The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Gill Isolation
4.2. Cyst Isolation
4.3. DNA and Protein Extractions
4.4. Mass Spectrometry Analysis
4.5. Gills and Cyst Analysis
4.6. Keratin Staining
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Sayed, A.-F.M. (Ed.) Tilapia Culture, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128165096. [Google Scholar]
- Hulata, G. Tilapias—Biology and Culture; Ma’arechet Publishing House: Kibbutz Dalia, Israel, 2014. [Google Scholar]
- Milstein, A.; Zoran, M.; Kochba, M.; Avnimelech, Y. Effect of different management practices on water quality of intensive tilapia culture systems in Israel. Aquac. Int. 2001, 9, 133–152. [Google Scholar] [CrossRef]
- Eknath, A.E.; Hulata, G. Use and exchange of genetic resources of Nile tilapia (Oreochromis niloticus). Rev. Aquac. 2009, 1, 197–213. [Google Scholar] [CrossRef]
- Miao, W.; Wang, W. Trends of aquaculture production and trade: Carp, tilapia, and shrimp. Asian Fish. Sci. 2020, 33, 1–10. [Google Scholar] [CrossRef]
- Maor-Landaw, K.; Smirnov, M.; Brekhman, V.; Ofek-Lalzar, M.; Yahav, T.; Lotan, T. Infection by the Parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) suppresses the immune system of hybrid tilapia. Microorganisms 2022, 10, 1893. [Google Scholar] [CrossRef]
- Atkinson, S.D.; Bartholomew, J.L.; Lotan, T. Myxozoans: Ancient metazoan parasites find a home in phylum Cnidaria. Zoology 2018, 129, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Okamura, B.; Gruhl, A.; Bartholomew, J.L. An Introduction to Myxozoan Evolution, Ecology and Development; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 1–441. [Google Scholar]
- Eszterbauer, E.; Atkinson, S.; Diamant, A.; Morris, D.; El-Matbouli, M.; Hartikainen, H. Myxozoan Life Cycles: Practical approaches and insights. In Myxozoan Evolution, Ecology and Development; Okamura, B., Gruhl, A.B.J., Eds.; Springer: Cham, Switzerland, 2015; pp. 175–198. [Google Scholar]
- Holzer, A.S.; Bartošová-Sojková, P.; Born-Torrijos, A.; Alena, L.; Hartigan, A.; Fiala, I. The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol. Ecol. 2018, 27, 1651–1666. [Google Scholar] [CrossRef]
- Wolf, K.; Markiw, M.E. Biology contravenes taxonomy in the Myxozoa: New discoveries show alternation of invertebrate and vertebrate hosts. Science 1984, 225, 1449–1452. [Google Scholar] [CrossRef]
- Kent, M.; Margolis, L.; Corliss, J. The demise of a class of protists: Taxonomic and nomenclatural revisions proposed for the protist phylum Myxozoa Grasse, 1970. Can. J. Zool. 1994, 72, 932–937. [Google Scholar] [CrossRef]
- Estensoro, I.; Jung-Schroers, V.; Álvarez-Pellitero, P.; Streinhagen, D.; Sitjà-Bobadilla, A. Effects of Enteromyxum leei (Myxozoa) infection on gilthead sea bream (Sparus aurata) (Teleostei) intestinal mucus: Glycoprotein profile and bacterial adhesion. Parasitol. Res. 2013, 112, 567–576. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Galindo-Villegas, J.; Pereiro, P.; Estensoro, I.; Calduch-Giner, J.A.; Gomez-Casado, E.; Novoa, B.; Mulero, V.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Differential modulation of IgT and IgM upon parasitic, bacterial, viral, and dietary challenges in a perciform Fish. Front. Immunol. 2016, 7, 236169. [Google Scholar] [CrossRef]
- Holzer, A.S.; Piazzon, M.C.; Barrett, D.; Bartholomew, J.L.; Sitjà-Bobadilla, A. To react or not to react: The dilemma of fish immune systems facing myxozoan infections. Front. Immunol. 2021, 12, 734238. [Google Scholar] [CrossRef] [PubMed]
- Tort, L.; Balasch, J.C.; Mackenzie, S. Fish immune system. A crossroads between innate and adaptive responses. Inmunología 2003, 22, 277–286. [Google Scholar]
- Zhu, L.; Nie, L.; Zhu, G.; Xiang, L.; Shao, J. Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Dev. Comp. Immunol. 2013, 39, 39–62. [Google Scholar] [CrossRef]
- Sitjà-Bobadilla, A.; Schmidt-Posthaus, H.; Wahli, T.; Holland, J.W.; Secombes, C.J. Fish immune responses to Myxozoa. In Myxozoan Evolution, Ecology and Development; Okamura, B., Gruhl, A., Bartholome, J.L., Eds.; Springer: Cham, Switzerland, 2015; pp. 253–280. ISBN 9783319147536. [Google Scholar]
- Bjørgen, H.; Koppang, E.O. Anatomy of teleost fish immune structures and organs. In Principles of Fish Immunology, from Host Cells and Molecules to Host Protection; Buchmann, K., Secombes, C.J., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–30. [Google Scholar]
- Sitjà-Bobadilla, A.; Calduch-Giner, J.; Saera-Vila, A.; Palenzuela, O.; Álvarez-Pellitero, P.; Pérez-Sánchez, J. Chronic exposure to the parasite Enteromyxum leei (Myxozoa: Myxosporea) modulates the immune response and the expression of growth, redox and immune relevant genes in gilthead sea bream, Sparus aurata L. Fish Shellfish Immunol. 2008, 24, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Sitjà-Bobadilla, A.; Redondo, M.J.; Bermúdez, R.; Palenzuela, O.; Ferreiro, I.; Riaza, A.; Quiroga, I.; Nieto, J.M.; Alvarez-Pellitero, P. Innate and adaptive immune responses of turbot, Scophthalmus maximus (L.), following experimental infection with Enteromyxum scophthalmi (Myxosporea: Myxozoa). Fish Shellfish Immunol. 2006, 21, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Barrett, D.E.; Estensoro, I.; Sitj, A.; Bartholomew, J.L. Intestinal transcriptomic and histologic profiling reveals tissue repair mechanisms underlying resistance to the parasite Ceratonova shasta. Pathogens 2021, 10, 1179. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, A.; Salinas, I.; Rodríguez, A.; Muñoz, P.; Sitjà-Bobadilla, A.; Álvarez-Pellitero, P.; Meseguer, J.; Esteban, M.Á. Cell-mediated cytotoxicity is the main innate immune mechanism involved in the cellular defence of gilthead seabream (Teleostei: Sparidae) against Enteromyxum leei (Myxozoa). Parasite Immunol. 2006, 28, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Secombes, C.J. The function of fish cytokines. Biology 2016, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Koehler, A.; Romans, P.; Desser, S.; Ringuette, M. Encapsulation of Myxobolus pendula (Myxosporidia) by epithelioid cells of its cyprinid host Semotilus atromaculatus. J. Parasitol 2004, 90, 1401–1405. [Google Scholar] [CrossRef]
- Balovet, G.; Baudin Laurencin, F. Granulomatous nodules in fish: An experimental assessment in rainbow trout, Salmo gairdneri Richardson, and turbot, Scophthalmus maximus (L.). J. Fish Dis. 1986, 9, 417–429. [Google Scholar] [CrossRef]
- Lövy, A.; Smirnov, M.; Brekhman, V.; Ofek, T.; Lotan, T. Morphological and molecular characterization of a novel myxosporean parasite Myxobolus bejeranoi n. sp. (Cnidaria: Myxosporea) from hybrid tilapia in Israel. Parasitol. Res. 2018, 117, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Kallert, D.M.; Grabner, D.; Yokoyama, H.; El-Matbouli, M.; Eszterbauer, E. Transmission of Myxozoans to vertebrate hosts. In Myxozoan Evolution, Ecology and Development; Okamura, B., Gruhl, A., Bartholomew, J.L., Eds.; Springer: Cham, Switzerland, 2015; pp. 235–251. [Google Scholar]
- Maor-Landaw, K.; Avidor, I.; Rostowsky, N.; Salti, B.; Smirnov, M.; Ofek-Lalzar, M.; Levin, L.; Brekhman, V.; Lotan, T. The molecular mechanisms employed by the parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) from invasion through sporulation for successful proliferation in its fish host. Int. J. Mol. Sci. 2023, 24, 12824. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Fan, Q.; Cui, L.; Li, J.; Li, J.; Cui, L. The malaria parasite Plasmodium falciparum histones: Organization, expression, and acetylation. Gene 2006, 369, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Toloza, G.; Aguilar-Guzmán, L.; Valck, C.; Ferreira, V.P.; Ferreira, A. The Interactions of parasite calreticulin with initial complement components: Consequences in immunity and virulence. Front. Immunol. 2020, 11, 556854. [Google Scholar] [CrossRef]
- Alama-Bermejo, G.; Bartošová-Sojková, P.; Atkinson, S.D.; Holzer, A.S.; Bartholomew, J.L. Proteases as therapeutic targets against the parasitic cnidarian Ceratonova shasta: Characterization of molecules key to parasite virulence in Salmonid hosts. Front. Cell Infect. Microbiol. 2022, 11, 804864. [Google Scholar] [CrossRef] [PubMed]
- Maor-Landaw, K.; Avidor, I.; Salti, B.; Smirnov, M.; Brekhman, V.; Lotan, T. The myxozoan parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) infection dynamics and host specificity in hybrid tilapia aquaculture. Parasitology 2023, 150, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Schwanhüusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global quantification of mammalian gene expression control. Nature 2011, 473, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ramulu, S.; Kale, A.D.; Hallikerimath, S.; Kotrashetti, V. Comparing modified papanicolaou stain with ayoub-shklar and haematoxylin-eosin stain for demonstration of keratin in paraffin embedded tissue sections. J. Oral Maxillofac. Pathol. 2013, 17, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Anthwal, N.; Gupta, S.; Singh, R.P.; Gupta, H. Comparison of ayoub shklar stain, Dane Herman, modified pap and routine hematoxylin and eosin stain for the keratin identification. Int. Arch. Integr. Med. 2020, 7, 1–8. [Google Scholar]
- Kvedar, J.C.; Manabe, M.; Phillips, S.B.; Ross, B.S.; Baden, H.P. Characterization of sciellin, a precursor to the cornified envelope of human keratinocytes. Differentiation 1992, 49, 195–204. [Google Scholar] [CrossRef]
- Sundararajan, V.; Pang, Q.Y.; Choolani, M.; Huang, R.Y.J. Spotlight on the granules (grainyhead-like proteins)—From an evolutionary conserved controller of epithelial trait to pioneering the chromatin landscape. Front. Mol. Biosci. 2020, 7, 213. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Francisco, D.; Cordero, H.; Guardiola, F.A.; Cuesta, A.; Esteban, M.Á. Healing and mucosal immunity in the skin of experimentally wounded gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2017, 71, 210–219. [Google Scholar] [CrossRef]
- Wang, S.; Samakovlis, C. Grainy Head and its target genes in epithelial morphogenesis and wound healing. Curr. Top. Dev. Biol. 2012, 98, 35–63. [Google Scholar] [PubMed]
- Kalinin, A.E.; Kajava, A.V.; Steinert, P.M. Epithelial barrier function: Assembly and structural features of the cornified cell envelope. BioEssays 2002, 24, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Martyn, A.A.; Hong, H.; Ringuette, M.J.; Desser, S.S. Changes in host and parasite-derived cellular and extracellular matrix components in developing cysts of of Myxobolus pendula (Myxozoa). J. Eukaryot. Microbiol. 2002, 19, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Polinas, M.; Padr, F.; Merella, P.; Prearo, M.; Sanna, M.A.; Marino, F.; Burrai, G.P.; Antuofermo, E. Stages of granulomatous response against histozoic Metazoan parasites in Mullets (Osteichthyes: Mugilidae). Animals 2021, 11, 1501. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Sun, B.G.; Li, J.; Liu, X.; Sun, L. Identification and characterization of a cell surface scavenger receptor cysteine-rich protein of Sciaenops ocellatus: Bacterial interaction and its dependence on the conserved structural features of the SRCR domain. Fish Shellfish Immunol. 2013, 34, 810–818. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, H.; Yang, J.; Dong, X.; Wu, C. Abundant members of Scavenger receptors family and their identification, characterization and expression against Vibrio alginolyticus infection in juvenile Larimichthys crocea. Fish Shellfish Immunol. 2016, 50, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Law, S.K.A.; Micklem, K.J.; Shaw, J.M.; Zhang, X.-P.; Dong, Y.; Willis, A.C.; Mason, D.Y. A new macrophage differentiation antigen which is a member of the scavenger receptor superfamily. Eur. J. Immunol. 1993, 23, 2320–2325. [Google Scholar] [CrossRef]
- Onofre, G.; Kolácková, M.; Jankovicová, K.; Krejsek, J. Scavenger receptor CD163 and its biological functions. Acta Medica Cordoba 2009, 52, 57–61. [Google Scholar] [CrossRef]
- Martínez, V.G.; Moestrup, S.K.; Holmskov, U.; Mollenhauer, J.; Lozano, F. The conserved scavenger receptor cysteine-rich super family in therapy and diagnosis. Pharmacol. Rev. 2011, 63, 967–1000. [Google Scholar] [CrossRef]
- Orf, K.; Cunnington, A.J. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection. Front. Microbiol. 2015, 6, 666. [Google Scholar] [CrossRef]
- Korytář, T.; Wiegertjes, G.F.; Zusková, E.; Tomanová, A.; Lisnerová, M.; Patra, S.; Sieranski, V.; Šíma, R.; Born-Torrijos, A.; Wentzel, A.S.; et al. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasites Vectors 2019, 12, 208. [Google Scholar] [CrossRef]
- Korytář, T.; Chan, J.T.H.; Vancová, M.; Holzer, A.S. Blood feast: Exploring the erythrocyte-feeding behaviour of the myxozoan Sphaerospora molnari. Parasite Immunol. 2020, 42, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hartigan, A.; Kosakyan, A.; Pecková, H.; Eszterbauer, E.; Holzer, A.S. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genom. 2020, 21, 404. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiong, J.; Zhou, Z.; Huo, F.; Miao, W.; Ran, C.; Liu, Y.; Zhang, J.; Feng, J.; Wang, M.; et al. The genome of the myxosporean Thelohanellus kitauei shows adaptation to nutrient acquisition within its fish host. Genome Biol. Evol. 2014, 6, 3182–3198. [Google Scholar] [CrossRef]
- Ahmad, F.; Debes, P.V.; Pukk, L.; Kahar, S.; Hartikainen, H.; Gross, R.; Vasemägi, A. Know your enemy—Transcriptome of myxozoan Tetracapsuloides bryosalmonae reveals potential drug targets against proliferative kidney disease in salmonids. Parasitology 2021, 148, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.; Shaw, S.; Yoon, S.; de Paiva Alves, E.; Wang, B.; Qi, Z.; Okamura, B.; Hartikainen, H.; Secombes, C.J.; Holland, J.W. Comparative transcriptomics and host-specific parasite gene expression profiles inform on drivers of proliferative kidney disease. Sci. Rep. 2021, 11, 2149. [Google Scholar] [CrossRef]
- Davey, G.C.; Calduch-Giner, J.A.; Houeix, B.; Talbot, A.; Sitjà-Bobadilla, A.; Prunet, P.; Pérez-Sánchez, J.; Cairns, M.T. Molecular profiling of the gilthead sea bream (Sparus aurata L.) response to chronic exposure to the myxosporean parasite Enteromyxum leei. Mol. Immunol. 2011, 48, 2102–2112. [Google Scholar] [CrossRef]
- Noga, E.J.; Dykstra, M.J.; Wright, J.F. Chronic inflammatory cells with epithelial cell characteristics in teleost fishes. Vet. Pathol. 1989, 26, 429–437. [Google Scholar] [CrossRef]
- Sayyaf Dezfuli, B.; Fernandes, C.E.; Galindo, G.M.; Castaldelli, G.; Manera, M.; DePasquale, J.A.; Lorenzoni, M.; Bertin, S.; Giari, L. Nematode infection in liver of the fish Gymnotus inaequilabiatus (Gymnotiformes: Gymnotidae) from the Pantanal Region in Brazil: Pathobiology and inflammatory response. Parasites Vectors 2016, 9, 473. [Google Scholar] [CrossRef]
- Manrique, W.G.; Claudianoda, G.S.; DeCastro, M.P.; Petrillo, T.R.; Figueiredo, M.A.P.; De Andrade Belo, M.A.; Berdeal, M.I.Q.; De Moraes, J.E.R.; De Moraes, F.R. Expression of cellular components in granulomatous inflammatory response in Piaractus mesopotamicus model. PLoS ONE 2015, 10, e0121625. [Google Scholar] [CrossRef] [PubMed]
- Skorobrechova, E.M.; Nikishin, V.P. Structure of capsule surrounding acanthocephalans Corynosoma strumosum in paratenic hosts of three species. Parasitol. Res. 2011, 108, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Bragulla, H.H.; Homberger, D.G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 2009, 214, 516–559. [Google Scholar] [CrossRef]
- Rübsam, M.; Broussard, J.A.; Wickström, S.A.; Nekrasova, O.; Green, K.J.; Niessen, C.M. Adherens junctions and desmosomes coordinate mechanics and signaling to orchestrate tissue morphogenesis and function: An evolutionary perspective. Cold Spring Harb. Perspect. Biol. 2018, 10, a029207. [Google Scholar] [CrossRef]
- Niessen, C.M. Tight junctions/adherens junctions: Basic structure and function. J. Investig. Dermatol. 2007, 127, 2525–2532. [Google Scholar] [CrossRef]
- Champliaud, M.; Burgeson, R.E.; Jin, W.; Baden, H.P.; Olson, P.F. cDNA cloning and characterization of Sciellin, a LIM domain protein of the keratinocyte cornified envelope. J. Biol. Chem. 1998, 273, 31547–31554. [Google Scholar] [CrossRef]
- Champliaud, M.F.; Baden, H.P.; Koch, M.; Jin, W.; Burgeson, R.E.; Viel, A. Gene characterization of sciellin (SCEL) and protein localization in vertebrate epithelia displaying barrier properties. Genomics 2000, 70, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Snider, N.T.; Weerasinghe, S.V.W.; In, J.A.; Herrmann, H.; Omary, M.B. Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation. J. Biol. Chem. 2011, 286, 2273–2284. [Google Scholar] [CrossRef]
- Pichler, A.; Gast, A.; Seeler, J.S.; Dejean, A.; Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 2002, 108, 109–120. [Google Scholar] [CrossRef]
- Alonso, A.; Greenlee, M.; Matts, J.; Kline, J.; Davis, K.J.; Miller, R.K. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton 2015, 339, 305–339. [Google Scholar] [CrossRef]
- Kraemer, A.M.; Saraiva, L.R.; Korsching, S.I. Structural and functional diversification in the teleost S100 family of calcium-binding proteins. BMC Evol. Biol. 2008, 8, 48. [Google Scholar] [CrossRef]
- Hsiao, C.D.; Ekker, M.; Tsai, H.J. Skin-specific expression of ictacalcin, a homolog of the S100 genes, during zebrafish embryogenesis. Dev. Dyn. 2003, 228, 745–750. [Google Scholar] [CrossRef]
- Pao, H.Y.; Wu, C.Y.; Huang, C.H.; Wen, C.M. Development, characterization and virus susceptibility of a continuous cell line from the caudal fin of marbled eel (Anguilla marmorata). J. Fish Dis. 2018, 41, 1331–1338. [Google Scholar] [CrossRef]
- Marcos-López, M.; Rodger, H.D.; O’Connor, I.; Braceland, M.; Burchmore, R.J.S.; Eckersall, P.D.; MacCarthy, E. A proteomic approach to assess the host response in gills of farmed Atlantic salmon Salmo salar L. affected by amoebic gill disease. Aquaculture 2017, 470, 1–10. [Google Scholar] [CrossRef]
- Easy, R.H.; Ross, N.W. Changes in Atlantic salmon (Salmo salar) epidermal mucus protein composition profiles following infection with sea lice (Lepeophtheirus salmonis). Comp. Biochem. Physiol. Part D Genom. Proteom. 2009, 4, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Pridgeon, J.W.; Yeh, H.Y.; Shoemaker, C.A.; Mu, X.; Klesius, P.H. Global gene expression in channel catfish after vaccination with an attenuated Edwardsiella ictaluri. Fish Shellfish Immunol. 2012, 32, 524–533. [Google Scholar] [CrossRef]
- Blaufuss, P.C.; Gaylord, T.G.; Sealey, W.M.; Powell, M.S. Effects of high-soy diet on S100 gene expression in liver and intestine of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 86, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Kuberappa, P.H.; Bagalad, B.S.; Ananthaneni, A.; Kiresur, M.A.; Srinivas, G.V. Certainty of S100 from physiology to pathology. J. Clin. Diagn. Res. 2016, 10, ZE10–ZE15. [Google Scholar] [CrossRef]
- Pelc, P.; Vanmuylder, N.; Lefranc, F.; Heizmann, C.W.; Hassid, S.; Salmon, I.; Kiss, R.; Louryan, S.; Decaestecker, C. Differential expression of S100 calcium-binding proteins in epidermoid cysts, branchial cysts, craniopharyngiomas and cholesteatomas. Histopathology 2003, 42, 387–394. [Google Scholar] [CrossRef]
- Chang, C.-H.; Wu, Y.-C.; Wu, Y.-H.; Sun, A.; Kuo, Y.-S.; Chiang, C.-P. S100 protein-positive Langerhans cells in 80 dentigerous cysts. J. Dent. Sci. 2017, 12, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 2014, 13, 2513–2526. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Cox, J. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. In Cancer Systems Biology: Methods and Protocols; von Stechow, L., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1711, pp. 133–148. ISBN 9781493974931. [Google Scholar]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein—Protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
Protein ID | Protein Name | Fold Change |
---|---|---|
ENSONIP00000013827.2 | fetuin-B | cyst only |
ENSONIP00000042223.1 | alpha-2-HS-glycoprotein 2 | cyst only |
ENSONIP00000023717.1 | kunitz-type protease inhibitor 1 | cyst only |
ENSONIP00000074191.1 | alpha-macroglobulin receptor-binding domain | cyst only |
ENSONIP00000067950.1 | alpha-2-macroglobulin-like | cyst only |
ENSONIP00000005221.1 | alpha-2-antiplasmin | cyst only |
ENSONIP00000018223.2 | inter-alpha-trypsin inhibitor heavy chain 3 | cyst only |
ENSONIP00000022637.2 | leukocyte elastase inhibitor | 7.71 |
ENSONIP00000025380.1 | serpin family A member 10 | 4.70 |
ENSONIP00000056451.1 | legumain | 4.15 |
ENSONIP00000046993.1 | cystatin-B | 2.51 |
ENSONIP00000043069.1 | cystatin fetuin-A-type domain | 2.15 |
ENSONIP00000001504.1 | alpha-1-antitrypsin homolog | 1.45 |
ENSONIP00000009801.2 | serpin family C member 1 | 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maor-Landaw, K.; Smirnov, M.; Lotan, T. The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function. Int. J. Mol. Sci. 2024, 25, 5683. https://doi.org/10.3390/ijms25115683
Maor-Landaw K, Smirnov M, Lotan T. The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function. International Journal of Molecular Sciences. 2024; 25(11):5683. https://doi.org/10.3390/ijms25115683
Chicago/Turabian StyleMaor-Landaw, Keren, Margarita Smirnov, and Tamar Lotan. 2024. "The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function" International Journal of Molecular Sciences 25, no. 11: 5683. https://doi.org/10.3390/ijms25115683
APA StyleMaor-Landaw, K., Smirnov, M., & Lotan, T. (2024). The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function. International Journal of Molecular Sciences, 25(11), 5683. https://doi.org/10.3390/ijms25115683