Characterization of Humanized Mouse Model of Organophosphate Poisoning and Detection of Countermeasures via MALDI-MSI
Abstract
:1. Introduction
- The lack of functional serum carboxylesterase (CaE) in these mice mirrors humans and nonhuman primates, both of which do not express CaE. Most other commonly used small animal research models (other strains of mice, rats, and guinea pigs) express serum CaE, which is known to directly contribute to those animals’ resistance to toxicity from OP compounds [9,10,11,12]. Additionally, the presence of serum CaE in mice has been shown to affect the pharmacokinetic profile and efficacy of other pharmaceuticals [13].
- The production of AChE with the same amino acid sequence as that of the human form of the enzyme in KIKO mice presents a unique opportunity for this animal model to study compounds that interact directly with AChE. Previous research has revealed that, although AChE performs the same function in all animals, minor amino acid differences across species cause the enzyme to react quite differently to small molecules intended to restore the native activity of the OP-inhibited enzyme, and inhibition and aging are the main causes of nerve agent intoxication [14,15,16,17,18,19,20].
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsai, Y.H.; Lein, P.J. Mechanisms of organophosphate neurotoxicity. Curr. Opin. Toxicol. 2021, 26, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, T.H.; Apland, J.P.; Braga, M.F.M.; Marini, A.M. Acute and long-term consequences of exposure to organophosphate nerve agents in humans. Epilepsia 2018, 59 (Suppl. 2), 92–99. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Santed, F.; Colomina, M.T.; Herrero Hernández, E. Organophosphate pesticide exposure and neurodegeneration. Cortex 2016, 74, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Eddleston, M.; Buckley, N.A.; Eyer, P.; Dawson, A.H. Management of acute organophosphorus pesticide poisoning. Lancet 2008, 371, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Franjesevic, A.J.; Sillart, S.B.; Beck, J.M.; Vyas, S.; Callam, C.S.; Hadad, C.M. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chemistry 2019, 25, 5337–5371. [Google Scholar] [CrossRef] [PubMed]
- Newmark, J. Therapy for acute nerve agent poisoning: An update. Neurol. Clin. Pract. 2019, 9, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Marrero-Rosado, B.M.; Stone, M.F.; de Araujo Furtado, M.; Schultz, C.R.; Cadieux, C.L.; Lumley, L.A. Novel Genetically Modified Mouse Model to Assess Soman-Induced Toxicity and Medical Countermeasure Efficacy: Human Acetylcholinesterase Knock-in Serum Carboxylesterase Knockout Mice. Int. J. Mol. Sci. 2021, 22, 1893. [Google Scholar] [CrossRef] [PubMed]
- Duysen, E.G.; Cashman, J.R.; Schopfer, L.M.; Nachon, F.; Masson, P.; Lockridge, O. Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresyl saligenin phosphate, cyclosarin thiocholine, tabun thiocholine, and carbofuran. Chem. Biol. Interact. 2012, 195, 189–198. [Google Scholar]
- Jimmerson, V.R.; Shih, T.M.; Maxwell, D.M.; Kaminskis, A.; Mailman, R.B. The effect of 2-(o-cresyl)-4H-1:3:2-benzodioxaphosphorin-2-oxide on tissue cholinesterase and carboxylesterase activities of the rat. Fundam. Appl. Toxicol. 1989, 13, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Jimmerson, V.R.; Shih, T.M.; Maxwell, D.M.; Mailman, R.B. Cresylbenzodioxaphosphorin oxide pretreatment alters soman-induced toxicity and inhibition of tissue cholinesterase activity of the rat. Toxicol. Lett. 1989, 48, 93–103. [Google Scholar] [CrossRef]
- Due, A.H.; Trap, H.C.; Van Der Wiel, H.J.; Benschop, H.P. Effect of pretreatment with CBDP on the toxicokinetics of soman stereoisomers in rats and guinea pigs. Arch. Toxicol. 1993, 67, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.C.; Cheng, K.W.; Papayannis, I.; Mattheolabakis, G.; Huang, L.; Xie, G.; Ouyang, N.; Rigas, B. Phospho-NSAIDs have enhanced efficacy in mice lacking plasma carboxylesterase: Implications for their clinical pharmacology. Pharm. Res. 2015, 32, 1663–1675. [Google Scholar] [CrossRef] [PubMed]
- Worek, F.; Reiter, G.; Eyer, P.; Szinicz, L. Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch. Toxicol. 2002, 76, 523–529. [Google Scholar] [PubMed]
- Worek, F.; Aurbek, N.; Wetherell, J.; Pearce, P.; Mann, T.; Thiermann, H. Inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds: Pig versus minipig acetylcholinesterase. Toxicology 2008, 244, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Worek, F.; Aurbek, N.; Wille, T.; Eyer, P.; Thiermann, H. Kinetic analysis of interactions of paraoxon and oximes with human, Rhesus monkey, swine, rabbit, rat and guinea pig acetylcholinesterase. Toxicol. Lett. 2011, 200, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Tong, M.; Chilukuri, N.; Brecht, K.; Maxwell, D.M.; Saxena, A. An in vitro comparative study on the reactivation of nerve agent-inhibited guinea pig and human acetylcholinesterases by oximes. Biochemistry 2007, 46, 11771–11779. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Tong, M.; Maxwell, D.M.; Saxena, A. Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases. Chem. Biol. Interact. 2008, 175, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Aurbek, N.; Thiermann, H.; Szinicz, L.; Eyer, P.; Worek, F. Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetylcholinesterase. Toxicology 2006, 224, 91–99. [Google Scholar] [CrossRef]
- Herkert, N.M.; Lallement, G.; Clarençon, D.; Thiermann, H.; Worek, F. Comparison of the oxime-induced reactivation of rhesus monkey, swine and guinea pig erythrocyte acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity. Toxicology 2009, 258, 79–83. [Google Scholar]
- Cadieux, C.L.; Broomfield, C.A.; Kirkpatrick, M.G.; Kazanski, M.E.; Lenz, D.E.; Cerasoli, D.M. Comparison of human and guinea pig acetylcholinesterase sequences and rates of oxime-assisted reactivation. Chem.-Biol. Interact. 2010, 187, 229–233. [Google Scholar] [CrossRef]
- Caprioli, R.M.; Farmer, T.B.; Gile, J. Molecular Imaging of Biological Samples: Localization of Peptides and Proteins Using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751–4760. [Google Scholar] [CrossRef]
- Porta Siegel, T.A.-O.; Hamm, G.; Bunch, J.; Cappell, J.; Fletcher, J.S.; Schwamborn, K. Mass Spectrometry Imaging and Integration with Other Imaging Modalities for Greater Molecular Understanding of Biological Tissues. Mol. Imaging Biol. 2018, 20, 1860–2002. [Google Scholar] [CrossRef]
- Tressler, C.M.; Ayyappan, V.; Nakuchima, S.; Yang, E.; Sonkar, K.; Tan, Z.; Glunde, K. A multimodal pipeline using NMR spectroscopy and MALDI-TOF mass spectrometry imaging from the same tissue sample. NMR Biomed. 2023, 36, e4770. [Google Scholar] [CrossRef] [PubMed]
- Aichler, M.; Walch, A. MALDI Imaging mass spectrometry: Current frontiers and perspectives in pathology research and practice. Lab. Investig. 2015, 95, 422–431. [Google Scholar] [CrossRef]
- Buck, A.; Ly, A.; Balluff, B.; Sun, N.; Gorzolka, K.; Feuchtinger, A.; Janssen, K.P.; Kuppen, P.J.; van de Velde, C.J.; Weirich, G.; et al. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J. Pathol. 2016, 237, 123–132. [Google Scholar] [CrossRef]
- McLaughlin, N.; Bielinski, T.M.; Tressler, C.M.; Barton, E.; Glunde, K.; Stumpo, K.A. Pneumatically Sprayed Gold Nanoparticles for Mass Spectrometry Imaging of Neurotransmitters. J. Am. Soc. Mass Spectrom. 2020, 31, 2452–2461. [Google Scholar] [CrossRef]
- Schwamborn, K.; Kriegsmann, M.; Weichert, W. MALDI imaging mass spectrometry—From bench to bedside. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Angel, P.M.; Mehta, A.; Norris-Caneda, K.; Drake, R.R. MALDI Imaging Mass Spectrometry of N-glycans and Tryptic Peptides from the Same Formalin-Fixed, Paraffin-Embedded Tissue Section. Methods Mol. Biol. 2018, 1788, 225–241. [Google Scholar]
- Drake, R.R.; Powers, T.W.; Norris-Caneda, K.; Mehta, A.S.; Angel, P.M. In Situ Imaging of N-Glycans by MALDI Imaging Mass Spectrometry of Fresh or Formalin-Fixed Paraffin-Embedded Tissue. Curr. Protoc. Protein Sci. 2018, 94, e68. [Google Scholar] [CrossRef]
- Berry, K.A.; Li, B.; Reynolds, S.D.; Barkley, R.M.; Gijón, M.A.; Hankin, J.A.; Henson, P.M.; Murphy, R.C. MALDI imaging MS of phospholipids in the mouse lung. J. Lipid Res. 2011, 52, 1551–1560. [Google Scholar] [CrossRef]
- Jiang, L.; Chughtai, K.; Purvine, S.O.; Bhujwalla, Z.M.; Raman, V.; Pasa-Tolic, L.; Heeren, R.M.A.; Glunde, K. MALDI-Mass Spectrometric Imaging Revealing Hypoxia-Driven Lipids and Proteins in a Breast Tumor Model. Anal. Chem. 2015, 87, 5947–5956. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, A.; Matsuoka, T.; Sakamune, K.; Akita, T.; Makita, R.; Kimura, S.; Kuroiwa, Y.; Nagao, M.; Tanaka, J. The Tokyo subway sarin attack has long-term effects on survivors: A 10-year study started 5 years after the terrorist incident. PLoS ONE 2020, 15, e0234967. [Google Scholar] [CrossRef] [PubMed]
- Barry, J.A.; Groseclose, M.R.; Castellino, S. Quantification and assessment of detection capability in imaging mass spectrometry using a revised mimetic tissue model. Bioanalysis 2019, 11, 1099–1116. [Google Scholar] [CrossRef] [PubMed]
- Groseclose, M.R.; Castellino, S. A Mimetic Tissue Model for the Quantification of Drug Distributions by MALDI Imaging Mass Spectrometry. Anal. Chem. 2013, 85, 10099–10106. [Google Scholar] [CrossRef] [PubMed]
- Jokanović, M.; Stojiljković, M.P. Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning. Eur. J. Pharmacol. 2006, 553, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sakurada, K.; Matsubara, K.; Shimizu, K.; Shiono, H.; Seto, Y.; Tsuge, K.; Yoshino, M.; Sakai, I.; Mukoyama, H.; Takatori, T. Pralidoxime Iodide (2-PAM) Penetrates Across the Blood-Brain Barrier. Neurochem. Res. 2003, 28, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Dail, M.B.; Leach, C.A.; Meek, E.C.; Olivier, A.K.; Pringle, R.B.; Green, C.E.; Chambers, J.E. Novel Brain-Penetrating Oxime Acetylcholinesterase Reactivators Attenuate Organophosphate-Induced Neuropathology in the Rat Hippocampus. Toxicol. Sci. 2019, 169, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Kanno, I.; Seki, C.; Takuwa, H.; Jin, Z.H.; Boturyn, D.; Dumy, P.; Furukawa, T.; Saga, T.; Ito, H.; Masamoto, K. Positron emission tomography of cerebral angiogenesis and TSPO expression in a mouse model of chronic hypoxia. J. Cereb. Blood Flow Metab. 2018, 38, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Alcala, M.A.; Shade, C.M.; Uh, H.; Kwan, S.Y.; Bischof, M.; Thompson, Z.P.; Gogick, K.A.; Meier, A.R.; Strein, T.G.; Bartlett, D.L.; et al. Preferential accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer lanthanide complexes. Biomaterials 2011, 32, 9343–9352. [Google Scholar] [CrossRef] [PubMed]
- Worek, F.; Thiermann, H.; Wille, T. Organophosphorus compounds and oximes: A critical review. Arch. Toxicol. 2020, 94, 2275–2292. [Google Scholar] [CrossRef]
- Khan, F.; Campbell, A.; Hoyt, B.; Herdman, C.; Ku, T.; Thangavelu, S.; Gordon, R. Oxidative mechanisms for the biotransformation of 1-methyl-1,6-dihydropyridine-2-carbaldoxime to pralidoxime chloride. Life Sci. 2011, 89, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Pashirova, T.N.; Zueva, I.V.; Petrov, K.A.; Babaev, V.M.; Lukashenko, S.S.; Rizvanov, I.K.; Souto, E.B.; Nikolsky, E.E.; Zakharova, L.Y.; Masson, P.; et al. Nanoparticle-Delivered 2-PAM for Rat Brain Protection against Paraoxon Central Toxicity. ACS Appl. Mater. Interfaces 2017, 9, 16922–16932. [Google Scholar] [CrossRef] [PubMed]
- Buzyurova, D.; Pashirova, T.; Zueva, I.; Burilova, E.; Shaihutdinova, Z.; Rizvanov, I.; Babaev, V.; Petrov, K.; Souto, E.B. Surface modification of pralidoxime chloride-loaded solid lipid nanoparticles for enhanced brain reactivation of organophosphorus-inhibited AChE: Pharmacokinetics in rat. Toxicology 2020, 444, 152578. [Google Scholar] [CrossRef] [PubMed]
- Worek, F.; Thiermann, H. The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacol. Ther. 2013, 139, 249–259. [Google Scholar] [CrossRef]
- Stübiger, G.; Belgacem, O. Analysis of Lipids Using 2,4,6-Trihydroxyacetophenone as a Matrix for MALDI Mass Spectrometry. Anal. Chem. 2007, 79, 3206–3213. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tressler, C.M.; Wadsworth, B.; Carriero, S.; Dillman, N.; Crawford, R.; Hahm, T.-H.; Glunde, K.; Cadieux, C.L. Characterization of Humanized Mouse Model of Organophosphate Poisoning and Detection of Countermeasures via MALDI-MSI. Int. J. Mol. Sci. 2024, 25, 5624. https://doi.org/10.3390/ijms25115624
Tressler CM, Wadsworth B, Carriero S, Dillman N, Crawford R, Hahm T-H, Glunde K, Cadieux CL. Characterization of Humanized Mouse Model of Organophosphate Poisoning and Detection of Countermeasures via MALDI-MSI. International Journal of Molecular Sciences. 2024; 25(11):5624. https://doi.org/10.3390/ijms25115624
Chicago/Turabian StyleTressler, Caitlin M., Benjamin Wadsworth, Samantha Carriero, Natalie Dillman, Rachel Crawford, Tae-Hun Hahm, Kristine Glunde, and C. Linn Cadieux. 2024. "Characterization of Humanized Mouse Model of Organophosphate Poisoning and Detection of Countermeasures via MALDI-MSI" International Journal of Molecular Sciences 25, no. 11: 5624. https://doi.org/10.3390/ijms25115624
APA StyleTressler, C. M., Wadsworth, B., Carriero, S., Dillman, N., Crawford, R., Hahm, T. -H., Glunde, K., & Cadieux, C. L. (2024). Characterization of Humanized Mouse Model of Organophosphate Poisoning and Detection of Countermeasures via MALDI-MSI. International Journal of Molecular Sciences, 25(11), 5624. https://doi.org/10.3390/ijms25115624