Hydrogel Formulation for Biomimetic Fibroblast Cell Culture: Exploring Effects of External Stresses and Cellular Responses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biocompatibility
2.2. Relaxed Conditions at Normal Gravity
2.3. Effect of Mechanical Stress at Normal Gravity
2.4. Effect of Mechanical Stress with Altered-Gravity-Related Stress
2.5. Post-Stress Conditions
2.6. Mechanical Properties
2.7. Morphology
2.8. Points of Discussion
3. Methods and Materials
3.1. Materials
3.1.1. Hydrogel Materials
3.1.2. Cells Culture Materials
3.1.3. Hydrogels Preparation
3.1.4. Porous Hydrogel Preparations
3.1.5. Cell Culture
3.2. Experimental Methodology
3.2.1. Experimental Setup
- A load cell (from 0 to 100 g) to measure the applied force generated during the tensile stress test;
- A motor to generate the tensile stress;
- An experimental chamber where the sample is to be inserted;
- A heating resistance to keep the experimental chamber at 37 °C;
- A tube to fill the chamber with the cell medium.
3.2.2. Experimental Procedure
3.2.3. Cell Viability and Morphology
3.3. Mechanical Properties
3.4. Scanning Electron Microscopy for Hydrogel Morphology
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TE | Tissue Engineering |
TERM | Tissue engineering and regenerative medicine |
SA | Sodium alginate |
PEGDA | Poly(ethylene glycol)-diacrylate |
I2959 | Igracure 2959 (2-Hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiophenone) |
CaCl2 | Calcium chloride dehydrate (CaCl2∙2H2O) |
Gel | Gelatine |
ISS | International Space Station |
nHDF | Normal Human Dermal Fibroblasts |
FBS | Fetal Bovine Serum |
PBS | Phosphate-buffered saline |
ECM | Extracellular Matrix |
References
- Griffith, L.G.; Naughton, G. Tissue Engineering-Current Challenges and Expanding Opportunities. Science 2002, 295, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Chapekar, M.S. Tissue Engineering: Challenges and Opportunities. J. Biomed. Mater. Res. 2000, 53, 617–620. [Google Scholar] [CrossRef]
- El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 2013, 38. [Google Scholar] [CrossRef]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef] [PubMed]
- Pegg, D.E. Viability assays for preserved cells, tissues, and organs. Cryobiology 1989, 26, 212–231. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101, 1869–1879. [Google Scholar] [CrossRef]
- Bizzarri, M.; Monici, M.; van Loon, J.J.W.A. How microgravity affects the biology of living systems. Biomed. Res. Int. 2015, 2015, 863075. [Google Scholar] [CrossRef] [PubMed]
- Burki, T. The final frontier: Health in space. Lancet [Internet] 2021, 398, 199–200. Available online: http://www.thelancet.com/article/S0140673621016445/fulltext (accessed on 13 September 2023). [CrossRef]
- Freed, L.E.; Langer, R.; Martin, I.; Pellis, N.R.; Vunjak-Novakovic, G. Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. USA 1997, 94, 13885–13890. [Google Scholar] [CrossRef]
- Babensee, J.E.; McIntire, L.V.; Mikos, A.G. Growth factor delivery for tissue engineering. Pharm. Res. [Internet] 2000, 17, 497–504. Available online: https://link.springer.com/article/10.1023/A:1007502828372 (accessed on 31 January 2023). [CrossRef]
- Whitaker, M.J.; Quirk, R.A.; Howdle, S.M.; Shakesheff, K.M. Growth factor release from tissue engineering scaffolds. J. Pharm. Pharmacol. [Internet] 2001, 53, 1427–1437. Available online: https://onlinelibrary.wiley.com/doi/full/10.1211/0022357011777963 (accessed on 31 January 2023). [CrossRef] [PubMed]
- Sakiyama-Elbert, S.E.; Hubbell, J.A. Functional Biomaterials: Design of Novel Biomaterials. Annu. Rev. Mater. Res. 2001, 31, 183–201. [Google Scholar] [CrossRef]
- Zhu, J.; Marchant, R.E. Design properties of hydrogel tissue engineering scaffolds. Expert. Rev. Med. Devices 2011, 8, 607–626. [Google Scholar] [CrossRef] [PubMed]
- Maitra, J.; Kumar Shukla, V. Hydrogels, Cross linking, Gel, Polymer; Hydrogels, Cross linking, Gel, Polymer. Am. J. Polym. Sci. [Internet] 2014, 2014, 25–31. Available online: http://journal.sapub.org/ajps (accessed on 16 May 2024).
- Song, S.J.; Choi, J.; Park, Y.D.; Hong, S.; Lee, J.J.; Ahn, C.B.; Choi, H.; Sun, K. Sodium Alginate Hydrogel-Based Bioprinting Using a Novel Multinozzle Bioprinting System. Artif. Organs. 2011, 35, 1132–1136. [Google Scholar] [CrossRef] [PubMed]
- Eshel-Green, T.; Eliyahu, S.; Avidan-Shlomovich, S.; Bianco-Peled, H. PEGDA hydrogels as a replacement for animal tissues in mucoadhesion testing. Int. J. Pharm. 2016, 506, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Tan, H. Alginate-based biomaterials for regenerative medicine applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Wang, L.; Wei, J.; Wang, B.; Tang, Y.; Shi, J.; Zhang, Z.; Chen, Y. 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation. Microelectron. Eng. 2016, 158, 30–34. [Google Scholar] [CrossRef]
- Laftah, W.A.; Hashim, S.; Ibrahim, A.N. Polymer hydrogels: A review. Polym. Plast. Technol. Eng. 2011, 50, 1475–1486. [Google Scholar] [CrossRef]
- Einerson, N.J.; Stevens, K.R.; Kao, W.J. Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices. Biomaterials 2003, 24, 509–523. [Google Scholar] [CrossRef]
- Orive, G.; Tam, S.K.; Pedraz, J.L.; Hallé, J.P. Biocompatibility of alginate–poly-l-lysine microcapsules for cell therapy. Biomaterials 2006, 27, 3691–3700. [Google Scholar] [CrossRef] [PubMed]
- Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility, 4th ed.; CRC Press: Boca Raton, FL, USA, 2005; Available online: https://www.taylorfrancis.com/books/mono/10.1201/9781420057843/biological-performance-materials-jonathan-black-jonathan-black (accessed on 25 January 2023).
- Greco, I.; Miskovic, V.; Varon, C.; Marraffa, C.; Iorio, C.S. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures. Front. Bioeng. Biotechnol. 2022, 10, 896166. [Google Scholar] [CrossRef]
- Mechanical Stress Influences the Viability and Morphology of Human Parametrial Ligament Fibroblasts [Internet]. Available online: https://www.spandidos-publications.com/10.3892/mmr.2016.6052 (accessed on 16 April 2024).
- Boccafoschi, F.; Bosetti, M.; Gatti, S.; Cannas, M. Dynamic fibroblast cultures: Response to mechanical stretching. Cell Adh. Migr. [Internet] 2007, 1, 124–128. Available online: https://www.tandfonline.com/action/journalInformation?journalCode=kcam20 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Cialdai, F.; Vignali, L.; Morbidelli, L.; Colciago, A.; Celotti, F.; Santi, A.; Caselli, A.; Cirri, P.; Monici, M. Modeled Microgravity Affects Fibroblast Functions Related to Wound Healing. Microgravity Sci. Technol. 2017, 29, 121–132. Available online: http://synthecon.com/pages/rotary (accessed on 10 January 2024). [CrossRef]
- Pletser, V.; Rouquette, S.; Friedrich, U.; Clervoy, J.F.; Gharib, T.; Gai, F.; Mora, C. The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G. Microgravity Sci. Technol. 2016, 28, 587–601. Available online: https://link.springer.com/article/10.1007/s12217-016-9515-8 (accessed on 1 March 2024). [CrossRef]
- Fedeli, V.; Cucina, A.; Dinicola, S.; Fabrizi, G.; Catizone, A.; Gesualdi, L.; Ceccarelli, S.; Harrath, A.H.; Alwasel, S.H.; Ricci, G.; et al. Microgravity Modifies the Phenotype of Fibroblast and Promotes Remodeling of the Fibroblast–Keratinocyte Interaction in a 3D Co-Culture Model. Int. J. Mol. Sci. 2022, 23, 2163. [Google Scholar] [CrossRef]
- Ulbrich, C.; Westphal, K.; Baatout, S.; Wehland, M.; Bauer, J.; Flick, B.; Infanger, M.; Kreutz, R.; Vadrucci, S.; Egli, M.; et al. Effects of Basic Fibroblast Growth Factor on Endothelial Cells Under Conditions of Simulated Microgravity. J. Cell Biochem. [Internet] 2008, 104, 1324–1341. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcb.21710 (accessed on 10 January 2024). [CrossRef] [PubMed]
- Wang, Y.; Ma, M.; Wang, J.; Zhang, W.; Lu, W.; Gao, Y.; Zhang, B.; Guo, Y. Development of a photo-crosslinking, biodegradable GelMA/PEGDA hydrogel for guided bone regeneration materials. Materials 2018, 11, 1345. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Ma, G.S.; Zhang, D.H.; Zhao, D.W. Upper bound analysis of rolling force and dog-bone shape via sine function model in vertical rolling. J. Mater. Process Technol. 2015, 223, 91–97. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhao, D.W.; Zhang, D.H. Analysis of Vertical Rolling Force with GM Yield Criterion and Anti-Symmetric Parabola Dog-Bone Shapes. Appl. Mech. Mater. 2015, 775, 34–38. [Google Scholar] [CrossRef]
- Buken, C.; Sahana, J.; Corydon, T.J.; Melnik, D.; Bauer, J.; Wehland, M.; Krüger, M.; Balk, S.; Abuagela, N.; Infanger, M.; et al. Morphological and Molecular Changes in Juvenile Normal Human Fibroblasts Exposed to Simulated Microgravity. Sci. Rep. 2019, 9, 11882. [Google Scholar] [CrossRef]
- Sherratt, M.J. Tissue elasticity and the ageing elastic fibre. AGE 2009, 31, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, A. Tissue engineering of vascular grafts. Matrix Biol. 2000, 19, 353357. [Google Scholar] [CrossRef]
- Greco, I.; Varon, C.; Iorio, C.S. Synthesis and Characterization of a new Alginate-Gelatine Aerogel for Tissue Engineering. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Glasgow, UK, 11–15 July 2022; Volume 2022, pp. 3915–3918. [Google Scholar]
- Bonvallet, P.P.; Culpepper, B.K.; Bain, J.L.; Schultz, M.J.; Thomas, S.J.; Bellis, S.L. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration. Tissue Eng. Part. A 2014, 20, 2434–2444. [Google Scholar] [CrossRef]
- Giuseppe, M.D.; Law, N.; Webb, B.; AMacrae, R.; Liew, L.J.; Sercombe, T.B.; Dilley, R.J.; Doyle, B.J. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J. Mech. Behav. Biomed. Mater. 2018, 79, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Fischer, F.G.; Dörfel, H. Die Polyuronsäuren der Braunalgen (Kohlenhydrate der Algen I). Hoppe Seylers Z. Physiol. Chem. [Internet] 1955, 302, 186–203. Available online: https://www.degruyter.com/document/doi/10.1515/bchm2.1955.302.1-2.186/html (accessed on 11 March 2024). [CrossRef] [PubMed]
- Gacesa, P. Enzymic degradation of alginates. Int. J. Biochem. 1992, 24, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Pang, M.; Zhu, L.; Zhang, Y.; Feng, S. Mechanical properties of silicone rubber composed of diverse vinyl content silicone gums blending. Mater. Des. 2010, 31, 4083–4087. [Google Scholar] [CrossRef]
- Nassef, M.Z.; Kopp, S.; Wehland, M.; Melnik, D.; Sahana, J.; Krüger, M.; Corydon, T.J.; Oltmann, H.; Schmitz, B.; Schütte, A.; et al. Real microgravity influences the cytoskeleton and focal adhesions in human breast cancer cells. Int. J. Mol. Sci. 2019, 20, 3156. [Google Scholar] [CrossRef]
- Vunjak-Novakovic, G. Dynamic Hydrogels for Investigating Vascularization. Cell Stem Cell [Internet] 2020, 27, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, C.; Wehland, M.; Pietsch, J.; Aleshcheva, G.; Wise, P.; Van Loon, J.; Magnusson, N.; Infanger, M.; Grosse, J.; Eilles, C.; et al. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed. Res. Int. 2014, 2014, 928507. [Google Scholar] [CrossRef] [PubMed]
- Freed, L.E.; Vunjak-Novakovic, G. Microgravity tissue engineering. In Vitro Cell Dev. Biol. 1997, 133, 381–385. [Google Scholar] [CrossRef] [PubMed]
Situation | Result |
---|---|
Optimal: Relaxed on Ground | Elongated cells in star shape |
Single stress: Tensile elongation | The cell’s morphology results in multicellular spheroids, and the cells start moving towards the sample edge |
Single stress: Altered Gravity | The cell’s morphology results in multicellular spheroids, and the cells start moving towards the sample edge |
Double stress: Tensile elongation + Altered Gravity | The cell’s morphology results in multicellular spheroids, and the cells start moving towards the sample edge. Compared to the single stress situation, this phenomenon is even stronger |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, I.; Machrafi, H.; Minetti, C.; Risaliti, C.; Bandini, A.; Cialdai, F.; Monici, M.; Iorio, C.S. Hydrogel Formulation for Biomimetic Fibroblast Cell Culture: Exploring Effects of External Stresses and Cellular Responses. Int. J. Mol. Sci. 2024, 25, 5600. https://doi.org/10.3390/ijms25115600
Greco I, Machrafi H, Minetti C, Risaliti C, Bandini A, Cialdai F, Monici M, Iorio CS. Hydrogel Formulation for Biomimetic Fibroblast Cell Culture: Exploring Effects of External Stresses and Cellular Responses. International Journal of Molecular Sciences. 2024; 25(11):5600. https://doi.org/10.3390/ijms25115600
Chicago/Turabian StyleGreco, Immacolata, Hatim Machrafi, Christophe Minetti, Chiara Risaliti, Allegra Bandini, Francesca Cialdai, Monica Monici, and Carlo S. Iorio. 2024. "Hydrogel Formulation for Biomimetic Fibroblast Cell Culture: Exploring Effects of External Stresses and Cellular Responses" International Journal of Molecular Sciences 25, no. 11: 5600. https://doi.org/10.3390/ijms25115600
APA StyleGreco, I., Machrafi, H., Minetti, C., Risaliti, C., Bandini, A., Cialdai, F., Monici, M., & Iorio, C. S. (2024). Hydrogel Formulation for Biomimetic Fibroblast Cell Culture: Exploring Effects of External Stresses and Cellular Responses. International Journal of Molecular Sciences, 25(11), 5600. https://doi.org/10.3390/ijms25115600