Nano(bio)Materials Do Not Affect Macrophage Phenotype—A Study Conducted by the REFINE Project
Abstract
:1. Introduction
2. Results
2.1. Monocyte-Activation Test
2.2. Macrophage Polarisation and Cytokines
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Nano(bio)Materials
4.2.1. LipImage™ 815 Synthesis and Characterisation
4.2.2. PACA Synthesis and Characterisation
4.3. Monocyte Activation Test
4.3.1. Preparation of Standards, Controls, and Test Materials
4.3.2. PyroMAT® Cell Incubation/Stimulation of IL-6 Production
4.3.3. IL-6 ELISA Procedure
4.4. Monocyte Isolation and Differentiation to M1/M2 Macrophages
4.4.1. Blood Collection and Lymphocyte Isolation
4.4.2. CD14+ Monocyte Magnetic Labelling and Isolation
4.4.3. M1/M2 Macrophage Differentiation
4.5. Macrophage Exposure to NBMs, and Subsequent Cytokine Analysis
Cytokine Quantification
4.6. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CARPA | Complement activation-related pseudoallergy |
CBZ | Cabazitaxel |
CD14 | Cluster of differentiation 14 |
ELISA | Enzyme-linked immunosorbent assay |
EU | Endotoxin units |
FBS | Fetal bovine serum |
FDA | Food and Drug Administration |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
GMP | Good manufacturing practice |
HBSS | Hank’s balanced salt solution |
HIV | Human immunodeficiency virus |
HSKA | Heat-killed Staphylococcus aureus |
IL | Interleukin |
LAL | Limulus amoebocyte lysate |
LPS | Lipopolysaccharide |
MAT | Monocyte-activation test |
MDM | Monocyte-derived macrophage |
M-CSF | Macrophage colony-stimulating factor |
NBM | Nano(bio)materials |
PACA | Poly(alkyl cyanoacrylate) |
PBMC | Peripheral blood mononuclear cell |
PEBCA | Poly(ethylbutyl cyanoacrylate) |
PE | Phycoerythrin |
PEG | Polyethylene glycol |
PBS | Phosphate-buffered saline |
REFINE | Regulatory Science Framework for Nano(bio)material-based Medical Products and Devices |
RPMI-1640 | Roswell Park Memorial Institute 1640 Medium |
RPT | Rabbit pyrogen test |
SOP | Standard operating procedure |
TNF | Tumour necrosis factor alpha |
References
- Watanabe, S.; Alexander, M.; Misharin, A.V.; Budinger, G.S. The Role of Macrophages in the Resolution of Inflammation. J. Clin. Investig. 2019, 129, 2619–2628. [Google Scholar] [CrossRef] [PubMed]
- Atri, C.; Guerfali, F.Z.; Laouini, D. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int. J. Mol. Sci. 2018, 19, 1801. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liang, H.; Zen, K. Molecular Mechanisms That Influence the Macrophage M1–M2 Polarization Balance. Front. Immunol. 2014, 5, 614. [Google Scholar] [CrossRef] [PubMed]
- Roszer, T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediat. Inflamm. 2015, 2015, 816460. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today 2015, 10, 487–510. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolskaia, M.A.; Germolec, D.R.; Weaver, J.L. Evaluation of Nanoparticle Immunotoxicity. Nat. Nanotechnol. 2009, 4, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Briley-Saebo, K.; Bjørnerud, A.; Grant, D.; Ahlstrom, H.; Berg, T.; Kindberg, G.M. Hepatic Cellular Distribution and Degradation of Iron Oxide Nanoparticles Following Single Intravenous Injection in Rats: Implications for Magnetic Resonance Imaging. Cell Tissue Res. 2004, 316, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Papini, E.; Tavano, R.; Mancin, F. Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Front. Immunol. 2020, 11, 567365. [Google Scholar] [CrossRef] [PubMed]
- Csukás, D.; Urbanics, R.; Wéber, G.; Rosivall, L.; Szebeni, J. Pulmonary Intravascular Macrophages: Prime Suspects as Cellular Mediators of Porcine CARPA. Eur. J. Nanomed. 2015, 7, 27–36. [Google Scholar] [CrossRef]
- Hirayama, D.; Iida, T.; Nakase, H. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int. J. Mol. Sci. 2018, 19, 92. [Google Scholar] [CrossRef]
- Gordon, S. Phagocytosis: An Immunobiologic Process. Immunity 2016, 44, 463–475. [Google Scholar] [CrossRef]
- Fu, Y.L.; Harrison, R.E. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Front. Immunol. 2021, 12, 662063. [Google Scholar] [CrossRef]
- Manzanares, D.; Ceña, V. Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell. Pharmaceutics 2020, 12, 371. [Google Scholar] [CrossRef]
- Nakayama, M. Macrophage Recognition of Crystals and Nanoparticles. Front. Immunol. 2018, 9, 103. [Google Scholar] [CrossRef]
- Rosales, C.; Uribe-Querol, E. Phagocytosis: A Fundamental Process in Immunity. BioMed Res. Int. 2017, 2017, 9042851. [Google Scholar] [CrossRef]
- Godec, J.; Tan, Y.; Liberzon, A.; Tamayo, P.; Bhattacharya, S.; Butte, A.J.; Mesirov, J.P.; Haining, W.N. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation. Immunity 2016, 44, 194–206. [Google Scholar] [CrossRef]
- Seok, J.; Warren, H.S.; Cuenca, A.G.; Mindrinos, M.N.; Baker, H.V.; Xu, W.; Richards, D.R.; McDonald-Smith, G.P.; Gao, H.; Hennessy, L.; et al. Genomic Responses in Mouse Models Poorly Mimic Human Inflammatory Diseases. Proc. Natl. Acad. Sci. USA 2013, 110, 3507–3512. [Google Scholar] [CrossRef]
- Tedesco, S.; De Majo, F.; Kim, J.; Trenti, A.; Trevisi, L.; Fadini, G.P.; Bolego, C.; Zandstra, P.W.; Cignarella, A.; Vitiello, L. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization? Front. Pharmacol. 2018, 9, 71. [Google Scholar] [CrossRef]
- Luque-Martin, R.; Mander, P.K.; Leenen, P.J.M.; Winther, M.P.J. Classic and New Mediators for in Vitro Modelling of Human Macrophages. J. Leukoc. Biol. 2021, 109, 549–560. [Google Scholar] [CrossRef]
- Nielsen, M.C.; Andersen, M.N.; Møller, H.J. Monocyte Isolation Techniques Significantly Impact the Phenotype of Both Isolated Monocytes and Derived Macrophages in Vitro. Immunology 2020, 159, 63–74. [Google Scholar] [CrossRef]
- FDA; CDER; CBER. Drug Products, Including Biological Products, That Contain Nanomaterials-Guidance for Industry; Center for Drug Evaluation and Research: Beltsville, MD, USA, 2022.
- Åslund, A.K.O.; Vandebriel, R.J.; Caputo, F.; de Jong, W.H.; Delmaar, C.; Hyldbakk, A.; Rustique, E.; Schmid, R.; Snipstad, S.; Texier, I.; et al. A Comparative Biodistribution Study of Polymeric and Lipid-Based Nanoparticles. Drug Deliv. Transl. Res. 2022, 12, 2114–2131. [Google Scholar] [CrossRef]
- Liptrott, N.J.; Giardiello, M.; McDonald, T.O.; Rannard, S.P.; Owen, A. Lack of Interaction of Lopinavir Solid Drug Nanoparticles with Cells of the Immune System. Nanomedicine 2017, 12, 2043–2054. [Google Scholar] [CrossRef]
- Liptrott, N.J.; Giardiello, M.; McDonald, T.O.; Rannard, S.P.; Owen, A. Assessment of Interactions of Efavirenz Solid Drug Nanoparticles with Human Immunological and Haematological Systems. J. Nanobiotechnol. 2018, 16, 22. [Google Scholar] [CrossRef]
- Hobson, J.J.; Rannard, S.P.; Owen, A.; Liptrott, N.J. Safety Assessment of a New Nanoemulsion-Based Drug-Delivery System Reveals Unexpected, Drug-Free Anticoagulant Activity. Nanomedicine 2020, 15, 1361–1373. [Google Scholar] [CrossRef]
- Arango Duque, G.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef]
- EDQM. Monocyte-Activation Test, 6th ed.; European Pharmacopoeia (6.7); EDQM: Strasbourg, France, 2010. [Google Scholar]
- Halamoda-Kenzaoui, B.; Holzwarth, U.; Roebben, G.; Bogni, A.; Bremer-Hoffmann, S. Mapping of the Available Standards against the Regulatory Needs for Nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1531. [Google Scholar] [CrossRef]
- Halamoda-Kenzaoui, B.; Vandebriel, R.J.; Howarth, A.; Siccardi, M.; David, C.A.W.; Liptrott, N.J.; Santin, M.; Borgos, S.E.; Bremer-Hoffmann, S.; Caputo, F. Methodological Needs in the Quality and Safety Characterisation of Nanotechnology-Based Health Products: Priorities for Method Development and Standardisation. J. Control. Release 2021, 336, 192–206. [Google Scholar] [CrossRef]
- David, C.A.; Owen, A.; Liptrott, N.J. Determining the Relationship between Nanoparticle Characteristics and Immunotoxicity: Key Challenges and Approaches. Nanomedicine 2016, 11, 1447–1464. [Google Scholar] [CrossRef]
- EMA; CHMP. ICH Guideline Q4B Annex 14 to Note for Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions on Bacterial Endotoxins Tests; General Chapter; European Medicines Agency: Amsterdam, The Netherlands, 2013.
- FDA; CDER; CBER; CVM; CDRH; ORA. Guidance for Industry—Pyrogen and Endotoxins Testing: Questions and Answers; Food and Drug Administration: Rockville, MD, USA, 2012.
- Dobrovolskaia, M.A.; Neun, B.W.; Clogston, J.D.; Ding, H.; Ljubimova, J.; McNeil, S.E. Ambiguities in Applying Traditional Limulus Amoebocyte Lysate Tests to Quantify Endotoxin in Nanoparticle Formulations. Nanomedicine 2010, 5, 555–562. [Google Scholar] [CrossRef]
- Smulders, S.; Kaiser, J.P.; Zuin, S.; Van Landuyt, K.L.; Golanski, L.; Vanoirbeek, J.; Wick, P.; Hoet, P.H. Contamination of Nanoparticles by Endotoxin: Evaluation of Different Test Methods. Part. Fibre Toxicol. 2012, 9, 41. [Google Scholar] [CrossRef]
- Van der Bruggen, T.; Nijenhuis, S.; van Raaij, E.; Verhoef, J.; van Asbeck, B.S. Lipopolysaccharide-Induced Tumor Necrosis Factor Alpha Production by Human Monocytes Involves the Raf-1/MEK1-MEK2/ERK1-ERK2 Pathway. Infect. Immun. 1999, 67, 3824–3829. [Google Scholar] [CrossRef]
- Lopez-Castejon, G.; Brough, D. Understanding the Mechanism of IL-1β Secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef]
- Dobrovolskaia, M.A. Pre-Clinical Immunotoxicity Studies of Nanotechnology-Formulated Drugs: Challenges, Considerations and Strategy. J. Control. Release Off. J. Control. Release Soc. 2015, 220, 571–583. [Google Scholar] [CrossRef]
- Tarique, A.A.; Logan, J.; Thomas, E.; Holt, P.G.; Sly, P.D.; Fantino, E. Phenotypic, Functional, and Plasticity Features of Classical and Alternatively Activated Human Macrophages. Am. J. Respir. Cell Mol. Biol. 2015, 53, 676–688. [Google Scholar] [CrossRef]
- Gordon, S.; Plüddemann, A. Tissue Macrophages: Heterogeneity and Functions. BMC Biol. 2017, 15, 53. [Google Scholar] [CrossRef]
- Anchordoquy, T.J.; Barenholz, Y.; Boraschi, D.; Chorny, M.; Decuzzi, P.; Dobrovolskaia, M.A.; Farhangrazi, Z.S.; Farrell, D.; Gabizon, A.; Ghandehari, H.; et al. Mechanisms and Barriers in Cancer Nanomedicine: Addressing Challenges, Looking for Solutions. ACS Nano 2017, 11, 12–18. [Google Scholar] [CrossRef]
- Dobrovolskaia, M.A.; McNeil, S.E. Understanding the Correlation between in Vitro and in Vivo Immunotoxicity Tests for Nanomedicines. J. Control. Release Off. J. Control. Release Soc. 2013, 172, 456–466. [Google Scholar] [CrossRef]
- Buscher, K.; Ehinger, E.; Gupta, P.; Pramod, A.B.; Wolf, D.; Tweet, G.; Pan, C.; Mills, C.D.; Lusis, A.J.; Ley, K. Natural Variation of Macrophage Activation as Disease-Relevant Phenotype Predictive of Inflammation and Cancer Survival. Nat. Commun. 2017, 8, 16041. [Google Scholar] [CrossRef]
- Gharib, S.A.; McMahan, R.S.; Eddy, W.E.; Long, M.E.; Parks, W.C.; Aitken, M.L.; Manicone, A.M. Transcriptional and Functional Diversity of Human Macrophage Repolarization. J. Allergy Clin. Immunol. 2019, 143, 1536–1548. [Google Scholar] [CrossRef]
- Maes, E.; Landuyt, B.; Mertens, I.; Schoofs, L. Interindividual Variation in the Proteome of Human Peripheral Blood Mononuclear Cells. PLoS ONE 2013, 8, e61933. [Google Scholar] [CrossRef] [PubMed]
- Jacquart, A.; Keramidas, M.; Vollaire, J.; Boisgard, R.; Pottier, G.; Rustique, E.; Mittler, F.; Navarro, F.; Boutet, J.; Coll, J.L.; et al. LipImage™ 815: Novel Dye-Loaded Lipid Nanoparticles for Long-Term and Sensitive in Vivo Near-Infrared Fluorescence Imaging. J. Biomed. Opt. 2013, 18, 101311. [Google Scholar] [CrossRef]
- Varache, M.; Escudé, M.; Laffont, C.; Rustique, E.; Couffin, A.C. Development and Validation of an HPLC-fluorescence Method for the Quantification of IR780-oleyl Dye in Lipid Nanoparticles. Int. J. Pharm. 2017, 532, 779–789. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Roger, E.; Anton, N.; Anton, H.; Shulov, I.; Vermot, J.; Mely, Y.; Vandamme, T.F. Highly Lipophilic Fluorescent Dyes in Nano-Emulsions: Towards Bright Non-Leaking Nano-Droplets. RSC Adv. 2012, 2, 11876–11886. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, C.A.W.; Vermeulen, J.P.; Gioria, S.; Vandebriel, R.J.; Liptrott, N.J. Nano(bio)Materials Do Not Affect Macrophage Phenotype—A Study Conducted by the REFINE Project. Int. J. Mol. Sci. 2024, 25, 5491. https://doi.org/10.3390/ijms25105491
David CAW, Vermeulen JP, Gioria S, Vandebriel RJ, Liptrott NJ. Nano(bio)Materials Do Not Affect Macrophage Phenotype—A Study Conducted by the REFINE Project. International Journal of Molecular Sciences. 2024; 25(10):5491. https://doi.org/10.3390/ijms25105491
Chicago/Turabian StyleDavid, Christopher A. W., Jolanda P. Vermeulen, Sabrina Gioria, Rob J. Vandebriel, and Neill J. Liptrott. 2024. "Nano(bio)Materials Do Not Affect Macrophage Phenotype—A Study Conducted by the REFINE Project" International Journal of Molecular Sciences 25, no. 10: 5491. https://doi.org/10.3390/ijms25105491
APA StyleDavid, C. A. W., Vermeulen, J. P., Gioria, S., Vandebriel, R. J., & Liptrott, N. J. (2024). Nano(bio)Materials Do Not Affect Macrophage Phenotype—A Study Conducted by the REFINE Project. International Journal of Molecular Sciences, 25(10), 5491. https://doi.org/10.3390/ijms25105491