Molecular Aspects of Piperine in Signaling Pathways Associated with Inflammation in Head and Neck Cancer
Abstract
:1. Introduction
2. Results
2.1. Piperine in High Concentrations Modifies Morphology, Reduces Viability and Causes Cytotoxicity in Head and Neck Cancer Cell Lines
2.2. Piperine Has an Antiproliferative and Cytostatic Effect on Head and Neck Cancer Cell Lines
2.3. Piperine Induces Apoptosis and Cell Cycle Arrest in Head and Neck Tumorigenic Cells through Genotoxicity
2.4. Piperine Decreases Cell Invasion by Reducing the Rxpression of Metastasis-Related Genes in Head and Neck Cancer Cells
2.5. Piperine Regulates the Expression of Genes, Cytokines and Proteins Associated with Inflammation
2.6. Piperine Modulates the Expression of the ERK/p38 MAPK Pathway in Head and Neck Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Treatment with Piperine
4.2. Viability/Cytotoxicity Assay and Cell Proliferation
4.3. Transwell Invasion Assay
4.4. Clonogenic Assay
4.5. Determination of Apoptosis and Cellular DNA Content
4.6. Genotoxicity Test (Alkaline Comet)
4.7. Enzyme-Linked Immunosorbent Assay (ELISA)
4.8. Immunocytochemistry Analysis
4.9. RNA Isolation, Target Genes and Real-Time PCR Analysis
4.10. Expression of Protein Levels (Western Blotting)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moody, L.; Crowder, S.L.; Fruge, A.D.; Locher, J.L.; Demark-Wahnefried, W.; Rogers, L.Q.; Delk-Licata, A.; Carroll, W.R.; Spencer, S.A.; Black, M. Epigenetic stratification of head and neck cancer survivors reveals differences in lycopene levels, alcohol consumption, and methylation of immune regulatory genes. Clin. Epigenetics 2020, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Abraham, Z.S.; Mchele, K.; Kahinga, A.A. Awareness of head and neck cancer among patients attended at a regional referral hospital in Tanzania. BMC Public Health 2023, 23, 1544. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Galvis, M.; Loveless, R.; Kowalski, L.P.; Teng, Y. Impacts of Environmental Factors on Head and Neck Cancer Pathogenesis and Progression. Cells 2021, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, S.; Li, C.; Li, T.; Huang, Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front. Immunol. 2022, 13, 1051998. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022, 27, 8367. [Google Scholar] [CrossRef] [PubMed]
- Diehl, S.; Hildebrandt, G.; Manda, K. Pepper Alkaloid Piperine Increases Radiation Sensitivity of Cancer Cells from Glioblastoma and Hypopharynx In Vitro. Int. J. Mol. Sci. 2022, 23, 8548. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, V.R.; Dhanavel, A.; Kesavan, R.; Natarajan, P.M.; Bhuminathan, S.; Vijayalakshmi, P. Anticancer Potential of the Principal Constituent of Piper nigrum, Piperine: A Comprehensive Review. Cureus 2024, 16, e54425. [Google Scholar] [CrossRef] [PubMed]
- Praneetha, P.; Balhara, A.; Ladumor, M.; Singh, D.K.; Patil, A.; Preethi, J.; Pokharkar, S.; Deshpande, A.Y.; Giri, S.; Singh, S. Characterization of stable and reactive metabolites of piperine formed on incubation with human liver microsomes. J. Mass Spectrom. 2019, 54, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, S.; He, J.; Li, T. Piperine: Chemistry and biology. Toxins 2023, 15, 696. [Google Scholar] [CrossRef]
- Elimam, D.M.; Elgazar, A.A.; El-Senduny, F.F.; El-Domany, R.A.; Badria, F.A.; Eldehna, W.M. Natural inspired piperine-based ureas and amides as novel antitumor agents towards breast cancer. J. Enzyme Inhib. Med. Chem. 2022, 37, 39–50. [Google Scholar] [CrossRef]
- Azam, S.; Park, J.Y.; Kim, I.S.; Choi, D.K. Piperine and Its Metabolite’s Pharmacology in Neurodegenerative and Neurological Diseases. Biomedicines 2022, 10, 154. [Google Scholar] [CrossRef] [PubMed]
- Jäckel, L.; Schnabel, A.; Stellmach, H.; Klauß, U.; Matschi, S.; Hause, G.; Vogt, T. The terminal enzymatic step in piperine biosynthesis is co-localized with the product piperine in specialized cells of black pepper (Piper nigrum L.). Plant J. 2022, 111, 731–747. [Google Scholar] [CrossRef] [PubMed]
- Ramos, I.N.F.; da Silva, M.F.; Lopes, J.M.S.; Cruz, J.N.; Alves, F.S.; do Rego, J.A.R.; Costa, M.L.D.; Assumpção, P.P.; Barros Brasil, D.D.S.; Khayat, A.S. Extraction, Characterization, and Evaluation of the Cytotoxic Activity of Piperine in Its Isolated form and in Combination with Chemotherapeutics against Gastric Cancer. Molecules 2023, 28, 5587. [Google Scholar] [CrossRef] [PubMed]
- Tudor, D.V.; Bâldea, I.; Lupu, M.; Kacso, T.; Kutasi, E.; Hopârtean, A.; Stretea, R.; Gabriela Filip, A. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol. Med. 2020, 17, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.K.; Ray, A.K.; Mishra, S.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: Evidence from clinical trials. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Benayad, S.; Wahnou, H.; El Kebbaj, R.; Liagre, B.; Sol, V.; Oudghiri, M.; Saad, E.M.; Duval, R.E.; Limami, Y. The Promise of Piperine in Cancer Chemoprevention. Cancers 2023, 15, 5488. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, C.; Zhang, Y.; Liu, X.; Wang, J. Mechanistic insight into gel formation of co-amorphous resveratrol and piperine during dissolution process. Int. J. Pharm. 2023, 634, 122644. [Google Scholar] [CrossRef] [PubMed]
- Turrini, E.; Sestili, P.; Fimognari, C. Overview of the Anticancer Potential of the “King of Spices” Piper nigrum and Its Main Constituent Piperine. Toxins 2020, 12, 747. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, P.B.; Power Coombs, M.R.; Doucette, C.D.; Walsh, M.; Hoskin, D.W. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol. Carcinog. 2014, 54, 1070–1085. [Google Scholar] [CrossRef]
- Marques da Fonseca, L.; Jacques da Silva, L.R.; Santos Dos Reis, J.; Rodrigues da Costa Santos, M.A.; de Sousa Chaves, V.; Monteiro da Costa, K.; Sa-Diniz, J.N.; Freire de Lima, C.G.; Morrot, A.; Nunes Franklim, T.; et al. Piperine Inhibits TGF-β Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells. Medicines 2020, 7, 19. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, J.; Tang, L. Non-Coding RNA Related to MAPK Signaling Pathway in Liver Cancer. Int. J. Mol. Sci. 2022, 23, 11908. [Google Scholar] [CrossRef]
- Zadorozhna, M.; Tataranni, T.; Mangieri, D. Piperine: Role in prevention and progression of cancer. Mol. Biol. Rep. 2019, 46, 5617–5629. [Google Scholar] [CrossRef]
- Dias, M.S.; Junior, E.P.V.; Santos, B.C.D.; Martins, F.A.; Almeida, P.M.; Peron, A.P. Cytogenotoxicity and protective effect of piperine and capsaicin on meristematic cells of Allium cepa L. An. Acad. Bras. Cienc. 2021, 93, e20201772. [Google Scholar] [CrossRef]
- Chen, S.M.Y.; Krinsky, A.L.; Woolaver, R.A.; Wang, X.; Chen, Z.; Wang, J.H. Tumor immune microenvironment in head and neck cancers. Mol. Carcinog. 2020, 59, 766–774. [Google Scholar] [CrossRef]
- Jeong, S.; Jung, S.; Park, G.S.; Shin, J.; Oh, J.W. Piperine synergistically enhances the effect of temozolomide against temozolomide-resistant human glioma cell lines. Bioengineered 2020, 11, 791–800. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Batista, T.M.; Duarte, S.S.; Silva, D.K.F.; Lisboa, T.M.H.; Cavalcanti, R.F.P.; Leite, F.C.; Mangueira, V.M.; Sousa, T.K.G.; Abrantes, R.A.; et al. A novel piperine analogue exerts in vivo antitumor effect by inducing oxidative, antiangiogenic and immunomodulatory actions. Biomed. Pharmacother. 2020, 128, 110247. [Google Scholar] [CrossRef]
- de Souza Grinevicius, V.M.; Kviecinski, M.R.; Santos Mota, N.S.; Ourique, F.; Porfirio Will Castro, L.S.; Andreguetti, R.R.; Gomes Correia, J.F.; Filho, D.W.; Pich, C.T.; Pedrosa, R.C. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells. J. Ethnopharmacol. 2016, 189, 139–147. [Google Scholar] [CrossRef]
- Rezaei, S.; Meftah, H.S.; Ebtehajpour, Y.; Rahimi, H.R.; Chamani, J. Investigation on the Effect of Fluorescence Quenching of Calf Thymus DNA by Piperine: Caspase Activation in the Human Breast Cancer Cell Line Studies. DNA Cell Biol. 2024, 43, 26–38. [Google Scholar] [CrossRef]
- Tawani, A.; Amanullah, A.; Mishra, A.; Kumar, A. Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences. Sci. Rep. 2016, 6, 39239. [Google Scholar] [CrossRef] [PubMed]
- Haris, P.; Mary, V.; Haridas, M.; Sudarsanakumar, C. Energetics, Thermodynamics, and Molecular Recognition of Piperine with DNA. J. Chem. Inf. Model. 2015, 55, 2644–2656. [Google Scholar] [CrossRef] [PubMed]
- Greenshields, A.L.; Doucette, C.D.; Sutton, K.M.; Madera, L.; Annan, H.; Yaffe, P.B.; Knickle, A.F.; Dong, Z.; Hoskin, D.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015, 357, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Wang, Y.; Zhen, Y.; Li, D.; He, X.; Yang, H.; Zhang, H.; Liu, Q. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelial-mesenchymal transition. Biotechnol. Lett. 2020, 42, 2049–2058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, X.; Li, H.; Li, B.; Sun, L.; Xie, T.; Zhu, T.; Zhou, H.; Ye, Z. Piperine inhibits proliferation of human osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/-9 expression. Int. Immunopharmacol. 2015, 24, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Cardin, L.T.; Prates, J.; da Cunha, B.R.; Tajara, E.H.; Oliani, S.M.; Rodrigues-Lisoni, F.C. Annexin A1 peptide and endothelial cell-conditioned medium modulate cervical tumorigenesis. FEBS Open Bio 2019, 9, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.P.; de Sousa, S.O.; Gusson-Zanetoni, J.P.; de Melo Moreira Silva, L.L.; Frigieri, B.M.; Henrique, T.; Tajara, E.H.; Oliani, S.M.; Rodrigues-Lisoni, F.C. Piperine Reduces Neoplastic Progression in Cervical Cancer Cells by Downregulating the Cyclooxygenase 2 Pathway. Pharmaceuticals 2023, 16, 103. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.O.; Cardoso, L.P.; Gusson-Zanetoni, J.P.; Henrique, T.; Tajara, E.H.; Laurentiz, R.S.; Oliani, S.M.; Rodrigues-Lisoni, F.C. Piper nigrum: Therapeutic potential of leaves extract in hnscc. J. Oncol. Res. Therapy 2022, 7, 10150. [Google Scholar] [CrossRef]
- Kim, H.G.; Han, E.H.; Jang, W.S.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Chung, Y.C.; Jeong, H.G. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem. Toxicol. 2012, 50, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Floege, J.; Lüscher, B.; Müller-Newen, G. Cytokines and inflammation. Eur. J. Cell Biol. 2012, 91, 427. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.J.; Zhang, Z.B.; Xu, N.N.; Guo, Y.F.; Qiu, C.; Li, C.Y.; Deng, G.Z.; Guo, M.Y. Piperine Plays an Anti-Inflammatory Role in Staphylococcus aureusEndometritis by Inhibiting Activation of NF-κB and MAPK Pathways in Mice. Evid. Based Complement. Alternat. Med. 2016, 2016, 8597208. [Google Scholar] [CrossRef] [PubMed]
- Wojtowicz, K.; Sterzyńska, K.; Świerczewska, M.; Nowicki, M.; Zabel, M.; Januchowski, R. Piperine Targets Different Drug Resistance Mechanisms in Human Ovarian Cancer Cell Lines Leading to Increased Sensitivity to Cytotoxic Drugs. Int. J. Mol. Sci. 2021, 22, 4243. [Google Scholar] [CrossRef]
- Senrung, A.; Tripathi, T.; Yadav, J. In vivo antiangiogenic effect of nimbolide, trans-chalcone and piperine for use against glioblastoma. BMC Cancer 2023, 23, 1173. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Yusuf, A.; Dai, C.; Sun, H.; Deng, X. Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and alleviates mouse liver fibrosis provoked by CCl4: Roles in the activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis. Food Funct. 2021, 12, 11686–11703. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.H.; Fu, Q.H.; Liu, Y.; Jiang, K.; Guo, Q.M.; Chen, Q.Y.; Yan, B.; Wang, Q.Q.; Shen, J.G. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin. 2012, 33, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Sharma, R.; Sarangal, V.; Kaur, N.; Prashar, P. Evaluation of anti-inflammatory effects of systemically administered curcumin lycopene and piperine as an adjunct to scaling and root planing: A clinical study. Ayu (Int. Q. J. Res. Ayurveda) 2017, 38, 117. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 4, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusson-Zanetoni, J.P.; Cardoso, L.P.; de Sousa, S.O.; de Melo Moreira Silva, L.L.; de Oliveira Martinho, J.; Henrique, T.; Tajara, E.H.; Oliani, S.M.; Rodrigues-Lisoni, F.C. Molecular Aspects of Piperine in Signaling Pathways Associated with Inflammation in Head and Neck Cancer. Int. J. Mol. Sci. 2024, 25, 5762. https://doi.org/10.3390/ijms25115762
Gusson-Zanetoni JP, Cardoso LP, de Sousa SO, de Melo Moreira Silva LL, de Oliveira Martinho J, Henrique T, Tajara EH, Oliani SM, Rodrigues-Lisoni FC. Molecular Aspects of Piperine in Signaling Pathways Associated with Inflammation in Head and Neck Cancer. International Journal of Molecular Sciences. 2024; 25(11):5762. https://doi.org/10.3390/ijms25115762
Chicago/Turabian StyleGusson-Zanetoni, Juliana Prado, Luana Pereira Cardoso, Stefanie Oliveira de Sousa, Laura Luciana de Melo Moreira Silva, Júlia de Oliveira Martinho, Tiago Henrique, Eloiza Helena Tajara, Sonia Maria Oliani, and Flávia Cristina Rodrigues-Lisoni. 2024. "Molecular Aspects of Piperine in Signaling Pathways Associated with Inflammation in Head and Neck Cancer" International Journal of Molecular Sciences 25, no. 11: 5762. https://doi.org/10.3390/ijms25115762
APA StyleGusson-Zanetoni, J. P., Cardoso, L. P., de Sousa, S. O., de Melo Moreira Silva, L. L., de Oliveira Martinho, J., Henrique, T., Tajara, E. H., Oliani, S. M., & Rodrigues-Lisoni, F. C. (2024). Molecular Aspects of Piperine in Signaling Pathways Associated with Inflammation in Head and Neck Cancer. International Journal of Molecular Sciences, 25(11), 5762. https://doi.org/10.3390/ijms25115762