Therapies for Cirrhotic Cardiomyopathy: Current Perspectives and Future Possibilities
Abstract
:1. Introduction
2. Clinical Relevance
3. Pathogenic Mechanisms
4. Management
4.1. Non-Selective Beta-Blockers
4.1.1. Issues of NSBBs in Portal Hypertension
4.1.2. NSBBs for CCM Treatment
4.2. Potential Therapies in CCM (Table 3)
First Author (Ref.) | Substance | Mechanism of Action | Species/Model | Effects |
---|---|---|---|---|
Bortoluzzi [44] | Albumin | Decreases inflammatory and oxidative stress | CCl4-cirrhotic rats | Enhances systolic function |
Fernandez [45] | Albumin | Reduces systemic inflammation | Patients with decompensated cirrhosis | Improves cardiac function |
Mousavi [46] | Taurine | Reduces oxidative stress, protein carbonylation, improves mitochondrial function, and increases ATP levels | Bile duct-ligated cirrhotic rats | protects liver and heart from injury |
Sheibani [47] | Spermidine | Decreases inflammatory and oxidative stress | Bile duct-ligated cirrhotic rats | Enhances systolic function, decreases QTc |
Yoon [48] | Galectin-3 inhibitor (N-acetyllactosamine) | Decreases inflammation by inhibiting TNFα | Bile duct-ligated cirrhotic rats | Increases blood pressure; enhanced systolic and diastolic function |
Niaz [49] | Statin (atorvastatin) | Decreases inflammation and oxidative stress | Bile duct-ligated cirrhotic rats | Increases chronotropic response to isoproterenol; decreases QTc interval. |
Node [50] | Statin (simvastatin) | Attenuates systemic inflammation | Patients with dilated cardiomyopathy | Improves LVEF, NYHA classification |
4.2.1. Statins
4.2.2. Taurine
4.2.3. Spermidine
4.2.4. Galectin-3 Inhibitor
4.2.5. Albumin
4.2.6. Direct Antioxidants
4.3. Liver Transplantation
5. Future Possibilities
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.S. Cardiac abnormalities in liver cirrhosis. West J. Med. 1989, 151, 530–535. [Google Scholar]
- Liu, H.; Nguyen, H.H.; Yoon, K.T.; Lee, S.S. Pathogenic Mechanisms Underlying Cirrhotic Cardiomyopathy. Front. Netw. Physiol. 2022, 2, 849253. [Google Scholar] [CrossRef]
- Liu, H.; Naser, J.A.; Lin, G.; Lee, S.S. Cardiomyopathy in cirrhosis: From pathophysiology to clinical care. JHEP Rep. 2024, 6, 100911. [Google Scholar] [CrossRef]
- Liu, H.; Lee, S.S. Diagnostic Criteria of Cirrhotic Cardiomyopathy: Out with the Old, in With the New? Hepatology 2021, 74, 3523–3525. [Google Scholar] [CrossRef]
- Yoon, K.T.; Liu, H.; Lee, S.S. Cirrhotic Cardiomyopathy. Curr. Gastroenterol. Rep. 2020, 22, 45. [Google Scholar] [CrossRef]
- Liu, H.; Jayakumar, S.; Traboulsi, M.; Lee, S.S. Cirrhotic cardiomyopathy: Implications for liver transplantation. Liver. Transpl 2017, 23, 826–835. [Google Scholar] [CrossRef]
- Premkumar, M.; Devurgowda, D.; Vyas, T.; Shasthry, S.M.; Khumuckham, J.S.; Goyal, R.; Thomas, S.S.; Kumar, G. Left Ventricular Diastolic Dysfunction is Associated with Renal Dysfunction, Poor Survival and Low Health Related Quality of Life in Cirrhosis. J. Clin. Exp. Hepatol. 2019, 9, 324–333. [Google Scholar] [CrossRef]
- Lee, S.S.; Marty, J.; Mantz, J.; Samain, E.; Braillon, A.; Lebrec, D. Desensitization of myocardial beta-adrenergic receptors in cirrhotic rats. Hepatology 1990, 12, 481–485. [Google Scholar] [CrossRef]
- Ma, Z.; Meddings, J.B.; Lee, S.S. Membrane physical properties determine cardiac beta-adrenergic receptor function in cirrhotic rats. Am. J. Physiol. 1994, 267, G87–G93. [Google Scholar] [CrossRef]
- Honar, H.; Liu, H.; Zhang, M.L.; Glenn, T.K.; Ter Keurs, H.; Lee, S.S. Impaired myosin isoform shift and calcium transients contribute to cellular pathogenesis of rat cirrhotic cardiomyopathy. Liver Int. 2020, 40, 2808–2819. [Google Scholar] [CrossRef]
- Chayanupatkul, M.; Liangpunsakul, S. Cirrhotic cardiomyopathy: Review of pathophysiology and treatment. Hepatol. Int. 2014, 8, 308–315. [Google Scholar] [CrossRef]
- Nobbe, A.M.; McCurdy, H.M. Management of the Adult Patient with Cirrhosis Complicated by Ascites. Crit. Care Nurs. Clin. N. Am. 2022, 34, 311–320. [Google Scholar] [CrossRef]
- Poynard, T.; Cales, P.; Pasta, L.; Ideo, G.; Pascal, J.P.; Pagliaro, L.; Lebrec, D. Beta-adrenergic-antagonist drugs in the prevention of gastrointestinal bleeding in patients with cirrhosis and esophageal varices. An analysis of data and prognostic factors in 589 patients from four randomized clinical trials. Franco-Italian Multicenter Study Group. N. Engl. J. Med. 1991, 324, 1532–1538. [Google Scholar]
- Serste, T.; Melot, C.; Francoz, C.; Durand, F.; Rautou, P.E.; Valla, D.; Moreau, R.; Lebrec, D. Deleterious effects of beta-blockers on survival in patients with cirrhosis and refractory ascites. Hepatology 2010, 52, 1017–1022. [Google Scholar] [CrossRef]
- Silvestre, O.M.; Farias, A.Q.; Ramos, D.S.; Furtado, M.S.; Rodrigues, A.C.; Ximenes, R.O.; de Campos Mazo, D.F.; Zitelli, P.M.Y.; Diniz, M.A.; Andrade, J.L.; et al. Beta-Blocker therapy for cirrhotic cardiomyopathy: A randomized-controlled trial. Eur. J. Gastroenterol. Hepatol. 2018, 30, 930–937. [Google Scholar] [CrossRef]
- Leithead, J.A.; Rajoriya, N.; Tehami, N.; Hodson, J.; Gunson, B.K.; Tripathi, D.; Ferguson, J.W. Non-selective beta-blockers are associated with improved survival in patients with ascites listed for liver transplantation. Gut 2015, 64, 1111–1119. [Google Scholar] [CrossRef]
- Mookerjee, R.P.; Pavesi, M.; Thomsen, K.L.; Mehta, G.; Macnaughtan, J.; Bendtsen, F.; Coenraad, M.; Sperl, J.; Gines, P.; Moreau, R.; et al. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure. J. Hepatol. 2016, 64, 574–582. [Google Scholar] [CrossRef]
- Premkumar, M.; Rangegowda, D.; Vyas, T.; Khumuckham, J.S.; Shasthry, S.M.; Thomas, S.S.; Goyal, R.; Kumar, G.; Sarin, S.K. Carvedilol Combined with Ivabradine Improves Left Ventricular Diastolic Dysfunction, Clinical Progression, and Survival in Cirrhosis. J. Clin. Gastroenterol. 2020, 54, 561–568. [Google Scholar] [CrossRef]
- Zambruni, A.; Trevisani, F.; Di Micoli, A.; Savelli, F.; Berzigotti, A.; Bracci, E.; Caraceni, P.; Domenicali, M.; Felline, P.; Zoli, M.; et al. Effect of chronic beta-blockade on QT interval in patients with liver cirrhosis. J. Hepatol. 2008, 48, 415–421. [Google Scholar] [CrossRef]
- Henriksen, J.H.; Bendtsen, F.; Hansen, E.F.; Moller, S. Acute non-selective beta-adrenergic blockade reduces prolonged frequency-adjusted Q-T interval (QTc) in patients with cirrhosis. J. Hepatol. 2004, 40, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Lebrec, D.; Nouel, O.; Corbic, M.; Benhamou, J.P. Propranolol—A medical treatment for portal hypertension? Lancet 1980, 2, 180–182. [Google Scholar] [CrossRef]
- Hillon, P.; Lebrec, D.; Munoz, C.; Jungers, M.; Goldfarb, G.; Benhamou, J.P. Comparison of the effects of a cardioselective and a nonselective beta-blocker on portal hypertension in patients with cirrhosis. Hepatology 1982, 2, 528–531. [Google Scholar] [CrossRef] [PubMed]
- de Franchis, R.; Baveno, V.I.F. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension. J. Hepatol. 2015, 63, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Krag, A.; Wiest, R.; Albillos, A.; Gluud, L.L. The window hypothesis: Haemodynamic and non-haemodynamic effects of beta-blockers improve survival of patients with cirrhosis during a window in the disease. Gut 2012, 61, 967–969. [Google Scholar] [PubMed]
- Gupta, N.; Bhat, S.N.; Reddysetti, S.; Afees Ahamed, M.A.; Jose, D.; Sarvepalli, A.S.; Joylin, S.; Godkhindi, V.; Rabaan, A. Clinical profile, diagnosis, treatment, and outcome of patients with tubercular versus nontubercular causes of spine involvement: A retrospective cohort study from India. Int. J. Mycobacteriol. 2022, 11, 75–82. [Google Scholar] [PubMed]
- Tellez, L.; Ibanez-Samaniego, L.; Perez Del Villar, C.; Yotti, R.; Martinez, J.; Carrion, L.; Rodriguez de Santiago, E.; Rivera, M.; Gonzalez-Mansilla, A.; Pastor, O.; et al. Non-selective beta-blockers impair global circulatory homeostasis and renal function in cirrhotic patients with refractory ascites. J. Hepatol. 2020, 73, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, J.H.; Moller, S.; Ring-Larsen, H.; Christensen, N.J. The sympathetic nervous system in liver disease. J. Hepatol. 1998, 29, 328–341. [Google Scholar] [CrossRef]
- Kostreva, D.R.; Castaner, A.; Kampine, J.P. Reflex effects of hepatic baroreceptors on renal and cardiac sympathetic nerve activity. Am. J. Physiol. 1980, 238, R390–R394. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hu, Z.; Xiong, Y.; Yao, Y. Device-Based Sympathetic Nerve Regulation for Cardiovascular Diseases. Front. Cardiovasc. Med. 2021, 8, 803984. [Google Scholar] [CrossRef]
- Cao, N.; Wang, J.J.; Wu, J.M.; Xu, W.L.; Wang, R.; Chen, X.D.; Feng, Y.N.; Cong, W.W.; Zhang, Y.Y.; Xiao, H.; et al. Glibenclamide alleviates beta adrenergic receptor activation-induced cardiac inflammation. Acta. Pharmacol. Sin. 2022, 43, 1243–1250. [Google Scholar] [CrossRef]
- Ruparelia, N.; Chai, J.T.; Fisher, E.A.; Choudhury, R.P. Inflammatory processes in cardiovascular disease: A route to targeted therapies. Nat. Rev. Cardiol. 2017, 14, 133–144. [Google Scholar] [CrossRef]
- Seo, Y.S.; Shah, V.H. The role of gut-liver axis in the pathogenesis of liver cirrhosis and portal hypertension. Clin. Mol. Hepatol. 2012, 18, 337–346. [Google Scholar] [CrossRef]
- Madsen, B.S.; Havelund, T.; Krag, A. Targeting the gut-liver axis in cirrhosis: Antibiotics and non-selective beta-blockers. Adv. Ther. 2013, 30, 659–670. [Google Scholar] [CrossRef]
- Reiberger, T.; Mandorfer, M. Beta adrenergic blockade and decompensated cirrhosis. J. Hepatol. 2017, 66, 849–859. [Google Scholar] [CrossRef]
- Hole, T.; Froland, G.; Gullestad, L.; Offstad, J.; Skjaerpe, T. Metoprolol CR/XL improves systolic and diastolic left ventricular function in patients with chronic heart failure. Echocardiography 2004, 21, 215–223. [Google Scholar] [CrossRef]
- Alvarado-Tapias, E.; Ardevol, A.; Garcia-Guix, M.; Montanes, R.; Pavel, O.; Cuyas, B.; Graupera, I.; Brujats, A.; Vilades, D.; Colomo, A.; et al. Short-term hemodynamic effects of beta-blockers influence survival of patients with decompensated cirrhosis. J. Hepatol. 2020, 73, 829–841. [Google Scholar] [CrossRef]
- Yoon, K.T.; Liu, H.; Lee, S.S. beta-blockers in advanced cirrhosis: More friend than enemy. Clin. Mol. Hepatol. 2021, 27, 425–436. [Google Scholar] [CrossRef]
- Lee, W.; Vandenberk, B.; Raj, S.R.; Lee, S.S. Prolonged QT Interval in Cirrhosis: Twisting Time? Gut. Liver 2022, 16, 849–860. [Google Scholar] [CrossRef]
- Taprantzi, D.; Zisimopoulos, D.; Thomopoulos, K.C.; Spiliopoulou, I.; Georgiou, C.D.; Tsiaoussis, G.; Triantos, C.; Gogos, C.A.; Labropoulou-Karatza, C.; Assimakopoulos, S.F. Propranolol reduces systemic oxidative stress and endotoxemia in cirrhotic patients with esophageal varices. Ann. Gastroenterol. 2018, 31, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Nguyen, H.H.; Hwang, S.Y.; Lee, S.S. Oxidative Mechanisms and Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension. Int. J. Mol. Sci. 2023, 24, 16805. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Liu, H.; Nam, S.W.; Kunos, G.; Lee, S.S. Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: Interaction between TNFalpha and endocannabinoids. J. Hepatol. 2010, 53, 298–306. [Google Scholar] [CrossRef]
- Nam, S.W.; Liu, H.; Wong, J.Z.; Feng, A.Y.; Chu, G.; Merchant, N.; Lee, S.S. Cardiomyocyte apoptosis contributes to pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated mice. Clin. Sci. 2014, 127, 519–526. [Google Scholar] [CrossRef]
- Liu, L.; Liu, H.; Nam, S.W.; Lee, S.S. Protective effects of erythropoietin on cirrhotic cardiomyopathy in rats. Dig. Liver Dis. 2012, 44, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Bortoluzzi, A.; Ceolotto, G.; Gola, E.; Sticca, A.; Bova, S.; Morando, F.; Piano, S.; Fasolato, S.; Rosi, S.; Gatta, A.; et al. Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: Molecular mechanisms. Hepatology 2013, 57, 266–276. [Google Scholar] [CrossRef]
- Fernandez, J.; Claria, J.; Amoros, A.; Aguilar, F.; Castro, M.; Casulleras, M.; Acevedo, J.; Duran-Güell, M.; Nuñez, L.; Costa, M.; et al. Effects of Albumin Treatment on Systemic and Portal Hemodynamics and Systemic Inflammation in Patients with Decompensated Cirrhosis. Gastroenterology 2019, 157, 149–162. [Google Scholar] [CrossRef]
- Mousavi, K.; Niknahad, H.; Ghalamfarsa, A.; Mohammadi, H.; Azarpira, N.; Ommati, M.M.; Heidari, R. Taurine mitigates cirrhosis-associated heart injury through mitochondrial-dependent and antioxidative mechanisms. Clin. Exp. Hepatol. 2020, 6, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Sheibani, M.; Nezamoleslami, S.; Mousavi, S.E.; Faghir-Ghanesefat, H.; Yousefi-Manesh, H.; Rezayat, S.M.; Dehpour, A. Protective Effects of Spermidine Against Cirrhotic Cardiomyopathy in Bile Duct-Ligated Rats. J. Cardiovasc. Pharmacol. 2020, 76, 286–295. [Google Scholar] [CrossRef]
- Yoon, K.T.; Liu, H.; Zhang, J.; Han, S.; Lee, S.S. Galectin-3 inhibits cardiac contractility via a tumor necrosis factor alpha-dependent mechanism in cirrhotic rats. Clin. Mol. Hepatol. 2022, 28, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Niaz, Q.; Tavangar, S.M.; Mehreen, S.; Ghazi-Khansari, M.; Jazaeri, F. Evaluation of statins as a new therapy to alleviate chronotropic dysfunction in cirrhotic rats. Life Sci. 2022, 308, 120966. [Google Scholar] [CrossRef]
- Node, K.; Fujita, M.; Kitakaze, M.; Hori, M.; Liao, J.K. Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 2003, 108, 839–843. [Google Scholar] [CrossRef]
- Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Rizzo, M.; von Haehling, S.; Rysz, J.; Banach, M. The influence of atorvastatin on parameters of inflammation left ventricular function, hospitalizations and mortality in patients with dilated cardiomyopathy—5-year follow-up. Lipids Health Dis. 2013, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.K. Statin therapy for cardiac hypertrophy and heart failure. J. Investig. Med. 2004, 52, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.Y.; Huang, J.E.; Tsau, M.T.; Chang, C.J.; Tung, Y.C.; Lin, G.; Cheng, M.L. Metabolomics Assessment of Volume Overload-Induced Heart Failure and Oxidative Stress in the Kidney. Metabolites 2023, 13, 1165. [Google Scholar] [CrossRef] [PubMed]
- Baliou, S.; Adamaki, M.; Ioannou, P.; Pappa, A.; Panayiotidis, M.I.; Spandidos, D.A.; Christodoulou, I.; Kyriakopoulos, A.M.; Zoumpourlis, V. Protective role of taurine against oxidative stress (Review). Mol. Med. Rep. 2021, 24, 605. [Google Scholar] [CrossRef]
- Schaffer, S.W.; Jong, C.J.; Ramila, K.C.; Azuma, J. Physiological roles of taurine in heart and muscle. J. Biomed. Sci. 2010, 17 (Suppl. S1), S2. [Google Scholar] [CrossRef]
- Goodman, C.A.; Horvath, D.; Stathis, C.; Mori, T.; Croft, K.; Murphy, R.M.; Hayes, A. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J. Appl. Physiol. 2009, 107, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Ozsarlak-Sozer, G.; Sevin, G.; Ozgur, H.H.; Yetik-Anacak, G.; Kerry, Z. Diverse effects of taurine on vascular response and inflammation in GSH depletion model in rabbits. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 1360–1372. [Google Scholar]
- Pion, P.D.; Kittleson, M.D.; Rogers, Q.R.; Morris, J.G. Myocardial failure in cats associated with low plasma taurine: A reversible cardiomyopathy. Science 1987, 237, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Oishi, S.; Takai, M.; Kimura, Y.; Uozumi, Y.; Fujio, Y.; Schaffer, S.W.; Azuma, J. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J. Biomed. Sci. 2010, 17 (Suppl. S1), S20. [Google Scholar] [CrossRef]
- Beyranvand, M.R.; Khalafi, M.K.; Roshan, V.D.; Choobineh, S.; Parsa, S.A.; Piranfar, M.A. Effect of taurine supplementation on exercise capacity of patients with heart failure. J. Cardiol. 2011, 57, 333–337. [Google Scholar] [CrossRef]
- Najibi, A.; Rezaei, H.; Manthari, R.K.; Niknahad, H.; Jamshidzadeh, A.; Farshad, O.; Yan, F.; Ma, Y.; Xu, D.; Tang, Z.; et al. Cellular and mitochondrial taurine depletion in bile duct ligated rats: A justification for taurine supplementation in cholestasis/cirrhosis. Clin. Exp. Hepatol. 2022, 8, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ai, Y.; Niu, X.; Shang, F.; Li, Z.; Liu, H.; Li, W.; Ma, W.; Chen, R.; Wei, T.; et al. Taurine protects against cardiac dysfunction induced by pressure overload through SIRT1-p53 activation. Chem. Biol. Interact. 2020, 317, 108972. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Wang, X.; Zhou, X.; Wang, Z.; Li, S.; Sun, Q.; Jiang, Y.; Ji, C.; Ling, W.; An, X.; et al. Spermidine alleviating oxidative stress and apoptosis by inducing autophagy of granulosa cells in Sichuan white geese. Poult. Sci. 2023, 102, 102879. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, Z.; Li, S.; Liu, Z.; Chen, P. Spermidine Affects Cardiac Function in Heart Failure Mice by Influencing the Gut Microbiota and Cardiac Galectin-3. Front. Cardiovasc. Med. 2021, 8, 765591. [Google Scholar] [CrossRef] [PubMed]
- Omar, E.M.; Omar, R.S.; Shoela, M.S.; El Sayed, N.S. A study of the cardioprotective effect of spermidine: A novel inducer of autophagy. Chin. J. Physiol. 2021, 64, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, O.; Peruzzi, M.; Bartimoccia, S.; D’Amico, A.; Marchitti, S.; Rubattu, S.; Chiariello, G.A.; D’ambrosio, L.; Schiavon, S.; Miraldi, F.; et al. Natural Activators of Autophagy Increase Maximal Walking Distance and Reduce Oxidative Stress in Patients with Peripheral Artery Disease: A Pilot Study. Antioxidants 2022, 11, 1836. [Google Scholar] [CrossRef]
- Dumic, J.; Dabelic, S.; Flogel, M. Galectin-3: An open-ended story. Biochim. Biophys. Acta 2006, 1760, 616–635. [Google Scholar] [CrossRef]
- Krzeslak, A.; Lipinska, A. Galectin-3 as a multifunctional protein. Cell. Mol. Biol. Lett. 2004, 9, 305–328. [Google Scholar] [PubMed]
- Wanninger, J.; Weigert, J.; Wiest, R.; Bauer, S.; Karrasch, T.; Farkas, S.; Scherer, M.N.; Walter, R.; Weiss, T.S.; Hellerbrand, C.; et al. Systemic and hepatic vein galectin-3 are increased in patients with alcoholic liver cirrhosis and negatively correlate with liver function. Cytokine 2011, 55, 435–440. [Google Scholar] [CrossRef]
- Abu-Elsaad, N.M.; Elkashef, W.F. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells. Can. J. Physiol. Pharmacol. 2016, 94, 554–562. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int. J. Mol. Med. 2018, 41, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Al-Salam, S.; Kandhan, K.; Sudhadevi, M.; Yasin, J.; Tariq, S. Early Doxorubicin Myocardial Injury: Inflammatory, Oxidative Stress, and Apoptotic Role of Galectin-3. Int. J. Mol. Sci. 2022, 23, 12479. [Google Scholar] [CrossRef]
- Trebicka, J.; Garcia-Tsao, G. Controversies regarding albumin therapy in cirrhosis. Hepatology 2023, 7, 10–97. [Google Scholar] [CrossRef] [PubMed]
- Mapanga, R.F.; Joseph, D.E.; Saieva, M.; Boyer, F.; Rondeau, P.; Bourdon, E.; Essop, M.F. Glycation abolishes the cardioprotective effects of albumin during ex vivo ischemia-reperfusion. Physiol. Rep. 2017, 5, e13107. [Google Scholar] [CrossRef] [PubMed]
- Saengsin, K.; Sittiwangkul, R.; Chattipakorn, S.C.; Chattipakorn, N. Hydrogen therapy as a potential therapeutic intervention in heart disease: From the past evidence to future application. Cell Mol. Life Sci. 2023, 80, 174. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.; Mason, M.; Laws, D. A case of orthodeoxia platypnoea in a patient with adult polycystic kidney and liver disease with a patent foramen ovale. Acute Med. 2007, 6, 126–127. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014, 144, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Chen, H.; Wu, Q.; Xie, K. Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy. Int. J. Mol. Med. 2019, 44, 1048–1062. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Wang, Y.; Zhao, X.M.; Zhao, B.; Han, J.J.; Qin, S.C.; Sun, X.J. Cardioprotective Effect of Hydrogen-rich Saline on Isoproterenol-induced Myocardial Infarction in Rats. Heart Lung Circ. 2015, 24, 602–610. [Google Scholar] [CrossRef]
- Lee, P.C.; Yang, Y.Y.; Huang, C.S.; Hsieh, S.L.; Lee, K.C.; Hsieh, Y.C.; Lee, T.Y.; Lin, H.C. Concomitant inhibition of oxidative stress and angiogenesis by chronic hydrogen-rich saline and N-acetylcysteine treatments improves systemic, splanchnic and hepatic hemodynamics of cirrhotic rats. Hepatol. Res. 2015, 45, 578–588. [Google Scholar] [CrossRef]
- Qian, L.; Liu, M.; Shen, J.; Cen, J.; Zhao, D. Hydrogen in Patients with Corticosteroid-Refractory/Dependent Chronic Graft-Versus-Host-Disease: A Single-Arm, Multicenter, Open-Label, Phase 2 Trial. Front. Immunol. 2020, 11, 598359. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Arman, H.E.; Shamseddeen, H.; Elsner, N.; Elsemesmani, H.; Johnson, S.; Zenisek, J.; Khemka, A.; Jarori, U.; Patidar, K.R.; et al. Cirrhotic cardiomyopathy: Predictors of major adverse cardiac events and assessment of reversibility after liver transplant. J. Cardiol. 2023, 82, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.P.; Lee, S.S. Cirrhotic cardiomyopathy and liver transplantation. Liver Transpl. 2000, 6, S44–S52. [Google Scholar] [CrossRef] [PubMed]
- Pandey, C.K.; Singh, A.; Kajal, K.; Dhankhar, M.; Tandon, M.; Pandey, V.K.; Karna, S.T. Intraoperative blood loss in orthotopic liver transplantation: The predictive factors. World J. Gastrointest. Surg. 2015, 7, 86–93. [Google Scholar] [CrossRef]
- Rahman, S.; Mallett, S.V. Cirrhotic cardiomyopathy: Implications for the perioperative management of liver transplant patients. World J. Hepatol. 2015, 7, 507–520. [Google Scholar] [CrossRef]
Criteria | Systolic Dysfunction | Diastolic Dysfunction |
---|---|---|
WCG criteria (2005) | LVEF < 55% Or Blunted increase in contractility on stress testing | E/A ratio < 1.0 Or DT > 200 ms Or IVRT > 80 ms |
CCC criteria (2019) | LVEF ≤ 50% Or GLS < 18% | ≥3 of the followings E/e’ ratio ≥ 15 e’ septal < 7 cm/s TR velocity > 2.8 m/s LAVI > 34 mL/m2 |
First Author (Ref.) | NSBB | Subjects | Effects |
---|---|---|---|
Poynard [13] | Propranolol, nadolol | Patients | Decreases bleeding, improves survival |
Sersté [14] | Propranolol | Patients with refractory ascites | Decreases 1-year survival rate |
Silvestre [15] | metoprolol | Patients with CCM | No change in stroke volume or diastolic function |
Leithead [16] | Propranolol, carvedilol | Patients with refractory ascites | Improves survival |
Mookerjee [17] | Propranolol | Patients with ACLF | Improves inflammation and survival |
Premkumar [18] | carvedilol + ivabradine | Patients with CCM | Improves LVDD and survival |
Zambruni [19] | Nadolol | Patients with cirrhosis | Decreases QTc in patients with prolonged QTc over 1–3 months |
Henrikson [20] | Propranolol | Patients with cirrhosis | Decreases QTc over 90 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Ryu, D.; Hwang, S.; Lee, S.S. Therapies for Cirrhotic Cardiomyopathy: Current Perspectives and Future Possibilities. Int. J. Mol. Sci. 2024, 25, 5849. https://doi.org/10.3390/ijms25115849
Liu H, Ryu D, Hwang S, Lee SS. Therapies for Cirrhotic Cardiomyopathy: Current Perspectives and Future Possibilities. International Journal of Molecular Sciences. 2024; 25(11):5849. https://doi.org/10.3390/ijms25115849
Chicago/Turabian StyleLiu, Hongqun, Daegon Ryu, Sangyoun Hwang, and Samuel S. Lee. 2024. "Therapies for Cirrhotic Cardiomyopathy: Current Perspectives and Future Possibilities" International Journal of Molecular Sciences 25, no. 11: 5849. https://doi.org/10.3390/ijms25115849
APA StyleLiu, H., Ryu, D., Hwang, S., & Lee, S. S. (2024). Therapies for Cirrhotic Cardiomyopathy: Current Perspectives and Future Possibilities. International Journal of Molecular Sciences, 25(11), 5849. https://doi.org/10.3390/ijms25115849