Substance P’s Impact on Chronic Pain and Psychiatric Conditions—A Narrative Review
Abstract
:1. Introduction
2. Substance P’s History and Molecular Pathway
2.1. History
2.2. Synthesis and Release
2.3. Tachykinin Receptors
2.4. Metabolic Cascade of Substance P
2.5. Anatomic Localization of Metabolic Effects
3. Animal Models
4. Understanding Substance P: Molecular Mechanisms and Physiological Pathways
4.1. Pain Transmission and Substance P
4.2. Substance P and Glutamate Enhancement
4.3. Descending Pathways and Substance P
5. Acute, Chronic, and Neuropathic Pain
6. Major Depressive Disorder
Trial | Subjects | Methods | Measure of Outcome | Results |
---|---|---|---|---|
Orvepitant in Adult Post Traumatic Stress Disorder [68]. | Male and female outpatients between the ages of 18 and 64 with a diagnosis of non-combative PTSD | Double-blind, placebo-controlled, fixed-dose administration; Placebo vs. Orvepitant 60 mg/day | Change in baseline in the Clinician-Administered PTSD Symptom Severity Scale from day 1 (predose) to week 12 | A decrease in the mean difference of change on the PTSD Symptom Scale was seen in patients who were given Orvepitant in comparison to the placebo. |
Substance P Antagonist in the Treatment of Posttraumatic Stress Disorder [69]. | Male and female patients between the ages of 18 and 65 with a diagnosis of PTSD | Double-blind, placebo-controlled; placebo vs. vofopitant | Change in baseline in the Clinician-Administered PTSD Symptom Severity Scale from day 1 (predose) to week 8 | A decrease in the mean difference of change on the PTSD Symptom Scale was seen in patients who were given vofopitant in comparison to the placebo. |
Effect of LY686017 [70]. | Male and female patients between 21 and 65 who meet the criteria for alcohol dependence and who have an elevated score on the general test of anxiety | Double-blind, placebo-controlled; placebo vs. 50 mg tradipitant | Change in baseline in the Alcohol Urges Questionnaire at day 1 to week 8 and biweekly assessment using the Comprehensive Psychiatric Rating Scale | A decrease in the mean difference of change in the Alcohol Urges Questionnaire in patients given tradipitant; a decrease in the mean difference of change in the Comprehensive Psychiatric Rating Scale in patients given tradipitant |
A Randomized, Double-Blind, Parallel-Group, Placebo-Controlled, Fixed Dose Study Evaluating the Efficacy and Safety of Orvepitant in Subjects with MDD [71]. | Male and female outpatients between 18 and 64 who have a primary diagnosis of MDD | Randomized, double-blind, parallel-group, placebo-controlled, fixed-dose; placebo vs. orvepitant | Change in baseline in the Hamilton Depression Rating Scale from day 1 to week 6 | A decrease in the mean difference of change on the Depression Rating Scale in those patients given orvepitant |
7. Anxiety Disorders
8. Post-Traumatic Stress Disorder
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zieglgänsberger, W. Substance P and pain chronicity. Cell Tissue Res. 2019, 375, 227–241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoyer, D.; Bartfai, T. Neuropeptides and neuropeptide receptors: Drug targets, and peptide and non-peptide ligands: A tribute to Prof. Dieter Seebach. Chem. Biodivers. 2012, 9, 2367–2387. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.E.; Chirgwin, J.M.; Carter, M.S.; Xu, Z.S.; Hershey, A.D. Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc. Natl. Acad. Sci. USA 1987, 84, 881–885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saria, A. The tachykinin NK1 receptor in the brain: Pharmacology and putative functions. Eur. J. Pharmacol. 1999, 375, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Ganjiwale, A.; Cowsik, S.M. Molecular recognition of tachykinin receptor selective agonists: Insights from structural studies. Mini Rev. Med. Chem. 2013, 13, 2036–2046. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, M.; Yoshioka, K. Neurotransmitter functions of mammalian tachykinins. Physiol Rev. 1993, 73, 229–308. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Wei, L.C.; Liu, H.L.; Rao, Z.R. Noradrenergic neurons expressing substance P receptor (NK1) in the locus coeruleus complex: A double immunofluorescence study in the rat. Brain Res. 2000, 873, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, K.; Siddiq, A.; Baig, S.G.; Zehra, S. Substance P: A neuropeptide involved in the psychopathology of anxiety disorders. Neuropeptides 2020, 79, 101993. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.A.; Faust, B.; Gondin, A.B.; Damgen, M.A.; Suomivuori, C.-M.; Veldhuis, N.A.; Cheng, Y.; Dror, R.O.; Thal, D.M.; Manglik, A. Selective G protein signaling driven by substance P–neurokinin receptor dynamics. Nat. Chem. Biol. 2022, 18, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Okine, B.N.; Gaspar, J.C.; Finn, D.P. PPARs and pain. Br. J. Pharmacol. 2019, 176, 1421–1442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barde, S.; Aguila, J.; Zhong, W.; Solarz, A.; Mei, I.; Prud’Homme, J.; Palkovits, M.; Turecki, G.; Mulder, J.; Uhlén, M.; et al. Substance P, NPY, CCK and their receptors in five brain regions in major depressive disorder with transcriptomic analysis of locus coeruleus neurons. Eur. Neuropsychopharmacol. 2024, 78, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Bradesi, S.; Svensson, C.I.; Steinauer, J.; Pothoulakis, C.; Yaksh, T.L.; Mayer, E.A. Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology 2009, 136, 1339–1348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguiar, M.S.; Brandão, M.L. Effects of microinjections of the neuropeptide substance P in the dorsal periaqueductal gray on the behaviour of rats in the plus-maze test. Physiol. Behav. 1996, 60, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Bilkei-Gorzo, A.; Racz, I.; Michel, K.; Zimmer, A. Diminished anxiety- and depression-related behaviors in mice with selective deletion of the Tac1 gene. J. Neurosci. 2002, 22, 10046–10052. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ebner, K.; Rupniak, N.M.; Saria, A.; Singewald, N. Substance P in the medial amygdala: Emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc. Natl. Acad. Sci. USA 2004, 101, 4280–4285. [Google Scholar] [CrossRef] [PubMed]
- Drew, G.M.; Mitchell, V.A.; Vaughan, C.W. Postsynaptic actions of substance P on rat periaqueductal grey neurons in vitro. Neuropharmacology 2005, 49, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Ding, W.Q.; Sun, Y.G. Spinal ascending pathways for somatosensory information processing. Trends Neurosci. 2022, 45, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.I.; Neumeister, M.W. Pain: Pathways and Physiology. Clin. Plast Surg. 2020, 47, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.J. Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Exp. Physiol. 2002, 87, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Du, L.; Kim, J.J.; Zhu, F.; He, H.; Dai, N. NMDA and AMPA receptor physiology and role in visceral hypersensitivity: A review. Eur. J. Gastroenterol. Hepatol. 2022, 34, 471–477. [Google Scholar] [CrossRef] [PubMed]
- DeVane, C.L. Substance P: A new era, a new role. Pharmacotherapy 2001, 21, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Randić, M.; Hećimović, H.; Ryu, P.D. Substance P modulates glutamate-induced currents in acutely isolated rat spinal dorsal horn neurones. Neurosci Lett. 1990, 117, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Goudet, C. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Front. Mol. Neurosci. 2019, 11, 464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bleakman, D.; Alt, A.; Nisenbaum, E.S. Glutamate receptors and pain. Semin. Cell Dev. Biol. 2006, 17, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.E.; Patapoutian, A. Nociceptors: The sensors of the pain pathway. J. Clin. Investig. 2010, 120, 3760–3772. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Willis, W.D.; Westlund, K.N. Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 1997, 14, 2–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Millan, M.J. Descending control of pain. Prog. Neurobiol. 2002, 66, 355–474. [Google Scholar] [CrossRef] [PubMed]
- Drew, G.M.; Lau, B.K.; Vaughan, C.W. Substance P drives endocannabinoid-mediated disinhibition in a midbrain descending analgesic pathway. J. Neurosci. 2009, 29, 7220–7229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mantyh, P.W.; Hunt, S.P. Setting the tone: Superficial dorsal horn projection neurons regulate pain sensitivity. Trends Neurosci. 2004, 27, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Y.; Zhu, B.F.; Wang, L.K.; Song, Y.; Zhao, J.G.; Guo, Y.; Zhao, L.; Chen, S. Electroacupuncture alleviates inflammatory pain via adenosine suppression and its mediated substance P expression. Arq. Neuropsiquiatr. 2020, 78, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Schadrack, J.; Zieglgänsberger, W. Activity-dependent changes in the pain matrix. Scand. J. Rheumatol. Suppl. 2000, 113, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Díaz, L.; Montoro, C.I.; Fischer-Jbali, L.R.; Galvez-Sánchez, C.M. Chronic Pain and Emotional Stroop: A Systematic Review. J. Clin. Med. 2022, 11, 3259. [Google Scholar] [CrossRef] [PubMed]
- Dagnino, A.P.A.; Campos, M.M. Chronic Pain in the Elderly: Mechanisms and Perspectives. Front. Hum. Neurosci. 2022, 16, 736688. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Tinnirello, A.; Mazzoleni, S.; Santi, C. Chronic Pain in the Elderly: Mechanisms and Distinctive Features. Biomolecules 2021, 11, 1256. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Trewern, L.; Jackman, J.; McCartney, D.; Soni, A. Chronic pain: Definitions and diagnosis. BMJ 2023, 381, e076036. [Google Scholar] [CrossRef] [PubMed]
- Ray-Griffith, S.L.; Morrison, B.; Stowe, Z.N. Chronic Pain Prevalence and Exposures during Pregnancy. Pain Res. Manag. 2019, 2019, 6985164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kemp, H.I.; Corner, E.; Colvin, L.A. Chronic pain after COVID-19: Implications for rehabilitation. Br. J. Anaesth. 2020, 125, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Hartung, D.; Turner, J.; Blazina, I.; Chan, B.; Levander, X.; McDonagh, M.; Selph, S.; Fu, R.; Pappas, M. Opioid Treatments for Chronic Pain; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2020. [PubMed]
- Humo, M.; Lu, H.; Yalcin, I. The molecular neurobiology of chronic pain-induced depression. Cell Tissue Res. 2019, 377, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.J.; Gandhi, W.; Salomons, T. Reward processing as a common diathesis for chronic pain and depression. Neurosci. Biobehav. Rev. 2021, 127, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Arango-Dávila, C.A.; Rincón-Hoyos, H.G. Depressive Disorder, Anxiety Disorder and Chronic Pain: Multiple Manifestations of a Common Clinical and Pathophysiological Core. Rev. Colomb. Psiquiatr. (Engl. Ed). 2018, 47, 46–55, (In English and Spanish). [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.C.; Gajsar, H.; Schlüter, M.C.; Bremer, Y.I. Cognitive Biases Toward Pain: Implications for a Neurocognitive Processing Perspective in Chronic Pain and its Interaction With Depression. Clin. J. Pain. 2019, 35, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Mullins, P.M.; Yong, R.J.; Bhattacharyya, N. Associations between chronic pain, anxiety, and depression among adults in the United States. Pain Pract. 2023, 23, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Massart, R.; Mongeau, R.; Lanfumey, L. Beyond the monoaminergic hypothesis: Neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philos. Trans. R. Soc. Lond B Biol Sci. 2012, 367, 2485–2494. [Google Scholar] [CrossRef] [PubMed]
- Geracioti, T.D., Jr.; Carpenter, L.; Owens, M.; Baker, D.; Ekhator, N.; Horn, P.; Strawn, J.; Sanacora, G.; Kinkead, B.; Price, L.; et al. Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am. J. Psychiatry 2006, 163, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Bondy, B.; Baghai, T.C.; Minov, C.; Schüle, C.; Schwarz, M.J.; Zwanzger, P.; Rupprecht, R.; Möller, H.-J. Substance P serum levels are increased in major depression: Preliminary results. Biol. Psychiatry 2003, 53, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, D.C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R.D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J. Neural. Transm. 2020, 127, 589–624. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Szok, D.; Tajti, J.; Nyári, A.; Vécsei, L. Therapeutic Approaches for Peripheral and Central Neuropathic Pain. Behav. Neurol. 2019, 2019, 8685954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bouhassira, D. Neuropathic pain: Definition, assessment and epidemiology. Rev. Neurol. 2019, 175, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Masuda, T.; Kohno, K. Microglial diversity in neuropathic pain. Trends Neurosci. 2023, 46, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Gurba, K.N.; Chaudhry, R.; Haroutounian, S. Central Neuropathic Pain Syndromes: Current and Emerging Pharmacological Strategies. CNS Drugs 2022, 36, 483–516. [Google Scholar] [CrossRef] [PubMed]
- Rosner, J.; de Andrade, D.C.; Davis, K.D.; Gustin, S.M.; Kramer, J.L.K.; Seal, R.P.; Finnerup, N.B. Central neuropathic pain. Nat. Rev. Dis. Primers 2023, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, A.; Zis, P. Depression, anxiety and acute pain: Links and management challenges. Postgrad. Med. 2019, 131, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Rojas, L.; Porras-Segovia, A.; Dunne, H.; Andrade-González, N.; Cervilla, J.A. Prevalence and correlates of major depressive disorder: A systematic review. Braz. J. Psychiatry 2020, 42, 657–672. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shetty, P.A.; Ayari, L.; Madry, J.; Betts, C.; Robinson, D.M.; Kirmani, B.F. The Relationship Between COVID-19 and the Development of Depression: Implications on Mental Health. Neurosci. Insights 2023, 18, 26331055231191513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Lim, D.Y.; Chee, K.T. Reimagining the spectrum of affective disorders. Bipolar. Disord. 2020, 22, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Kupfer, D.J.; Frank, E.; Phillips, M.L. Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet 2012, 379, 1045–1055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vadivelu, N.; Kai, A.M.; Kodumudi, G.; Babayan, K.; Fontes, M.; Burg, M.M. Pain and Psychology—A Reciprocal Relationship. Ochsner J. 2017, 17, 173–180. [Google Scholar] [PubMed] [PubMed Central]
- Cheeseman, H.J.; Pinnock, R.D.; Henderson, G. Substance P excitation of rat locus coeruleus neurones. Eur. J. Pharmacol. 1983, 94, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Schäble, S.; Topic, B.; Buddenberg, T.; Petri, D.; Huston, J.P.; de Souza Silva, M.A. Neurokinin3-R agonism in aged rats has anxiolytic-, antidepressant-, and promnestic-like effects and stimulates ACh release in frontal cortex, amygdala and hippocampus. Eur. Neuropsychopharmacol. 2011, 21, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, M.J.; Ackenheil, M. The role of substance P in depression: Therapeutic implications. Dialogues Clin. Neurosci. 2002, 4, 21–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Won, E.; Kang, J.; Choi, S.; Kim, A.; Han, K.M.; Yoon, H.K.; Cho, S.H.; Tae, W.S.; Lee, M.S.; Joe, S.H.; et al. The association between substance P and white matter integrity in medication-naive patients with major depressive disorder. Sci. Rep. 2017, 7, 9707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blier, P.; Gobbi, G.; Haddjeri, N.; Santarelli, L.; Mathew, G.; Hen, R. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: Relevance to the antidepressant/anxiolytic response. J. Psychiatry Neurosci. 2004, 29, 208–218. [Google Scholar] [PubMed] [PubMed Central]
- Mihailescu-Marin, M.M.; Mosoiu, D.V.; Burtea, V.; Sechel, G.; Rogozea, L.M.; Ciurescu, D. Common Pathways for Pain and Depression-Implications for Practice. Am. J. Ther. 2020, 27, e468–e476. [Google Scholar] [CrossRef] [PubMed]
- Dableh, L.J.; Yashpal, K.; Rochford, J.; Henry, J.L. Antidepressant-like effects of neurokinin receptor antagonists in the forced swim test in the rat. Eur. J. Pharmacol. 2005, 507, 99–105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orvepitant (GW823296) in Adult Post Traumatic Stress Disorder. 2010. Available online: https://clinicaltrials.gov/study/NCT01000493?intr=NK1+Antagonist&rank=8 (accessed on 10 May 2024).
- Substance P Antagonist in the Treatment of Posttraumatic Stress Disorder. 2009. Available online: https://clinicaltrials.gov/study/NCT00383786?intr=NK1+Antagonist&page=1&rank=10 (accessed on 10 May 2024).
- Effect of LY686017 on Alcohol Craving. 2008. Available online: https://clinicaltrials.gov/study/NCT00310427?intr=NK1+Antagonist&page=1&rank=4 (accessed on 10 May 2024).
- A Randomized, Double-Blind, Parallel-Group, Placebo-Controlled, Fixed Dose Study Evaluating the Efficacy and Safety of Orvepitant in Subjects with Major Depressive Disorder. 2010. Available online: https://clinicaltrials.gov/study/NCT00880399?intr=NK1+Antagonist&page=2&rank=14 (accessed on 10 May 2024).
- Ibrahim, M.A.; Pellegrini, M.V.; Preuss, C.V. Antiemetic Neurokinin-1 Receptor Blockers. [Updated 11 January 2024]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK470394/ (accessed on 20 April 2024).
- Remes, O.; Wainwright, N.; Surtees, P.; Lafortune, L.; Khaw, K.T.; Brayne, C. Generalised anxiety disorder and hospital admissions: Findings from a large, population cohort study. BMJ Open 2018, 8, e018539. [Google Scholar] [CrossRef]
- Gómez Penedo, J.M.; Rubel, J.A.; Blättler, L.; Schmidt, S.J.; Stewart, J.; Egloff, N.; Grosse Holtforth, M. The Complex Interplay of Pain, Depression, and Anxiety Symptoms in Patients With Chronic Pain: A Network Approach. Clin. J. Pain 2020, 36, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Szuhany, K.L.; Simon, N.M. Anxiety Disorders: A Review. JAMA 2022, 328, 2431–2445. [Google Scholar] [CrossRef] [PubMed]
- Besteher, B.; Gaser, C.; Nenadić, I. Brain Structure and Subclinical Symptoms: A Dimensional Perspective of Psychopathology in the Depression and Anxiety Spectrum. Neuropsychobiology 2020, 79, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Ebner, K.; Singewald, N. The role of substance P in stress and anxiety responses. Amino Acids 2006, 31, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Forkus, S.R.; Raudales, A.M.; Rafiuddin, H.S.; Weiss, N.H.; Messman, B.A.; Contractor, A.A. The Posttraumatic Stress Disorder (PTSD) Checklist for DSM–5: A systematic review of existing psychometric evidence. Clin. Psychol. Sci. Pract. 2023, 30, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Hori, H.; Kim, Y. Inflammation and post-traumatic stress disorder. Psychiatry Clin. Neurosci. 2019, 73, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.K.; Wang, L.; FTsoi, K.K.; Rutovic, S.; Kim, J.S. Post-Traumatic Stress Disorder after Stroke: A Systematic Review. Neurol. India 2022, 70, 1887–1895. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.U.; Ebrahimi, O.V.; Hoffart, A. PTSD symptoms among health workers and public service providers during the COVID-19 outbreak. PLoS ONE 2020, 15, e0241032. [Google Scholar] [CrossRef] [PubMed]
- Seiler, N.; Davoodi, K.; Keem, M.; Das, S. Assessment tools for complex post traumatic stress disorder: A systematic review. Int. J. Psychiatry Clin. Pract. 2023, 27, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Spoont, M.; Arbisi, P.; Fu, S.; Greer, N.; Kehle-Forbes, S.; Meis, L.; Rutks, I.; Wilt, T.J. Screening for Post-Traumatic Stress Disorder (PTSD) in Primary Care: A Systematic Review; Department of Veterans Affairs (US): Washington, DC, USA, 2013. [PubMed]
- Mughal, A.Y.; Devadas, J.; Ardman, E.; Levis, B.; Go, V.F.; Gaynes, B.N. A systematic review of validated screening tools for anxiety disorders and PTSD in low to middle income countries. BMC Psychiatry 2020, 20, 338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roviš, D.; Vasiljev, V.; Jenko-Pražnikar, Z.; Petelin, A.; Drevenšek, G.; Peruč, D.; Černelič-Bizjak, M. Mental health and drug use severity: The role of substance P, neuropeptide Y, self-reported childhood history of trauma, parental bonding and current resiliency. J. Ment. Health 2021, 30, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Uppsala University. Posttraumatic stress disorder reveals an imbalance between signaling systems in the brain. ScienceDaily. 1 December 2015. Available online: www.sciencedaily.com/releases/2015/12/151201093515.htm (accessed on 18 April 2024).
- Vink, R.; Nimmo, A. Identification of an Intravenous Injectable NK1 Receptor Antagonist for Use in Traumatic Brain Injury. Int. J. Mol. Sci. 2024, 25, 3535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Venkatanarayanan, N.; Lim, D.Y.; Yeo, W.S. Systematic review with meta-analysis: The association between post-traumatic stress disorder and irritable bowel syndrome. J. Gastroenterol. Hepatol. 2019, 34, 68–73. [Google Scholar] [CrossRef] [PubMed]
Study | Animal Models | Experimental Conditions | Measurement of Outcome | Conclusions |
---|---|---|---|---|
Bilkei-Gorzo et al. (2002) [14]. | Tac1 mutant mice and wild-type mice | Exposure to stress with a forced-swimming test, tail-suspension test, bulbectomy, social interaction test, open-field test | Video recordings of animal behavior with an observer measuring immobility, hyperactivity, distance traveled in an open field, and social interaction with other animals | Mice that did not have the tac1 gene that encodes for Substance P displayed less fear and anxiety and were also more active in depression-related paradigms |
Ebner et al. (2004) [15]. | Adult male Sprague-Dawley rats | Microinjections of Substance P and NK antagonists as well as immobilization with stress exposure | Measurement of Substance P concentrations by in vivo micro push–pull superfusion and microdialysis; behavior was measured by activity in different arms of a maze | Significantly increased Substance P release in rats exposed to stress in comparison to rats that were not, as well as NK1 antagonist application leading to decreased stress-induced anxiolytic effects |
Bradesi et al. (2009) [12]. | Male Wister rats | Application of water and sham stress | Western blotting with antibodies for NK1 receptors | Upregulation of NK1 receptors and hyperalgesia in mice exposed to stress |
Drew et al. (2005) [16]. | Adult male and female Sprague-Dawley rats | Application of drug solutions containing Substance P on neurons within the PAG and RVM | Measurement of the IPSCs and EPSCs of neurons | Increased Substance P levels in the PAG led to modulation of descending pain pathways and analgesia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humes, C.; Sic, A.; Knezevic, N.N. Substance P’s Impact on Chronic Pain and Psychiatric Conditions—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 5905. https://doi.org/10.3390/ijms25115905
Humes C, Sic A, Knezevic NN. Substance P’s Impact on Chronic Pain and Psychiatric Conditions—A Narrative Review. International Journal of Molecular Sciences. 2024; 25(11):5905. https://doi.org/10.3390/ijms25115905
Chicago/Turabian StyleHumes, Charles, Aleksandar Sic, and Nebojsa Nick Knezevic. 2024. "Substance P’s Impact on Chronic Pain and Psychiatric Conditions—A Narrative Review" International Journal of Molecular Sciences 25, no. 11: 5905. https://doi.org/10.3390/ijms25115905
APA StyleHumes, C., Sic, A., & Knezevic, N. N. (2024). Substance P’s Impact on Chronic Pain and Psychiatric Conditions—A Narrative Review. International Journal of Molecular Sciences, 25(11), 5905. https://doi.org/10.3390/ijms25115905