Time Optical Recording of β1-Adrenergic Receptor Activation Reveals Supersensitivity of the Arg389 Variant to Carvedilol. J. Clin. Investig. 2007, 117, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Vilardaga, J.-P.; Steinmeyer, R.; Harms, G.S.; Lohse, M.J. Molecular Basis of Inverse Agonism in a G Protein-Coupled Receptor. Nat. Chem. Biol. 2005, 1, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Reiner, S.; Ambrosio, M.; Hoffmann, C.; Lohse, M.J. Differential Signaling of the Endogenous Agonists at the β2-Adrenergic Receptor. J. Biol. Chem. 2010, 285, 36188–36198. [Google Scholar] [CrossRef] [PubMed]
- Chachisvilis, M.; Zhang, Y.-L.; Frangos, J.A. G Protein-Coupled Receptors Sense Fluid Shear Stress in Endothelial Cells. Proc. Natl. Acad. Sci. USA 2006, 103, 15463–15468. [Google Scholar] [CrossRef] [PubMed]
- Klarenbeek, J.; Goedhart, J.; van Batenburg, A.; Groenewald, D.; Jalink, K. Fourth-Generation Epac-Based FRET Sensors for cAMP Feature Exceptional Brightness, Photostability and Dynamic Range: Characterization of Dedicated Sensors for FLIM, for Ratiometry and with High Affinity. PLoS ONE 2015, 10, e0122513. [Google Scholar] [CrossRef] [PubMed]
- van Unen, J.; Reinhard, N.R.; Yin, T.; Wu, Y.I.; Postma, M.; Gadella, T.W.J.; Goedhart, J. Plasma Membrane Restricted RhoGEF Activity Is Sufficient for RhoA-Mediated Actin Polymerization. Sci. Rep. 2015, 5, 14693. [Google Scholar] [CrossRef] [PubMed]
- Wouters, E.; Vasudevan, L.; Crans, R.A.J.; Saini, D.K.; Stove, C.P. Luminescence- and Fluorescence-Based Complementation Assays to Screen for GPCR Oligomerization: Current State of the Art. Int. J. Mol. Sci. 2019, 20, 2958. [Google Scholar] [CrossRef]
- Ghosh, I.; Hamilton, A.D.; Regan, L. Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein. J. Am. Chem. Soc. 2000, 122, 5658–5659. [Google Scholar] [CrossRef]
- Nagai, T.; Sawano, A.; Park, E.S.; Miyawaki, A. Circularly Permuted Green Fluorescent Proteins Engineered to Sense Ca2+. Proc. Natl. Acad. Sci. USA 2001, 98, 3197–3202. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, L.E.; Humphrys, L.J.; Holliday, N.D. A G Protein-Coupled Receptor Dimer Imaging Assay Reveals Selectively Modified Pharmacology of Neuropeptide Y Y1/Y5 Receptor Heterodimers. Mol. Pharmacol. 2015, 87, 718–732. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Urizar, E.; Kralikova, M.; Mobarec, J.C.; Shi, L.; Filizola, M.; Javitch, J.A. Dopamine D2 Receptors Form Higher Order Oligomers at Physiological Expression Levels. EMBO J. 2008, 27, 2293–2304. [Google Scholar] [CrossRef]
- Porrello, E.R.; Pfleger, K.D.G.; Seeber, R.M.; Qian, H.; Oro, C.; Abogadie, F.; Delbridge, L.M.D.; Thomas, W.G. Heteromerization of Angiotensin Receptors Changes Trafficking and Arrestin Recruitment Profiles. Cell. Signal. 2011, 23, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Bai, B.; Ji, B.; Chen, X.; Wang, C.; Wang, P.; Yang, C.; Zhang, R.; Jiang, Y.; Pan, Y.; et al. Ghrelin Through GHSR1a and OX1R Heterodimers Reveals a Gαs-cAMP-cAMP Response Element Binding Protein Signaling Pathway in Vitro. Front. Mol. Neurosci. 2018, 11, 245. [Google Scholar] [CrossRef]
- Cabantous, S.; Nguyen, H.B.; Pedelacq, J.-D.; Koraïchi, F.; Chaudhary, A.; Ganguly, K.; Lockard, M.A.; Favre, G.; Terwilliger, T.C.; Waldo, G.S. A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association. Sci. Rep. 2013, 3, 2854. [Google Scholar] [CrossRef]
- Pedelacq, J.-D.; Cabantous, S. Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology. Int. J. Mol. Sci. 2019, 20, 3479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, Y.-W.; Coughlin, S.R.; Shu, X. A Rapid Fluorogenic GPCR-β-Arrestin Interaction Assay. Protein Sci. 2018, 27, 874–879. [Google Scholar] [CrossRef]
- Luker, K.E.; Gupta, M.; Luker, G.D. Imaging CXCR4 Signaling with Firefly Luciferase Complementation. Anal. Chem. 2008, 80, 5565–5573. [Google Scholar] [CrossRef]
- Luker, K.E.; Gupta, M.; Luker, G.D. Imaging Chemokine Receptor Dimerization with Firefly Luciferase Complementation. FASEB J. 2009, 23, 823–834. [Google Scholar] [CrossRef]
- Luker, K.E.; Gupta, M.; Steele, J.M.; Foerster, B.R.; Luker, G.D. Imaging Ligand-Dependent Activation of CXCR7. Neoplasia 2009, 11, 1022–1035. [Google Scholar] [CrossRef] [PubMed]
- Armando, S.; Quoyer, J.; Lukashova, V.; Maiga, A.; Percherancier, Y.; Heveker, N.; Pin, J.-P.; Prézeau, L.; Bouvier, M. The Chemokine CXC4 and CC2 Receptors Form Homo- and Heterooligomers That Can Engage Their Signaling G-Protein Effectors and Βarrestin. FASEB J. 2014, 28, 4509–4523. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.S.; Schwinn, M.K.; Hall, M.P.; Zimmerman, K.; Otto, P.; Lubben, T.H.; Butler, B.L.; Binkowski, B.F.; MacHleidt, T.; Kirkland, T.A.; et al. NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem. Biol. 2016, 11, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Cannaert, A.; Franz, F.; Auwärter, V.; Stove, C.P. Activity-Based Detection of Consumption of Synthetic Cannabinoids in Authentic Urine Samples Using a Stable Cannabinoid Reporter System. Anal. Chem. 2017, 89, 9527–9536. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, N.; Laschet, C.; Franssen, D.; Szpakowska, M.; Gilissen, J.; Geubelle, P.; Soni, A.; Parent, A.-S.; Pirotte, B.; Chevigné, A.; et al. Activation of the Orphan G Protein-Coupled Receptor GPR27 by Surrogate Ligands Promotes β-Arrestin 2 Recruitment. Mol. Pharmacol. 2017, 91, 595–608. [Google Scholar] [CrossRef]
- Storme, J.; Cannaert, A.; Van Craenenbroeck, K.; Stove, C.P. Molecular Dissection of the Human A3 Adenosine Receptor Coupling with β-Arrestin2. Biochem. Pharmacol. 2018, 148, 298–307. [Google Scholar] [CrossRef]
- Laschet, C.; Dupuis, N.; Hanson, J. A Dynamic and Screening-Compatible Nanoluciferase-Based Complementation Assay Enables Profiling of Individual GPCR-G Protein Interactions. J. Biol. Chem. 2019, 294, 4079–4090. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; von Hauff, I.V.; Jensen, N.; Rossner, M.J.; Wehr, M.C. Improved Split TEV GPCR β-Arrestin-2 Recruitment Assays via Systematic Analysis of Signal Peptide and β-Arrestin Binding Motif Variants. Biosensors 2022, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Minamimoto, T.; Wess, J.; Roth, B.L. Chemogenetics for Cell-Type-Specific Modulation of Signalling and Neuronal Activity. Nat. Rev. Methods Prim. 2023, 3, 93. [Google Scholar] [CrossRef]
- Lee, K. Epac: New Emerging cAMP-Binding Protein. BMB Rep. 2021, 54, 149–156. [Google Scholar] [CrossRef]
- Wang, F.I.; Ding, G.; Ng, G.S.; Dixon, S.J.; Chidiac, P. Luciferase-Based GloSensorTM cAMP Assay: Temperature Optimization and Application to Cell-Based Kinetic Studies. Methods 2022, 203, 249–258. [Google Scholar] [CrossRef] [PubMed]
- DiRaddo, J.O.; Miller, E.J.; Hathaway, H.A.; Grajkowska, E.; Wroblewska, B.; Wolfe, B.B.; Liotta, D.C.; Wroblewski, J.T. A Real-Time Method for Measuring cAMP Production Modulated by Gαi/o-Coupled Metabotropic Glutamate Receptors. J. Pharmacol. Exp. Ther. 2014, 349, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Binkowski, B.F.; Butler, B.L.; Stecha, P.F.; Eggers, C.T.; Otto, P.; Zimmerman, K.; Vidugiris, G.; Wood, M.G.; Encell, L.P.; Fan, F.; et al. A Luminescent Biosensor with Increased Dynamic Range for Intracellular cAMP. ACS Chem. Biol. 2011, 6, 1193–1197. [Google Scholar] [CrossRef] [PubMed]
- Binkowski, B.F.; Fan, F.; Wood, K.V. Luminescent Biosensors for Real-Time Monitoring of Intracellular cAMP. Methods Mol. Biol. 2011, 756, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Nakai, J.; Ohkura, M.; Imoto, K. A High Signal-to-Noise Ca2+ Probe Composed of a Single Green Fluorescent Protein. Nat. Biotechnol. 2001, 19, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Hires, S.A.; Mao, T.; Huber, D.; Chiappe, M.E.; Chalasani, S.H.; Petreanu, L.; Akerboom, J.; McKinney, S.A.; Schreiter, E.R.; et al. Imaging Neural Activity in Worms, Flies and Mice with Improved GCaMP Calcium Indicators. Nat. Methods 2009, 6, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Chen, X.; Liu, F.; Li, J.; Gu, L.; Liu, J.R.; Liu, J. A Cell-Based Functional Assay Using a Green Fluorescent Protein-Based Calcium Indicator dCys-GCaMP. Assay. Drug Dev. Technol. 2014, 12, 342–351. [Google Scholar] [CrossRef]
- Ma, Q.; Ye, L.; Liu, H.; Shi, Y.; Zhou, N. An Overview of Ca2+ Mobilization Assays in GPCR Drug Discovery. Expert. Opin. Drug Discov. 2017, 12, 511–523. [Google Scholar] [CrossRef]
- Odaka, H.; Arai, S.; Inoue, T.; Kitaguchi, T. Genetically-Encoded Yellow Fluorescent cAMP Indicator with an Expanded Dynamic Range for Dual-Color Imaging. PLoS ONE 2014, 9, e100252. [Google Scholar] [CrossRef]
- Tany, R.; Goto, Y.; Kondo, Y.; Aoki, K. Quantitative Live-Cell Imaging of GPCR Downstream Signaling Dynamics. Biochem. J. 2022, 479, 883–900. [Google Scholar] [CrossRef]
- Yu, O.M.; Brown, J.H. G Protein-Coupled Receptor and RhoA-Stimulated Transcriptional Responses: Links to Inflammation, Differentiation, and Cell Proliferation. Mol. Pharmacol. 2015, 88, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Rossman, K.L.; Der, C.J.; Sondek, J. GEF Means Go: Turning on RHO GTPases with Guanine Nucleotide-Exchange Factors. Nat. Rev. Mol. Cell Biol. 2005, 6, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Pertz, O. Spatio-Temporal Rho GTPase Signaling—Where Are We Now? J. Cell Sci. 2010, 123, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Schwachtgen, J.L.; Campbell, C.J.; Braddock, M. Full Promoter Sequence of Human Early Growth Response Factor-1 (Egr-1): Demonstration of a Fifth Functional Serum Response Element. DNA Seq. 2000, 10, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Guo, H.; Yu, H.; Chen, Y.; Xu, H.; Zhao, G. The Role of the Transcription Factor EGR1 in Cancer. Front. Oncol. 2021, 11, 642547. [Google Scholar] [CrossRef] [PubMed]
- Herholt, A.; Brankatschk, B.; Kannaiyan, N.; Papiol, S.; Wichert, S.P.; Wehr, M.C.; Rossner, M.J. Pathway Sensor-Based Functional Genomics Screening Identifies Modulators of Neuronal Activity. Sci. Rep. 2018, 8, 17597. [Google Scholar] [CrossRef]
- Herholt, A.; Sahoo, V.K.; Popovic, L.; Wehr, M.C.; Rossner, M.J. Dissecting Intercellular and Intracellular Signaling Networks with Barcoded Genetic Tools. Curr. Opin. Chem. Biol. 2022, 66, 102091. [Google Scholar] [CrossRef]
- Muzzey, D.; Evans, E.A.; Lieber, C. Understanding the Basics of NGS: From Mechanism to Variant Calling. Curr. Genet. Med. Rep. 2015, 3, 158–165. [Google Scholar] [CrossRef]
- Navarro, G.; Carriba, P.; Gandía, J.; Ciruela, F.; Casadó, V.; Cortés, A.; Mallol, J.; Canela, E.I.; Lluis, C.; Franco, R. Detection of Heteromers Formed by Cannabinoid CB1, Dopamine D2, and Adenosine A2A G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer. Sci. World J. 2008, 8, 1088–1097. [Google Scholar] [CrossRef]
- Galinski, S.; Wichert, S.P.; Rossner, M.J.; Wehr, M.C. Multiplexed Profiling of GPCR Activities by Combining Split TEV Assays and EXT-Based Barcoded Readouts. Sci. Rep. 2018, 8, 8137. [Google Scholar] [CrossRef]
- Chen, H.; Rosen, C.E.; González-Hernández, J.A.; Song, D.; Potempa, J.; Ring, A.M.; Palm, N.W. Highly Multiplexed Bioactivity Screening Reveals Human and Microbiota Metabolome-GPCRome Interactions. Cell 2023, 186, 3095–3110.e19. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.M.; Jajoo, R.; Cancilla, D.; Lubock, N.B.; Wang, J.; Satyadi, M.; Cheung, R.; de March, C.; Bloom, J.S.; Matsunami, H.; et al. A Scalable, Multiplexed Assay for Decoding GPCR-Ligand Interactions with RNA Sequencing. Cell Syst. 2019, 8, 254–260.e6. [Google Scholar] [CrossRef] [PubMed]
- Popović, L.; Wintgens, J.P.; Wu, Y.; Brankatschk, B.; Menninger, S.; Degenhart, C.; Jensen, N.; Wichert, S.P.; Klebl, B.; Rossner, M.J.; et al. Profiling of ERBB Receptors and Downstream Pathways Reveals Selectivity and Hidden Properties of ERBB4 Antagonists. iScience 2024, 27, 108839. [Google Scholar] [CrossRef] [PubMed]
- Rebois, R.V.; Robitaille, M.; Pétrin, D.; Zylbergold, P.; Trieu, P.; Hébert, T.E. Combining Protein Complementation Assays with Resonance Energy Transfer to Detect Multipartner Protein Complexes in Living Cells. Methods 2008, 45, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Sarrion-Perdigones, A.; Chang, L.; Gonzalez, Y.; Gallego-Flores, T.; Young, D.W.; Venken, K.J.T. Examining Multiple Cellular Pathways at Once Using Multiplex Hextuple Luciferase Assaying. Nat. Commun. 2019, 10, 5710. [Google Scholar] [CrossRef] [PubMed]
- Vincent, F.; Loria, P.; Pregel, M.; Stanton, R.; Kitching, L.; Nocka, K.; Doyonnas, R.; Steppan, C.; Gilbert, A.; Schroeter, T.; et al. Developing Predictive Assays: The Phenotypic Screening “Rule of 3”. Sci. Transl. Med. 2015, 7, 293ps15. [Google Scholar] [CrossRef]
- Wehr, M.C.; Laage, R.; Bolz, U.; Fischer, T.M.; Grünewald, S.; Scheek, S.; Bach, A.; Nave, K.-A.; Rossner, M.J. Monitoring Regulated Protein-Protein Interactions Using Split TEV. Nat. Methods 2006, 3, 985–993. [Google Scholar] [CrossRef]
- Wehr, M.C.; Rossner, M.J. Split Protein Biosensor Assays in Molecular Pharmacological Studies. Drug Discov. Today 2016, 21, 415–429. [Google Scholar] [CrossRef]
Hierarchical Level | Target Mechanism | Assay Technique | Readout | References |
---|---|---|---|---|
Receptor | GPCR conformational change | BRET | Fluorescence, Luminescence | [46] |
GPCR conformational change | Permutated GFPs | Fluorescence | [47,48] | |
GPCR dimerization | FRET | Fluorescence | [49] | |
GPCR dimerization | BRET | Fluorescence, Luminescence | [50] | |
GPCR endocytosis | FRET | Fluorescence | [17] | |
GPCR endocytosis | BRET | Fluorescence, Luminescence | [51] | |
Transducer | G protein recruitment | FRET | Fluorescence | [52] |
G protein recruitment | BRET | Fluorescence, Luminescence | [53,54] | |
β-arrestin recruitment | FRET | Fluorescence | [55] | |
β-arrestin recruitment | BRET | Fluorescence, Luminescence | [46,55] | |
β-arrestin-2 recruitment | Full TEV assay (Tango) | Luminescence | [56,57] | |
β-arrestin-2 recruitment | Split TEV assay | Luminescence | [58] | |
Gα recruitment | TGF-α shedding assay | Absorbance | [59,60] | |
Second messenger | cAMP/Epac | FRET | Fluorescence | [61,62] |
cAMP | GloSensor | Luminescence | [63,64] | |
Calcium/Calcium flux | GCaMP | Fluorescence | [65,66] | |
Effector | RhoA | FRET | Fluorescence | [67] |
RhoA | Relocation | Fluorescence | [68] | |
Transcription | Transcription factors (CREB, NFAT, ELK1, SRF) | Reporter gene activation (Pathway assay) | Luminescence | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Jensen, N.; Rossner, M.J.; Wehr, M.C. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. Int. J. Mol. Sci. 2024, 25, 5474. https://doi.org/10.3390/ijms25105474
Wu Y, Jensen N, Rossner MJ, Wehr MC. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. International Journal of Molecular Sciences. 2024; 25(10):5474. https://doi.org/10.3390/ijms25105474
Chicago/Turabian StyleWu, Yuxin, Niels Jensen, Moritz J. Rossner, and Michael C. Wehr. 2024. "Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors" International Journal of Molecular Sciences 25, no. 10: 5474. https://doi.org/10.3390/ijms25105474
APA StyleWu, Y., Jensen, N., Rossner, M. J., & Wehr, M. C. (2024). Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. International Journal of Molecular Sciences, 25(10), 5474. https://doi.org/10.3390/ijms25105474