Green Extraction of Depsidones and Depsides from Hypogymnia physodes (L.) Nyl. Using Natural Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Efficacy of Different Solvents for the Extraction of Specific Metabolites from H. physodes
2.2. Development of Polynomial Regression Models
2.3. Effect of Factors on Metabolite Extraction Efficiency Using NADES
2.4. Determination of Antioxidant Capacity by TPC and DPPH Assays in NADES Extracts
2.5. Response Prediction and Model Confirmation
3. Materials and Methods
3.1. Chemicals and Reference Standards
3.2. Plant Meterials and Extraction
3.3. High-Performance Liquid Chromatography
3.4. Determination of Antioxidant Capacity and Total Soluble Phenolic Compounds in Extracts
3.5. Optimising Extraction Variables Using Box–Behnken Design
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranković, B. (Ed.) Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-35516-0. [Google Scholar]
- Stojanovic, G.; Stojanovic, I.; Smelcerovic, A. Lichen Depsidones as Potential Novel Pharmacologically Active Compounds. Mini-Rev. Org. Chem. 2012, 9, 178–184. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Zarabska-Bożjewicz, D. Hypogymnia physodes—A Lichen with Interesting Medicinal Potential and Ecological Properties. J. Herb. Med. 2019, 17, 100287. [Google Scholar] [CrossRef]
- Stoica (Oprea), A.E.; Albuleț, D.; Bîrcă, A.C.; Iordache, F.; Ficai, A.; Grumezescu, A.M.; Vasile, B.Ș.; Andronescu, E.; Marinescu, F.; Holban, A.M. Electrospun Nanofibrous Mesh Based on PVA, Chitosan, and Usnic Acid for Applications in Wound Healing. Int. J. Mol. Sci. 2023, 24, 11037. [Google Scholar] [CrossRef]
- Burlando, B.; Ranzato, E.; Volante, A.; Appendino, G.; Pollastro, F.; Verotta, L. Antiproliferative Effects on Tumour Cells and Promotion of Keratinocyte Wound Healing by Different Lichen Compounds. Planta Med 2009, 75, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Latkowska, E.; Białczyk, J.; Węgrzyn, M.; Erychleb, U. Host Species Affects the Phenolic Compounds Content in Hypogymnia physodes (L.) Nyl. Thalli. Allelopath. J. 2019, 47, 221–232. [Google Scholar] [CrossRef]
- Latkowska, E.; Bober, B.; Chrapusta, E.; Adamski, M.; Kaminski, A.; Bialczyk, J. Secondary Metabolites of the Lichen Hypogymnia physodes (L.) Nyl. and Their Presence in Spruce (Picea abies (L.) H. Karst.) Bark. Phytochemistry 2015, 118, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Van der Wat, L.; Forbes, P.B.C. Comparison of Extraction Techniques for Polycyclic Aromatic Hydrocarbons from Lichen Biomonitors. Environ. Sci. Pollut. Res. 2019, 26, 11179–11190. [Google Scholar] [CrossRef] [PubMed]
- Kulinowska, M.; Dresler, S.; Skalska-Kamińska, A.; Hanaka, A.; Strzemski, M. Methodological Aspects of Green Extraction of Usnic Acid Using Natural Deep Eutectic Solvents. Molecules 2023, 28, 5321. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: http://data.europa.eu/eli/reg/2009/1223/2024-04-04 (accessed on 13 May 2024).
- Strzemski, M.; Dresler, S.; Podkościelna, B.; Skic, K.; Sowa, I.; Załuski, D.; Verpoorte, R.; Zielińska, S.; Krawczyk, P.; Wójciak, M. Effectiveness of Volatile Natural Deep Eutectic Solvents (VNADESs) for the Green Extraction of Chelidonium Majus Isoquinoline Alkaloids. Molecules 2022, 27, 2815. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Aroso, I.M.; Paiva, A.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents from Choline Chloride and Betaine—Physicochemical Properties. J. Mol. Liq. 2017, 241, 654–661. [Google Scholar] [CrossRef]
- Mohd Fuad, F.; Mohd Nadzir, M. The Formulation and Physicochemical Properties of Betaine-Based Natural Deep Eutectic Solvent. J. Mol. Liq. 2022, 360, 119392. [Google Scholar] [CrossRef]
- de los Ángeles Fernández, M.; Boiteux, J.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Natural Deep Eutectic Solvents-Mediated Extractions: The Way Forward for Sustainable Analytical Developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Alkyl Betaines as Used in Cosmetics. Int. J. Toxicol. 2018, 37, 28S–46S. [Google Scholar] [CrossRef] [PubMed]
- Jadach, B.; Mielcarek, Z.; Osmałek, T. Use of Collagen in Cosmetic Products. Curr. Issues Mol. Biol. 2024, 46, 2043–2070. [Google Scholar] [CrossRef] [PubMed]
- Solhaug, K.A.; Lind, M.; Nybakken, L.; Gauslaa, Y. Possible Functional Roles of Cortical Depsides and Medullary Depsidones in the Foliose Lichen Hypogymnia physodes. Flora Morphol. Distrib. Funct. Ecol. Plants 2009, 204, 40–48. [Google Scholar] [CrossRef]
- Ranković, B.; Kosanić, M.; Manojlović, N.; Rančić, A.; Stanojković, T. Chemical Composition of Hypogymnia Physodes Lichen and Biological Activities of Some Its Major Metabolites. Med. Chem. Res. 2014, 23, 408–416. [Google Scholar] [CrossRef]
- Vos, C.; Mckinney, P.; Pearson, C.; Heiny, E.; Gunawardena, G.; Holt, E.A. The Optimal Extraction and Stability of Atranorin from Lichens, in Relation to Solvent and pH. Lichenologist 2018, 50, 499–512. [Google Scholar] [CrossRef]
- Bugni, T.; Andjelic, C.; Pole, A.; Rai, P.; Ireland, C.; Barrows, L. Biologically Active Components of a Papua New Guinea Analgesic and Anti-Inflammatory Lichen Preparation. Fitoterapia 2009, 80, 270–273. [Google Scholar] [CrossRef]
- Cannavacciuolo, C.; Pagliari, S.; Celano, R.; Campone, L.; Rastrelli, L. Critical Analysis of Green Extraction Techniques Used for Botanicals: Trends, Priorities, and Optimization Strategies—A Review. TrAC Trends Anal. Chem. 2024, 173, 117627. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Fu, R.; Zhang, L.; Wang, D.; Wang, S. Enhanced Extraction of Natural Pigments from Curcuma Longa L. Using Natural Deep Eutectic Solvents. Ind. Crops Prod. 2019, 140, 111620. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Chew, K.K.; Khoo, M.; Ng, S.Y.; Thoo, Y.; Mustapha, W.; Ho, C. Effect of Ethanol Concentration, Extraction Time and Extraction Temperature on the Recovery of Phenolic Compounds and Antioxidant Capacity of Orthosiphon Stamineus Extracts. Int. Food Res. J. 2011, 18, 1427. [Google Scholar]
- Li, G.; Xie, Q.; Liu, Q.; Liu, J.; Wan, C.; Liang, D.; Zhang, H. Separation of Phenolic Compounds from Oil Mixtures by Betaine-Based Deep Eutectic Solvents. Asia-Pac. J. Chem. Eng. 2020, 15, e2515. [Google Scholar] [CrossRef]
- Hu, R.-S.; Yu, L.; Zhou, S.-Y.; Zhou, H.-F.; Wan, H.-T.; Yang, J.-H. Comparative Study on Optimization of NADES Extraction Process by Dual Models and Antioxidant Activity of Optimum Extraction from Chuanxiong-Honghua. LWT 2023, 184, 114991. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Bujak, T. Antioxidant Activity and Cytotoxicity of Medicago Sativa L. Seeds and Herb Extract on Skin Cells. Biores Open Access 2020, 9, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Studzińska-Sroka, E.; Majchrzak-Celińska, A.; Zalewski, P.; Szwajgier, D.; Baranowska-Wójcik, E.; Żarowski, M.; Plech, T.; Cielecka-Piontek, J. Permeability of Hypogymnia Physodes Extract Component-Physodic Acid through the Blood-Brain Barrier as an Important Argument for Its Anticancer and Neuroprotective Activity within the Central Nervous System. Cancers 2021, 13, 1717. [Google Scholar] [CrossRef] [PubMed]
- Elečko, J.; Vilková, M.; Frenák, R.; Routray, D.; Ručová, D.; Bačkor, M.; Goga, M. A Comparative Study of Isolated Secondary Metabolites from Lichens and Their Antioxidative Properties. Plants 2022, 11, 1077. [Google Scholar] [CrossRef] [PubMed]
- Harrington, E. The Desirability Function. Qual. Control 1965, 21, 494–498. [Google Scholar]
- Lazic, Z.R. Design of Experiments in Chemical Engineering: A Practical Guide; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Molnár, K.; Farkas, E. Current Results on Biological Activities of Lichen Secondary Metabolites: A Review. Z. Naturforschung C 2010, 65, 157–173. [Google Scholar] [CrossRef]
- Stasińska-Jakubas, M.; Hawrylak-Nowak, B.; Wójciak, M.; Dresler, S. Comparative Effects of Two Forms of Chitosan on Selected Phytochemical Properties of Plectranthus amboinicus (Lour.). Molecules 2023, 28, 376. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef] [PubMed]
Six-Step Exhaustive Acetone Extraction | Physodalic Acid (mg/g DW) | 3-Hydroxyphysodic Acid (mg/g DW) | Physodic Acid (mg/g DW) | Atranorin (mg/g DW) |
---|---|---|---|---|
Acetone (1) | 49.88 (46.97) | 20.08 (41.17) | 26.15 (48.19) | 5.06 (52.93) |
Acetone (2) | 29.93 (28.18) | 13.18 (27.02) | 14.80 (27.28) | 2.79 (29.18) |
Acetone (3) | 11.90 (11.21) | 6.87 (14.09) | 6.74 (12.28) | 0.65 (6.80) |
Acetone (4) | 6.12 (5.76) | 3.49 (7.16) | 3.06 (5.64) | 0.56 (5.86) |
Acetone (5) | 5.84 (5.50) | 4.09 (8.39) | 2.34 (4.31) | 0.39 (4.08) |
Acetone (6) | 2.53 (2.38) | 1.06 (2.17) | 1.17 (2.16) | 0.11 (1.15) |
Sum of acetone extracts (1–6) | 106.20 (100) | 48.77 (100) | 54.26 (100) | 9.56 (100) |
Non-NADES Solvents | Molar Ratio | Physodalic Acid (%) | 3-Hydroxyphysodic Acid (%) | Physodic Acid (%) | Atranorin (%) | |||
---|---|---|---|---|---|---|---|---|
Ethyl acetate | na | 85.56 ± 8.969 | 92.54 ± 3.900 | 98.49 ± 1.408 | 107.22 ± 16.203 | |||
Methanol | na | 62.30 ± 5.107 | 72.13 ± 6.547 | 76.63 ± 5.527 | 54.18 ± 8.515 | |||
Methanol (80%) | na | 46.79 ± 0.820 | 74.10 ± 0.851 | 72.30 ± 1.780 | 13.18 ± 0.544 | |||
Ethanol | na | 62.10 ± 3.068 | 67.21 | ±4.714 | 74.60 | ±6.649 | 51.67 | ±2.856 |
Dimethyl sulfoxide | na | 71.54 ± 9.092 | 76.30 | ±4.113 | 82.14 | ±11.386 | 98.74 | ±22.782 |
Hexane | na | nd | nd | nd | nd | |||
Water | na | nd | nd | nd | 1.57 | ±0.094 | ||
NADES | ||||||||
Proline/lactic acid/water | 1:2:2.5 | 32.42 ± 4.961 | 33.83 ± 3.363 | 25.47 ± 2.479 | 9.10 ± 3.096 | |||
Proline/lactic acid/water | 1:2:2 | 34.09 ± 2.605 | 42.96 ± 0.463 | 25.36 ± 0.851 | 10.25 ± 0.973 | |||
Proline/urea/water | 1:1:2 | 30.54 ± 5.986 | 30.08 ± 0.931 | 18.82 ± 0.610 | 3.56 ± 0.115 | |||
Proline/urea/water | 2:1:6 | 28.07 ± 2.710 | 14.95 ± 0.152 | 9.38 ± 0.083 | 1.67 ± 0.031 | |||
Proline/malic acid/water | 1:1:4 | 27.15 ± 3.464 | 34.08 ± 2.116 | 20.92 ± 1.259 | 5.13 ± 0.732 | |||
Proline/malic acid/water | 1:2:6 | 10.03 ± 0.222 | 14.76 ± 0.322 | 9.36 ± 0.184 | 1.67 ± 0.105 | |||
Proline/malic acid/water | 1:3:4 | 11.57 ± 0.379 | 14.74 ± 0.111 | 9.14 ± 0.074 | 1.78 ± 0.084 | |||
Proline/malic acid/water | 1:2:7 | 9.98 ± 0.094 | 14.52 ± 0.199 | 9.12 ± 0.114 | 1.67 ± 0.021 | |||
Proline/malic acid/water | 1:2:8 | 10.09 ± 0.265 | 14.78 ± 0.377 | 9.31 ± 0.276 | 1.67 ± 0.042 | |||
Proline/citric acid/water | 1:1:8 | 10.05 ± 0.127 | 14.62 ± 0.125 | 9.21 ± 0.070 | 1.88 ± 0.293 | |||
Proline/citric acid/water | 1:2:12 | 23.12 ± 0.243 | 32.34 ± 0.572 | 20.88 ± 0.387 | 5.96 ± 0.115 | |||
Proline/urea/water | 1:1:3 | 20.09 ± 0.267 | 29.77 ± 0.597 | 18.56 ± 0.252 | 6.07 ± 4.414 | |||
Lactic acid/urea | 4:1 | 11.87 ± 0.643 | 17.67 ± 1.218 | 12.77 ± 1.404 | 3.66 ± 1.004 | |||
Betaine/citric acid/water | 1:1.5:9 | 25.35 ± 0.700 | 33.18 ± 1.573 | 21.95 ± 1.290 | 4.29 ± 0.533 | |||
Betaine/urea/water | 1:1:3 | 33.37 ± 0.984 | 39.96 ± 0.326 | 21.53 ± 1.701 | 1.67 ± 0.188 | |||
Betaine/urea/water | 1:1:4 | 27.19 ± 2.573 | 41.48 ± 2.620 | 16.38 ± 0.173 | 1.57 ± 0.157 | |||
Betaine/urea/water | 1:1:5 | 15.04 ± 1.641 | 35.88 ± 5.819 | 12.00 ± 0.262 | 1.36 ± 0.063 | |||
Bataine/lactic acid/water | 1:1:1.4 | 29.76 ± 5.206 | 36.50 ± 1.557 | 20.70 ± 0.644 | 9.35 ± 0.870 |
Physodalic Acid | R2 0.8707 | Adj R2 0.8496 | Pred R2 0.8204 | Adeq Precision 26.1291 | ||
ANOVA | ||||||
Component | Coefficient | Std. Error | Source | Sum of Squares | F-Value | p-Value |
Intercept | 28.04 | 0.6362 | Model | 2937.95 | 41.25 | <0.0001 |
X1 | 10.50 | 0.6091 | 2645.22 | 297.10 | <0.0001 | |
X2 | 0.0445 | 0.6091 | 0.0475 | 0.0053 | 0.9421 | |
X3 | 1.37 | 0.6091 | 45.06 | 5.06 | 0.0290 | |
X4 | 0.0191 | 0.6091 | 0.0087 | 0.0010 | 0.9751 | |
X5 | −0.1085 | 0.3918 | 0.6828 | 0.0767 | 0.7830 | |
X1×2 | 4.75 | 1.05 | 180.43 | 20.27 | <0.0001 | |
(X3)2 | −1.60 | 0.8031 | 35.32 | 3.97 | 0.0520 | |
(X4)2 | −1.71 | 0.8031 | 40.29 | 4.53 | 0.0384 | |
Residual | 436.26 | |||||
Lack of Fit | 351.07 | 0.8041 | 0.7008 | |||
Pure Error | 85.19 | |||||
Cor Total | 3374.22 | |||||
3-hydroxyphysodic Acid | R2 0.9579 | Adj R2 0.9510 | Pred R2 0.9387 | Adeq Precision 41.9406 | ||
ANOVA | ||||||
Component | Coefficient | Std. Error | Source | Sum of Squares | F-Value | p-Value |
Intercept | 31.53 | 0.4712 | Model | 5440.20 | 139.19 | <0.0001 |
X1 | 14.73 | 0.4712 | 5210.36 | 1066.49 | <0.0001 | |
X2 | 0.3013 | 0.4712 | 2.18 | 0.4459 | 0.5074 | |
X3 | 1.53 | 0.4712 | 55.87 | 11.44 | 0.0014 | |
X4 | 0.3613 | 0.4712 | 3.13 | 0.6412 | 0.4272 | |
X5 | −0.2065 | 0.2902 | 2.47 | 0.5063 | 0.4801 | |
X1X2 | 2.15 | 0.7815 | 37.12 | 7.60 | 0.0082 | |
(X3)2 | −2.65 | 0.5949 | 97.26 | 19.91 | <0.0001 | |
(X4)2 | −1.87 | 0.5949 | 48.15 | 9.86 | 0.0029 | |
Residual | 239.39 | |||||
Lack of Fit | 190.67 | 0.7635 | 0.7341 | |||
Pure Error | 48.73 | |||||
Cor Total | 5679.59 | |||||
Physodic Acid | R2 0.9358 | Adj R2 0.9253 | Pred R2 0.9103 | Adeq Precision 32.5577 | ||
ANOVA | ||||||
Component | Coefficient | Std. Error | Source | Sum of Squares | F-Value | p-Value |
Intercept | 18.54 | 0.3906 | Model | 2396.14 | 89.22 | <0.0001 |
X1 | 9.62 | 0.3040 | 2222.06 | 661.88 | <0.0001 | |
X2 | 0.0303 | 0.3040 | 0.0220 | 0.0066 | 0.9358 | |
X3 | 0.5588 | 0.3040 | 7.49 | 2.23 | 0.1416 | |
X4 | −0.5539 | 0.3040 | 7.36 | 2.19 | 0.1450 | |
X5 | −0.8978 | 0.2406 | 46.75 | 13.92 | 0.0005 | |
X3X5 | −0.8406 | 0.3740 | 16.96 | 5.05 | 0.0291 | |
(X3)2 | −2.15 | 0.4932 | 63.64 | 18.96 | <0.0001 | |
(X4)2 | −1.80 | 0.4932 | 44.70 | 13.31 | 0.0006 | |
Residual | 164.50 | |||||
Lack of Fit | 137.90 | 1.01 | 0.5412 | |||
Pure Error | 26.60 | |||||
Cor Total | 2560.65 | |||||
Atranorin | R2 0.6231 | Adj R2 0.5703 | Pred R2 0.4857 | Adeq Precision 13.9798 | ||
ANOVA | ||||||
Component | Coefficient | Std. Error | Source | Sum of Squares | F-Value | p-Value |
Intercept | 9.17 | Model | 1170.59 | 11.81 | <0.0001 | |
X1 | 3.61 | 313.22 | 22.11 | <0.0001 | ||
X2 | 1.03 | 25.63 | 1.81 | 0.1847 | ||
X3 | 2.12 | 107.99 | 7.62 | 0.0080 | ||
X4 | 0.5967 | 8.54 | 0.6033 | 0.4410 | ||
X5 | 0.8216 | 39.16 | 2.76 | 0.1026 | ||
(X3)2 | 5.56 | 426.56 | 30.12 | <0.0001 | ||
(X4)2 | 4.97 | 341.54 | 24.11 | <0.0001 | ||
Residual | 708.21 | |||||
Lack of Fit | 639.13 | 1.76 | 0.2017 | |||
Pure Error | 69.09 | |||||
Cor Total | 1878.81 |
Response Variables | Predicted Value | Experimental Value (n = 3) | RD (%) | 95% PI Low | 95% PI High |
---|---|---|---|---|---|
Proline-based NADES (desirability—0.910) | |||||
Physodalic acid (%) | 39.89 | 39.39 | 1.269 | 34.81 | 44.96 |
3-Hydroxyphysodic acid (%) | 46.29 | 46.41 | −0.259 | 42.53 | 50.05 |
Physodic acid (%) | 25.99 | 27.29 | −4.764 | 23.06 | 28.92 |
Atranorin (%) | 26.24 | 25.70 | 2.101 | 20.43 | 32.05 |
TPC (%) | 31.72 | 29.54 | 7.380 | 25.75 | 37.77 |
DPPH (%) | 69.59 | 58.85 | 18.250 | 55.49 | 83.68 |
Betaine-based NADES (desirability—0.765) | |||||
Physodalic acid (%) | 40.45 | 38.98 | 3.771 | 35.55 | 45.35 |
3-Hydroxyphysodic acid (%) | 46.64 | 47.82 | −2.468 | 43.01 | 50.27 |
Physodic acid (%) | 23.49 | 23.60 | −0.466 | 20.68 | 26.31 |
Atranorin (%) | 25.42 | 20.75 | 22.506 | 19.86 | 30.99 |
TPC (%) | 19.56 | 22.23 | −12.011 | 13.72 | 25.42 |
DPPH (%) | 55.93 | 44.68 | 25.179 | 42.07 | 69.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baczewska, I.; Strzemski, M.; Feldo, M.; Hanaka, A.; Dresler, S. Green Extraction of Depsidones and Depsides from Hypogymnia physodes (L.) Nyl. Using Natural Deep Eutectic Solvents. Int. J. Mol. Sci. 2024, 25, 5500. https://doi.org/10.3390/ijms25105500
Baczewska I, Strzemski M, Feldo M, Hanaka A, Dresler S. Green Extraction of Depsidones and Depsides from Hypogymnia physodes (L.) Nyl. Using Natural Deep Eutectic Solvents. International Journal of Molecular Sciences. 2024; 25(10):5500. https://doi.org/10.3390/ijms25105500
Chicago/Turabian StyleBaczewska, Izabela, Maciej Strzemski, Marcin Feldo, Agnieszka Hanaka, and Sławomir Dresler. 2024. "Green Extraction of Depsidones and Depsides from Hypogymnia physodes (L.) Nyl. Using Natural Deep Eutectic Solvents" International Journal of Molecular Sciences 25, no. 10: 5500. https://doi.org/10.3390/ijms25105500
APA StyleBaczewska, I., Strzemski, M., Feldo, M., Hanaka, A., & Dresler, S. (2024). Green Extraction of Depsidones and Depsides from Hypogymnia physodes (L.) Nyl. Using Natural Deep Eutectic Solvents. International Journal of Molecular Sciences, 25(10), 5500. https://doi.org/10.3390/ijms25105500