Exploring the DNA Methylation Profile of Genes Associated with Bladder Cancer in Bladder Tissue of Patients with Neurogenic Lower Urinary Tract Dysfunction
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Cystoscopy
4.3. Urine Cytology
4.4. Tissue Sample Processing, DNA Isolation, Methylation-Specific PCR
4.5. Histopathology
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angeloni, A.; Bogdanovic, O. Enhancer DNA methylation: Implications for gene regulation. Essays Biochem. 2019, 63, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Schübeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Liu, Y. DNA methylation in human diseases. Genes Dis. 2018, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; van Tilborg, A.A.; Zwarthoff, E.C. DNA methylation-based biomarkers in bladder cancer. Nat. Rev. Urol. 2013, 10, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Carbayo, M. Hypermethylation in bladder cancer: Biological pathways and translational applications. Tumour Biol. 2012, 33, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Panicker, J.N. Dysautonomia: Neurogenic Bladder: Epidemiology, Diagnosis, and Management. Semin. Neurol. 2020, 40, 569. [Google Scholar] [CrossRef] [PubMed]
- Nseyo, U.; Santiago-Lastra, Y. Long-Term Complications of the Neurogenic Bladder. Urol. Clin. N. Am. 2017, 44, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Stonehill, W.H.; Dmochowski, R.R.; Patterson, A.L.; Cox, C.E. Risk factors for bladder tumors in spinal cord injury patients. J. Urol. 1996, 155, 1248–1250. [Google Scholar] [CrossRef] [PubMed]
- Groah, S.L.; Weitzenkamp, D.A.; Lammertse, D.P.; Whiteneck, G.G.; Lezotte, D.C.; Hamman, R.F. Excess risk of bladder cancer in spinal cord injury: Evidence for an association between indwelling catheter use and bladder cancer. Arch. Phys. Med. Rehabil. 2002, 83, 346–351. [Google Scholar] [CrossRef]
- Pannek, J. Transitional cell carcinoma in patients with spinal cord injury: A high risk malignancy? Urology 2002, 59, 240–244. [Google Scholar] [CrossRef]
- Ismail, S.; Karsenty, G.; Chartier-Kastler, E.; Cussenot, O.; Compérat, E.; Rouprêt, M.; Phé, V. Prevalence, management, and prognosis of bladder cancer in patients with neurogenic bladder: A systematic review. Neurourol. Urodyn. 2018, 37, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
- Gui-Zhong, L.; Li-Bo, M. Bladder cancer in individuals with spinal cord injuries: A meta-analysis. Spinal Cord 2017, 55, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Koukourikis, P.; Papaioannou, M.; Georgopoulos, P.; Apostolidis, I.; Pervana, S.; Apostolidis, A. A Study of DNA Methylation of Bladder Cancer Biomarkers in the Urine of Patients with Neurogenic Lower Urinary Tract Dysfunction. Biology 2023, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
- Bouras, E.; Karakioulaki, M.; Bougioukas, K.I.; Aivaliotis, M.; Tzimagiorgis, G.; Chourdakis, M. Gene promoter methylation and cancer: An umbrella review. Gene 2019, 710, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Ma, C.; Zhang, Z.; Zeng, S.; Liu, A.; Tang, S.; Ren, Q.; Sun, Y.; Xu, C. DAPK Promoter Methylation and Bladder Cancer Risk: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0167228. [Google Scholar] [CrossRef]
- Zhan, L.; Zhang, B.; Tan, Y.; Yang, C.; Huang, C.; Wu, Q.; Zhang, Y.; Chen, X.; Zhou, M.; Shu, A. Quantitative assessment of the relationship between RASSF1A gene promoter methylation and bladder cancer (PRISMA). Medicine 2017, 96, e6097. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Wang, Y.; Fan, J.; Wang, C. Is APC hypermethylation a diagnostic biomarker for bladder cancer? A meta-analysis. OncoTargets Ther. 2018, 11, 8359–8369. [Google Scholar] [CrossRef]
- Zinatizadeh, M.R.; Momeni, S.A.; Zarandi, P.K.; Chalbatani, G.M.; Dana, H.; Mirzaei, H.R.; Akbari, M.E.; Miri, S.R. The Role and Function of Ras-association domain family in Cancer: A Review. Genes Dis. 2019, 6, 378–384. [Google Scholar] [CrossRef]
- Alvarez, S.; Germain, P.; Alvarez, R.; Rodríguez-Barrios, F.; Gronemeyer, H.; de Lera, A.R. Structure, function and modulation of retinoic acid receptor beta, a tumor suppressor. Int. J. Biochem. Cell Biol. 2007, 39, 1406–1415. [Google Scholar] [CrossRef]
- Makgoo, L.; Mosebi, S.; Mbita, Z. The Role of Death-Associated Protein Kinase-1 in Cell Homeostasis-Related Processes. Genes 2023, 14, 1274. [Google Scholar] [CrossRef]
- Schrock, M.S.; Stromberg, B.R.; Scarberry, L.; Summers, M.K. APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin. Cancer Biol. 2020, 67, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, S.; Xia, C.; Xu, D. TERT promoter mutations and methylation for telomerase activation in urothelial carcinomas: New mechanistic insights and clinical significance. Front. Immunol. 2022, 13, 1071390. [Google Scholar] [CrossRef] [PubMed]
- Rowland, T.J.; Bonham, A.J.; Cech, T.R. Allele-specific proximal promoter hypomethylation of the telomerase reverse transcriptase gene (TERT) associates with TERT expression in multiple cancers. Mol. Oncol. 2020, 14, 2358–2374. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Larsson, C.; Xu, D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene 2019, 38, 6172–6183. [Google Scholar] [CrossRef]
- Georgopoulos, P.; Papaioannou, M.; Markopoulou, S.; Fragou, A.; Kouvatseas, G.; Apostolidis, A. DNA Hypermethylation af a Panel Of Genes as an Urinary Biomarker For Bladder Cancer Diagnosis. Urol. J. 2021, 19, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Kader, F.; Ghai, M. DNA methylation-based variation between human populations. Mol. Genet. Genomics 2017, 292, 5–35. [Google Scholar] [CrossRef] [PubMed]
- Alimi, Q.; Hascoet, J.; Manunta, A.; Kammerer-Jacquet, S.-F.; Verhoest, G.; Brochard, C.; Freton, L.; Kerdraon, J.; Senal, N.; Siproudhis, L.; et al. Reliability of urinary cytology and cystoscopy for the screening and diagnosis of bladder cancer in patients with neurogenic bladder: A systematic review. Neurourol. Urodyn. 2018, 37, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Hamid, R.; Bycroft, J.; Arya, M.; Shah, P.J.R. Screening Cystoscopy And Biopsy In Patients with Neuropathic Bladder And Chronic Suprapubic Indwelling Catheters: Is It Valid? J. Urol. 2003, 170, 425–427. [Google Scholar] [CrossRef]
- Khan, M.S.; Thornhill, J.A.; Gaffney, E.; Loftus, B.; Butler, M.R. Keratinising squamous metaplasia of the bladder: Natural history and rationalization of management based on review of 54 years experience. Eur. Urol. 2002, 42, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Ou, Z.; Guo, X.; Othmane, B.; Hu, J.; Ren, W.; Li, H.; He, T.; Qiu, D.; Cai, Z.; et al. Recurrence factors in patients with Keratinizing squamous metaplasia of the bladder after surgical management: A single-center retrospective study. Transl. Androl. Urol. 2021, 10, 73440–73740. [Google Scholar] [CrossRef]
- McKenney, J.K. Precursor lesions of the urinary bladder. Histopathology 2019, 74, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Benelli, A.; Varca, V.; Vaccaro, C.; Guzzo, S.; Nicola, M.; Onorati, M.; Gregori, A.; Di Nuovo, F. Keratinizing squamous metaplasia of the bladder: Our experience and current approaches. Urologia 2020, 87, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Wolff, E.M.; Chihara, Y.; Pan, F.; Weisenberger, D.J.; Siegmund, K.D.; Sugano, K.; Kawashima, K.; Laird, P.W.; Jones, P.A.; Liang, G. Unique DNA methylation patterns distinguish non-invasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 2010, 70, 8169. [Google Scholar] [CrossRef] [PubMed]
- Loi, E.; Moi, L.; Fadda, A.; Satta, G.; Zucca, M.; Sanna, S.; Nia, S.A.; Cabras, G.; Padoan, M.; Magnani, C.; et al. Methylation alteration of SHANK1 as a predictive, diagnostic and prognostic biomarker for chronic lymphocytic leukemia. Oncotarget 2019, 10, 4987–5002. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, A.; Matsusaka, K.; Aburatani, H.; Fukayama, M. Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res. 2012, 72, 3445–3450. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Shinjo, K.; Shimizu, Y.; Sano, T.; Yamao, K.; Gao, W.; Fujii, M.; Osada, H.; Sekido, Y.; Murakami, S.; et al. Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology 2014, 146, 562–572. [Google Scholar] [CrossRef]
- Dinh, A.; Davido, B.; Duran, C.; Bouchand, F.; Gaillard, J.L.; Even, A.; Denys, P.; Chartier-Kastler, E.; Bernard, L. Urinary tract infections in patients with neurogenic bladder. Médecine Mal. Infect. 2019, 49, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Al-Shammari, A.; Al-Abkal, J. Chronic urinary tract infection and bladder carcinoma risk: A meta-analysis of case-control and cohort studies. World J. Urol. 2018, 36, 839–848. [Google Scholar] [CrossRef]
- Tolg, C.; Sabha, N.; Cortese, R.; Panchal, T.; Ahsan, A.; Soliman, A.; Aitken, K.J.; Petronis, A.; Bägli, D.J. Uropathogenic E. coli infection provokes epigenetic downregulation of CDKN2A (p16INK4A) in uroepithelial cells. Lab. Investig. 2011, 91, 825–836. [Google Scholar] [CrossRef]
- Rokavec, M.; Öner, M.G.; Hermeking, H. lnflammation-induced epigenetic switches in cancer. Cell. Mol. Life Sci. 2016, 73, 23–39. [Google Scholar] [CrossRef]
- Takeshima, H.; Ushijima, T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. npj Precis. Oncol. 2019, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Tewari, A.K.; Stockert, J.A.; Yadav, S.S.; Yadav, K.K.; Khan, I. Inflammation and Prostate Cancer. Adv. Exp. Med. Biol. 2018, 1095, 41–65. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, M.S.; Zaghloul, T.M.; Bishr, M.K.; Baumann, B.C. Urinary schistosomiasis and the associated bladder cancer: Update. J. Egypt. Natl. Cancer Inst. 2020, 32, 44. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.I.; Siraj, A.K.; Khaled, H.; Koon, N.; El-Rifai, W.; Bhatia, K. CpG island methylation in Schistosoma- and non-Schistosoma-associated bladder cancer. Mod. Pathol. 2004, 17, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.O.; Begum, S.; Topaloglu, O.; Chatterjee, A.; Rosenbaum, E.; Van Criekinge, W.; Westra, W.H.; Schoenberg, M.; Zahurak, M.; Goodman, S.N.; et al. Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J. Natl. Cancer Inst. 2006, 98, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.G.; Weisenberger, D.J.; Cheng, J.C.; Chandrasoma, S.; Siegmund, K.D.; Gonzalgo, M.L.; Toma, M.I.; Huland, H.; Yoo, C.; Tsai, Y.C.; et al. Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin. Cancer Res. 2004, 10, 7457–7465. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Humphrey, P.A.; Moch, H.; Cubilla, A.L.; Ulbright, T.M.; Reuter, V.E. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part B: Prostate and Bladder Tumours. Eur. Urol. 2016, 70, 106–119. [Google Scholar] [CrossRef]
Variable | n = 24 |
---|---|
Age, years (SD) | 44.3 (14.7) |
Gender, n (%)
| |
13 (54.2%) | |
11 (45.8%) | |
BMI, kg/m2 median (SD) | 24.1 (4.2) |
Smoking in packyears, median (IQR) | 13 (23.5) |
Neurological disease, n (%)
| |
7 (29.2) | |
9 (37.5) | |
4 (16.7) | |
4 (16.7) | |
NLUTD duration, years median (IQR) | 10.0 (12.0) |
Method of voiding, n (%)
| |
18 (75.0) | |
2 (8.3) | |
4 (16.7) | |
Catheter usage duration (CIC or IDC), | |
years (SD) | 7.2 (5.5) |
History of hematuria, n (%) | |
Yes | 1 (4.2) |
No | 23 (95.8) |
Recurrent UTIs, n (%) | |
Yes | 14 (58.3) |
No | 10 (41.7) |
History of hematuria, n (%) | |
Yes | 1 (4.2) |
No | 23 (95.8) |
Variable/Number of Methylated Genes | 1 (n = 2) | 2 (n = 4) | 3 (n = 11) | 4 (n = 7) | p-Value |
---|---|---|---|---|---|
Age | 40 (37, 42) | 54 (50, 58) | 39 (24, 58) | 43 (40, 48) | 0.729 |
BMI | 23.3 (22.7, 23.9) | 20.9 (20.6, 21.4) | 24.7 (21.3, 26.1) | 25.7 (23.9, 26.2) | 0.074 |
Packyears | 22 (21, 23) | 30 (23, 35) | 10 (1, 22) | 8 (2, 15) | 0.113 |
Gender | 0.403 | ||||
Female | 1 (50%) | 2 (50%) | 3 (27%) | 5 (71%) | |
Male | 1 (50%) | 2 (50%) | 8 (73%) | 2 (29%) | |
Recurrent UTIs | 1 (50%) | 0 (0%) | 6 (55%) | 7 (100%) | 0.0048 |
NLUTD/years | 24 (15, 34) | 6 (6, 8) | 10 (8, 18) | 15 (12, 25) | 0.502 |
Catheter use/years | 5.0 (2.5, 7.5) | 2.0 (1.5, 2.8) | 9.0 (5.5, 13.0) | 6.0 (4.0, 11.5) | 0.107 |
Gene | Primer/Probe | Sequence |
---|---|---|
APC [45] | Forward | 5′-GAACCAAAACGCTCCCCAT-3′ |
Reverse | 5′-TTATATGTCGGTTACGTGCGTTTATAT-3′ | |
Probe | 5′-/56-FAM/CCCGTCGAA/ZEN/AACCCGCCGATTA/31ABkFQ/3′ | |
DAPK [46] | Forward | 5′-TCGTCGTCGTTTCGGTTAGTT-3′ |
Reverse | 5′-TCCCTCCGAAACGCTATCG-3′ | |
Probe | 5′-/56-FAM/CGACCATAA/ZEN/ACGCCAACGCCG/31ABkFQ/3′ | |
RARβ [45] | Forward | 5′-GGGATTAGAATTTTTTATGCGAGTTGT-3′ |
Reverse | 5′-TACCCCGACGATACCCAAAC-3′ | |
Probe | 5′-/56-FAM/TGTCGAGAA/ZEN/CGCGAGCGATTCG/31ABkFQ/3′ | |
RASSF1 [46] | Forward | 5′-ATTGAGTTGCGGGAGTTGGT-3′ |
Reverse | 5′-ACACGCTCCAACCGAATACG-3′ | |
Probe | 5′-/56-FAM/CCCTTCCA/ZEN/ACGCGCCA/31ABkFQ/3′ | |
TERT [46] | Forward | 5′-TGGTGATGGAGGAGGTTTAGTAAGT-3′ |
Reverse | 5′-AACCAATAAAACCTACTCCTCCCTTAA-3′ | |
Probe | 5′-/56-FAM/ACCACCACC/ZEN/CAACACACAATAACAAACACA/31ABkFQ/3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koukourikis, P.; Papaioannou, M.; Pervana, S.; Apostolidis, A. Exploring the DNA Methylation Profile of Genes Associated with Bladder Cancer in Bladder Tissue of Patients with Neurogenic Lower Urinary Tract Dysfunction. Int. J. Mol. Sci. 2024, 25, 5660. https://doi.org/10.3390/ijms25115660
Koukourikis P, Papaioannou M, Pervana S, Apostolidis A. Exploring the DNA Methylation Profile of Genes Associated with Bladder Cancer in Bladder Tissue of Patients with Neurogenic Lower Urinary Tract Dysfunction. International Journal of Molecular Sciences. 2024; 25(11):5660. https://doi.org/10.3390/ijms25115660
Chicago/Turabian StyleKoukourikis, Periklis, Maria Papaioannou, Stavroula Pervana, and Apostolos Apostolidis. 2024. "Exploring the DNA Methylation Profile of Genes Associated with Bladder Cancer in Bladder Tissue of Patients with Neurogenic Lower Urinary Tract Dysfunction" International Journal of Molecular Sciences 25, no. 11: 5660. https://doi.org/10.3390/ijms25115660
APA StyleKoukourikis, P., Papaioannou, M., Pervana, S., & Apostolidis, A. (2024). Exploring the DNA Methylation Profile of Genes Associated with Bladder Cancer in Bladder Tissue of Patients with Neurogenic Lower Urinary Tract Dysfunction. International Journal of Molecular Sciences, 25(11), 5660. https://doi.org/10.3390/ijms25115660