GDF15, an Emerging Player in Renal Physiology and Pathophysiology
Abstract
:1. Background
1.1. Signaling Pathways Related to GDF15
1.2. Regulation of GDF15 Expression and Plasma Concentration
1.3. GDF15 and Kidney
1.4. GDF15 in Diabetic Nephropathy
1.5. GDF15 in Chronic Kidney Disease (CKD) and Acute Kidney Disease (AKI)
1.6. GDF15 in Renal Cancer
2. GDF15 and Electrolyte Balance
2.1. Involvement of GDF15 in Response to Acidosis
2.2. Involvement of GDF15 in Response to K+ Restriction
3. Conclusions/Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bootcov, M.R.; Bauskin, A.R.; Valenzuela, S.M.; Moore, A.G.; Bansal, M.; He, X.Y.; Zhang, H.P.; Donnellan, M.; Mahler, S.; Pryor, K.; et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl. Acad. Sci. USA 1997, 94, 11514–11519. [Google Scholar] [CrossRef]
- Lawton, L.N.; Bonaldo, M.F.; Jelenc, P.C.; Qiu, L.; Baumes, S.A.; Marcelino, R.A.; de Jesus, G.M.; Wellington, S.; Knowles, J.A.; Warburton, D.; et al. Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta. Gene 1997, 203, 17–26. [Google Scholar] [CrossRef]
- Paralkar, V.M.; Vail, A.L.; Grasser, W.A.; Brown, T.A.; Xu, H.; Vukicevic, S.; Ke, H.Z.; Qi, H.; Owen, T.A.; Thompson, D.D. Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family. J. Biol. Chem. 1998, 273, 13760–13767. [Google Scholar] [CrossRef]
- Baek, S.J.; Kim, K.S.; Nixon, J.B.; Wilson, L.C.; Eling, T.E. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol. 2001, 59, 901–908. [Google Scholar] [CrossRef]
- Bottner, M.; Laaff, M.; Schechinger, B.; Rappold, G.; Unsicker, K.; Suter-Crazzolara, C. Characterization of the rat, mouse, and human genes of growth/differentiation factor-15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1). Gene 1999, 237, 105–111. [Google Scholar] [CrossRef]
- Bauskin, A.R.; Jiang, L.; Luo, X.W.; Wu, L.; Brown, D.A.; Breit, S.N. The TGF-beta superfamily cytokine MIC-1/GDF15: Secretory mechanisms facilitate creation of latent stromal stores. J. Interferon Cytokine Res. 2010, 30, 389–397. [Google Scholar] [CrossRef]
- Hromas, R.; Hufford, M.; Sutton, J.; Xu, D.; Li, Y.; Lu, L. PLAB, a novel placental bone morphogenetic protein. Biochim. Biophys. Acta 1997, 1354, 40–44. [Google Scholar] [CrossRef]
- Emmerson, P.J.; Duffin, K.L.; Chintharlapalli, S.; Wu, X. GDF15 and Growth Control. Front. Physiol. 2018, 9, 1712. [Google Scholar] [CrossRef]
- Marjono, A.B.; Brown, D.A.; Horton, K.E.; Wallace, E.M.; Breit, S.N.; Manuelpillai, U. Macrophage inhibitory cytokine-1 in gestational tissues and maternal serum in normal and pre-eclamptic pregnancy. Placenta 2003, 24, 100–106. [Google Scholar] [CrossRef]
- Fejzo, M.; Rocha, N.; Cimino, I.; Lockhart, S.M.; Petry, C.J.; Kay, R.G.; Burling, K.; Barker, P.; George, A.L.; Yasara, N.; et al. GDF15 linked to maternal risk of nausea and vomiting during pregnancy. Nature 2024, 625, 760–767. [Google Scholar] [CrossRef]
- Breit, S.N.; Brown, D.A.; Tsai, V.W. The GDF15-GFRAL Pathway in Health and Metabolic Disease: Friend or Foe? Annu. Rev. Physiol. 2021, 83, 127–151. [Google Scholar] [CrossRef] [PubMed]
- Mullican, S.E.; Lin-Schmidt, X.; Chin, C.N.; Chavez, J.A.; Furman, J.L.; Armstrong, A.A.; Beck, S.C.; South, V.J.; Dinh, T.Q.; Cash-Mason, T.D.; et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med. 2017, 23, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Fichtner, K.; Kalwa, H.; Lin, M.M.; Gong, Y.; Muglitz, A.; Kluge, M.; Krugel, U. GFRAL Is Widely Distributed in the Brain and Peripheral Tissues of Mice. Nutrients 2024, 16, 734. [Google Scholar] [CrossRef] [PubMed]
- Assadi, A.; Zahabi, A.; Hart, R.A. GDF15, an update of the physiological and pathological roles it plays: A review. Pflug. Arch. Eur. J. Physiol. 2020, 472, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Insights Into Mechanisms of GDF15 and Receptor GFRAL: Therapeutic Targets. Trends Endocrinol. Metab. 2020, 31, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Tsai, V.W.W.; Husaini, Y.; Sainsbury, A.; Brown, D.A.; Breit, S.N. The MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity, Cachexia, and Other Associated Diseases. Cell Metab. 2018, 28, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.K.; Lee, J.J.; Yang, Y.; You, K.H.; Lee, J.H. Macrophage inhibitory cytokine-1 activates AKT and ERK-1/2 via the transactivation of ErbB2 in human breast and gastric cancer cells. Carcinogenesis 2008, 29, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ma, Y.M.; Zheng, P.S.; Zhang, P. GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J. Exp. Clin. Cancer Res. 2018, 37, 80. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.; Yang-Feng, T.L.; Liao, Y.C.; Chen, E.; Gray, A.; McGrath, J.; Seeburg, P.H.; Libermann, T.A.; Schlessinger, J.; Francke, U.; et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985, 230, 1132–1139. [Google Scholar] [CrossRef]
- Kannan, K.; Amariglio, N.; Rechavi, G.; Givol, D. Profile of gene expression regulated by induced p53: Connection to the TGF-beta family. FEBS Lett. 2000, 470, 77–82. [Google Scholar] [CrossRef]
- Baek, S.J.; Kim, J.S.; Nixon, J.B.; DiAugustine, R.P.; Eling, T.E. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J. Biol. Chem. 2004, 279, 6883–6892. [Google Scholar] [CrossRef] [PubMed]
- Soussi, T. The p53 tumor suppressor gene: From molecular biology to clinical investigation. Ann. N. Y. Acad. Sci. 2000, 910, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Guo, H.; Yu, H.; Chen, Y.; Xu, H.; Zhao, G. The Role of the Transcription Factor EGR1 in Cancer. Front. Oncol. 2021, 11, 642547. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.K.; Ryu, D.; Kim, K.S.; Chang, J.Y.; Kim, Y.K.; Yi, H.S.; Kang, S.G.; Choi, M.J.; Lee, S.E.; Jung, S.B.; et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J. Cell Biol. 2017, 216, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, H.; Zhong, Y. Hepatic GDF15 is regulated by CHOP of the unfolded protein response and alleviates NAFLD progression in obese mice. Biochem. Biophys. Res. Commun. 2018, 498, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Alvarez-Guaita, A.; Melvin, A.; Rimmington, D.; Dattilo, A.; Miedzybrodzka, E.L.; Cimino, I.; Maurin, A.C.; Roberts, G.P.; Meek, C.L.; et al. GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metab. 2019, 29, 707–718.e8. [Google Scholar] [CrossRef]
- Laurens, C.; Parmar, A.; Murphy, E.; Carper, D.; Lair, B.; Maes, P.; Vion, J.; Boulet, N.; Fontaine, C.; Marques, M.; et al. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight 2020, 5, 131870. [Google Scholar] [CrossRef]
- Lajer, M.; Jorsal, A.; Tarnow, L.; Parving, H.H.; Rossing, P. Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetes Care 2010, 33, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, F.E.; Bennet, A.M.; Magnusson, P.K.; Eriksson, U.K.; Lindmark, F.; Wu, L.; Yaghoutyfam, N.; Marquis, C.P.; Stattin, P.; Pedersen, N.L.; et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): A new marker of all-cause mortality. Aging Cell 2010, 9, 1057–1064. [Google Scholar] [CrossRef]
- Wollert, K.C.; Kempf, T.; Wallentin, L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin. Chem. 2017, 63, 140–151. [Google Scholar] [CrossRef]
- Luan, H.H.; Wang, A.; Hilliard, B.K.; Carvalho, F.; Rosen, C.E.; Ahasic, A.M.; Herzog, E.L.; Kang, I.; Pisani, M.A.; Yu, S.; et al. GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell 2019, 178, 1231–1244.e11. [Google Scholar] [CrossRef] [PubMed]
- Schober, A.; Bottner, M.; Strelau, J.; Kinscherf, R.; Bonaterra, G.A.; Barth, M.; Schilling, L.; Fairlie, W.D.; Breit, S.N.; Unsicker, K. Expression of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in the perinatal, adult, and injured rat brain. J. Comp. Neurol. 2001, 439, 32–45. [Google Scholar] [CrossRef]
- Okazaki, R.; Moon, Y.; Norimura, T.; Eling, T. Ionizing radiation enhances the expression of the nonsteroidal anti-inflammatory drug-activated gene (NAG1) by increasing the expression of TP53 in human colon cancer cells. Radiat. Res. 2006, 165, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Pare, G.; Hess, S.; Ford, R.J.; Sjaarda, J.; Raman, K.; McQueen, M.; Lee, S.; Haenel, H.; Steinberg, G.R.; et al. Growth Differentiation Factor 15 as a Novel Biomarker for Metformin. Diabetes Care 2017, 40, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kumar, S.; Heinzel, A.; Gao, M.; Guo, J.; Alvarado, G.F.; Reindl-Schwaighofer, R.; Krautzberger, A.M.; Cippa, P.E.; McMahon, J.; et al. Renoprotective and Immunomodulatory Effects of GDF15 following AKI Invoked by Ischemia-Reperfusion Injury. J. Am. Soc. Nephrol. 2020, 31, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Robinson-Cohen, C.; Smith, M.R.; Bellovich, K.A.; Bhat, Z.Y.; Bobadilla, M.; Brosius, F.; de Boer, I.H.; Essioux, L.; Formentini, I.; et al. Growth Differentiation Factor-15 and Risk of CKD Progression. J. Am. Soc. Nephrol. 2017, 28, 2233–2240. [Google Scholar] [CrossRef] [PubMed]
- Lasaad, S.; Walter, C.; Rafael, C.; Morla, L.; Doucet, A.; Picard, N.; Blanchard, A.; Fromes, Y.; Matot, B.; Crambert, G.; et al. GDF15 mediates renal cell plasticity in response to potassium depletion in mice. Acta Physiol. 2023, 239, e14046. [Google Scholar] [CrossRef] [PubMed]
- Cheval, L.; Viollet, B.; Klein, C.; Rafael, C.; Figueres, L.; Devevre, E.; Zadigue, G.; Azroyan, A.; Crambert, G.; Vogt, B.; et al. Acidosis-induced activation of distal nephron principal cells triggers Gdf15 secretion and adaptive proliferation of intercalated cells. Acta Physiol. 2021, 232, e13661. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.C.; Wu, H.; Kirita, Y.; Uchimura, K.; Ledru, N.; Rennke, H.G.; Welling, P.A.; Waikar, S.S.; Humphreys, B.D. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl. Acad. Sci. USA 2019, 116, 19619–19625. [Google Scholar] [CrossRef]
- Mazagova, M.; Buikema, H.; van Buiten, A.; Duin, M.; Goris, M.; Sandovici, M.; Henning, R.H.; Deelman, L.E. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes. Am. J. Physiol. Renal. Physiol. 2013, 305, F1249–F1264. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Chong, N.; Chen, D.; Shu, J.; Sun, J.; Sun, Z.; Wang, R.; Wang, Q.; Xu, Y. GDF-15 alleviates diabetic nephropathy via inhibiting NEDD4L-mediated IKK/NF-kappaB signalling pathways. Int. Immunopharmacol. 2024, 128, 111427. [Google Scholar] [CrossRef] [PubMed]
- Oshita, T.; Watanabe, S.; Toyohara, T.; Kujirai, R.; Kikuchi, K.; Suzuki, T.; Suzuki, C.; Matsumoto, Y.; Wada, J.; Tomioka, Y.; et al. Urinary growth differentiation factor 15 predicts renal function decline in diabetic kidney disease. Sci. Rep. 2023, 13, 12508. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Peng, H.; Chen, C.; Wang, Y.; Sang, T.; Cai, Z.; Zhao, Q.; Chen, S.; Lin, X.; Eling, T.; et al. NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells. Life Sci. 2022, 311, 121142. [Google Scholar] [CrossRef]
- Coll, A.P.; Chen, M.; Taskar, P.; Rimmington, D.; Patel, S.; Tadross, J.A.; Cimino, I.; Yang, M.; Welsh, P.; Virtue, S.; et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2020, 578, 444–448. [Google Scholar] [CrossRef]
- Day, E.A.; Ford, R.J.; Smith, B.K.; Mohammadi-Shemirani, P.; Morrow, M.R.; Gutgesell, R.M.; Lu, R.; Raphenya, A.R.; Kabiri, M.; McArthur, A.G.; et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat. Metab. 2019, 1, 1202–1208. [Google Scholar] [CrossRef]
- Perez-Gomez, M.V.; Pizarro-Sanchez, S.; Gracia-Iguacel, C.; Cano, S.; Cannata-Ortiz, P.; Sanchez-Rodriguez, J.; Sanz, A.B.; Sanchez-Nino, M.D.; Ortiz, A. Urinary Growth Differentiation Factor-15 (GDF15) levels as a biomarker of adverse outcomes and biopsy findings in chronic kidney disease. J. Nephrol. 2021, 34, 1819–1832. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Yamazaki, H.; Imamura, T.; Fujioka, H.; Kakeshita, K.; Koike, T.; Kinugawa, K. Implication of serum growth differentiation factor-15 level in patients with renal diseases. Int. Urol. Nephrol. 2023, 55, 2935–2941. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, H.; Ju, H.; Chen, H.; Jin, H.; Sun, M. Circulating GDF-15 in relation to the progression and prognosis of chronic kidney disease: A systematic review and dose-response meta-analysis. Eur. J. Intern. Med. 2023, 110, 77–85. [Google Scholar] [CrossRef]
- Buchanan, S.; Combet, E.; Stenvinkel, P.; Shiels, P.G. Klotho, Aging, and the Failing Kidney. Front. Endocrinol. 2020, 11, 560. [Google Scholar] [CrossRef]
- Balzer, M.S.; Doke, T.; Yang, Y.W.; Aldridge, D.L.; Hu, H.; Mai, H.; Mukhi, D.; Ma, Z.; Shrestha, R.; Palmer, M.B.; et al. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat. Commun. 2022, 13, 4018. [Google Scholar] [CrossRef]
- Valino-Rivas, L.; Cuarental, L.; Ceballos, M.I.; Pintor-Chocano, A.; Perez-Gomez, M.V.; Sanz, A.B.; Ortiz, A.; Sanchez-Nino, M.D. Growth differentiation factor-15 preserves Klotho expression in acute kidney injury and kidney fibrosis. Kidney Int. 2022, 101, 1200–1215. [Google Scholar] [CrossRef] [PubMed]
- Mulderrig, L.; Garaycoechea, J.I.; Tuong, Z.K.; Millington, C.L.; Dingler, F.A.; Ferdinand, J.R.; Gaul, L.; Tadross, J.A.; Arends, M.J.; O–Rahilly, S.; et al. Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response. Nature 2021, 600, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Wischhusen, J.; Melero, I.; Fridman, W.H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front. Immunol. 2020, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Ma, T.; Zhang, C.; Tang, X.; Xu, Q.; Meng, X.; Ma, T. Identification of urinary candidate biomarkers of cisplatin-induced nephrotoxicity in patients with carcinoma. J. Proteom. 2020, 210, 103533. [Google Scholar] [CrossRef] [PubMed]
- Guner, G.; Erbas, O. Candesartan protects from cisplatin-induced kidney damage via the GDF-15 pathway. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; He, Z.; Lu, J.; Yuan, X.; Liu, H.; Xue, Y.; Chen, T.; Gu, H. Downregulation of GDF15 suppresses ferroptosis and predicts unfavorable prognosis in clear cell renal cell carcinoma. Cell Div. 2023, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Modell, H.; Cliff, W.; Michael, J.; McFarland, J.; Wenderoth, M.P.; Wright, A. A physiologist–s view of homeostasis. Adv. Physiol. Educ. 2015, 39, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Tabibzadeh, N.; Crambert, G. Mechanistic insights into the primary and secondary alterations of renal ion and water transport in the distal nephron. J. Intern. Med. 2023, 293, 4–22. [Google Scholar] [CrossRef]
- Sebastian, A.; Frassetto, L.A.; Sellmeyer, D.E.; Merriam, R.L.; Morris, R.C., Jr. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am. J. Clin. Nutr. 2002, 76, 1308–1316. [Google Scholar] [CrossRef]
- Wagner, C.A.; Imenez Silva, P.H.; Bourgeois, S. Molecular Pathophysiology of Acid-Base Disorders. Semin. Nephrol. 2019, 39, 340–352. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Barasch, J.; Al-Awqati, Q. Plasticity of functional epithelial polarity. Nature 1985, 318, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Welsh-Bacic, D.; Nowik, M.; Kaissling, B.; Wagner, C.A. Proliferation of acid-secretory cells in the kidney during adaptive remodelling of the collecting duct. PLoS ONE 2011, 6, e25240. [Google Scholar] [CrossRef] [PubMed]
- Hagege, J.; Gabe, M.; Richet, G. Scanning of the apical pole of distal tubular cells under differing acid-base conditions. Kidney Int. 1974, 5, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Takito, J.; Hikita, C.; Al-Awqati, Q. Hensin, a new collecting duct protein involved in the in vitro plasticity of intercalated cell polarity. J. Clin. Investig. 1996, 98, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Eladari, D.; Leviel, F.; Tew, B.Y.; Miro-Julia, C.; Cheema, F.; Miller, L.; Nelson, R.; Paunescu, T.G.; McKee, M.; et al. Deletion of hensin/DMBT1 blocks conversion of {beta}- to {alpha}-intercalated cells and induces distal renal tubular acidosis. Proc. Natl. Acad. Sci. USA 2010, 107, 21872–21877. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, S.; Erdjument-Bromage, H.; Tempst, P.; Al-Awqati, Q. Role of integrins in the assembly and function of hensin in intercalated cells. J. Am. Soc. Nephrol. 2008, 19, 1079–1091. [Google Scholar] [CrossRef] [PubMed]
- Cheval, L.; Morla, L.; Elalouf, J.M.; Doucet, A. Kidney collecting duct acid-base “regulon”. Physiol. Genom. 2006, 27, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Duong Van Huyen, J.P.; Cheval, L.; Bloch-Faure, M.; Belair, M.F.; Heudes, D.; Bruneval, P.; Doucet, A. GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J. Am. Soc. Nephrol. 2008, 19, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sanchez-Torres, J.; Del Carpio, A.; Salas, V.; Villalobo, A. The ErbB2/Neu/HER2 receptor is a new calmodulin-binding protein. Biochem. J. 2004, 381, 257–266. [Google Scholar] [CrossRef]
- Tashima, Y.; Kohda, Y.; Nonoguchi, H.; Ikebe, M.; Machida, K.; Star, R.A.; Tomita, K. Intranephron localization and regulation of the V1a vasopressin receptor during chronic metabolic acidosis and dehydration in rats. Pflug. Arch. Eur. J. Physiol. 2001, 442, 652–661. [Google Scholar] [CrossRef]
- Giesecke, T.; Himmerkus, N.; Leipziger, J.; Bleich, M.; Koshimizu, T.A.; Fahling, M.; Smorodchenko, A.; Shpak, J.; Knappe, C.; Isermann, J.; et al. Vasopressin Increases Urinary Acidification via V1a Receptors in Collecting Duct Intercalated Cells. J. Am. Soc. Nephrol. 2019, 30, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Doucet, A.; Crambert, G. Potassium homeostasis. In Oxford Textbook of Clinical Nephrology, 4th ed.; Turner, N., Lameire, N., Goldsmith, D., Winearls, C., Himmelfarb, J., Remuzzi, G., Eds.; Oxford University Press: London, UK, 2015; pp. 204–217. [Google Scholar] [CrossRef]
- Lasaad, S.; Crambert, G. Renal K(+) retention in physiological circumstances: Focus on adaptation of the distal nephron and cross-talk with Na(+) transport systems. Front. Physiol. 2023, 14, 1264296. [Google Scholar] [CrossRef] [PubMed]
- Meneton, P.; Loffing, J.; Warnock, D.G. Sodium and potassium handling by the aldosterone-sensitive distal nephron: The pivotal role of the distal and connecting tubule. Am. J. Physiol. Renal. Physiol. 2004, 287, F593–F601. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, R.J.; Wen, D.; Li, H.; Yuan, Y.; Wang-France, J.; Warner, P.C.; Sansom, S.C. Low Na, high K diet and the role of aldosterone in BK-mediated K excretion. PLoS ONE 2015, 10, e0115515. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Schreck, C.; Coleman, R.A.; Wade, J.B.; Hernandez, Y.; Zavilowitz, B.; Warth, R.; Kleyman, T.R.; Satlin, L.M. Role of NKCC in BK channel-mediated net K(+) secretion in the CCD. Am. J. Physiol. Renal. Physiol. 2011, 301, F1088–F1097. [Google Scholar] [CrossRef] [PubMed]
- Carrisoza-Gaytan, R.; Ray, E.C.; Flores, D.; Marciszyn, A.L.; Wu, P.; Liu, L.; Subramanya, A.R.; Wang, W.; Sheng, S.; Nkashama, L.J.; et al. Intercalated cell BKalpha subunit is required for flow-induced K+ secretion. JCI Insight 2020, 5, 130553. [Google Scholar] [CrossRef] [PubMed]
- Malnic, G.; Klose, R.M.; Giebisch, G. Micropuncture Study of Renal Potassium Excretion in the Rat. Am. J. Physiol. 1964, 206, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Iervolino, A.; Prosperi, F.; De La Motte, L.R.; Petrillo, F.; Spagnuolo, M.; D’Acierno, M.; Siccardi, S.; Perna, A.F.; Christensen, B.M.; Frische, S.; et al. Potassium depletion induces cellular conversion in the outer medullary collecting duct altering Notch signaling pathway. Sci. Rep. 2020, 10, 5708. [Google Scholar] [CrossRef] [PubMed]
- Cheval, L.; Duong Van Huyen, J.P.; Bruneval, P.; Verbavatz, J.M.; Elalouf, J.M.; Doucet, A. Plasticity of mouse renal collecting duct in response to potassium depletion. Physiol. Genom. 2004, 19, 61–73. [Google Scholar] [CrossRef]
- Oliver, J.; Macdowell, M.; Welt, L.G.; Holliday, M.A.; Hollander, W., Jr.; Winters, R.W.; Williams, T.F.; Segar, W.E. The renal lesions of electrolyte imbalance. I. The structural alterations in potassium-depleted rats. J. Exp. Med. 1957, 106, 563–574. [Google Scholar] [CrossRef]
- Ordonez, N.G.; Spargo, B.H. The morphologic relationship of light and dark cells of the collecting tubule in potassium-depleted rats. Am. J. Pathol. 1976, 84, 317–326. [Google Scholar] [PubMed]
- Lee, C.B.; Lee, Y.S.; Lee, J.Y.; Lee, S.E.; Ahn, K.Y. Nrf2 and Sp family synergistically enhance the expression of ion transporters in potassium-depleted conditions. J. Nephrol. 2012, 25, 225–232. [Google Scholar] [CrossRef]
- Elabida, B.; Edwards, A.; Salhi, A.; Azroyan, A.; Fodstad, H.; Meneton, P.; Doucet, A.; Bloch-Faure, M.; Crambert, G. Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium. Kidney Int. 2011, 80, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, A.; Silver, R.B.; Satlin, L.M. H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct. Am. J. Physiol. 1997, 272, F167–F177. [Google Scholar] [CrossRef] [PubMed]
- Kraut, J.A.; Helander, K.G.; Helander, H.F.; Iroezi, N.D.; Marcus, E.A.; Sachs, G. Detection and localization of H+-K+-ATPase isoforms in human kidney. Am. J. Physiol. Renal. Physiol. 2001, 281, F763–F768. [Google Scholar] [CrossRef] [PubMed]
- Park, E.Y.; Kim, W.Y.; Kim, Y.M.; Lee, J.H.; Han, K.H.; Weiner, I.D.; Kim, J. Proposed mechanism in the change of cellular composition in the outer medullary collecting duct during potassium homeostasis. Histol. Histopathol. 2012, 27, 1559–1577. [Google Scholar] [CrossRef] [PubMed]
- Babilonia, E.; Wei, Y.; Sterling, H.; Kaminski, P.; Wolin, M.; Wang, W.H. Superoxide anions are involved in mediating the effect of low K intake on c-Src expression and renal K secretion in the cortical collecting duct. J. Biol. Chem. 2005, 280, 10790–10796. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Ito, M.; Kojima, T.; Yatsuga, S.; Koga, Y.; Tanaka, M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion 2015, 20, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Kashgarian, M.; Biemesderfer, D.; Caplan, M.; Forbush, B., 3rd. Monoclonal antibody to Na,K-ATPase: Immunocytochemical localization along nephron segments. Kidney Int. 1985, 28, 899–913. [Google Scholar] [CrossRef]
- Putney, L.K.; Barber, D.L. Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J. Biol. Chem. 2003, 278, 44645–44649. [Google Scholar] [CrossRef]
- Marakhova, I.I.; Vinogradova, T.A.; Yefimova, E.V. Early and delayed changes in potassium transport during the initiation of cell proliferation in CHO culture. Gen. Physiol. Biophys. 1989, 8, 273–282. [Google Scholar] [PubMed]
- Marakhova, I.; Yurinskaya, V.; Aksenov, N.; Zenin, V.; Shatrova, A.; Vereninov, A. Intracellular K(+) and water content in human blood lymphocytes during transition from quiescence to proliferation. Sci. Rep. 2019, 9, 16253. [Google Scholar] [CrossRef] [PubMed]
- Jakab, M.; Hofer, S.; Ravasio, A.; Huber, F.; Schmidt, S.; Hitzl, W.; Geibel, J.P.; Furst, J.; Ritter, M. The putative role of the non-gastric H(+)/K(+)-ATPase ATP12A (ATP1AL1) as anti-apoptotic ion transporter: Effect of the H(+)/K(+) ATPase inhibitor SCH28080 on butyrate-stimulated myelomonocytic HL-60 cells. Cell. Physiol. Biochem. 2014, 34, 1507–1526. [Google Scholar] [CrossRef] [PubMed]
- Walter, C.; Ben Tanfous, M.; Igoudjil, K.; Salhi, A.; Escher, G.; Crambert, G. H,K-ATPase type 2 contributes to salt-sensitive hypertension induced by K+ restriction. Pflug. Arch. Eur. J. Physiol. 2016, 468, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.M.; Paller, M.S. Pressor resistance to vasopressin in sodium depletion, potassium depletion, and cirrhosis. Am. J. Physiol. 1986, 251, R525–R530. [Google Scholar] [CrossRef] [PubMed]
- McDonough, A.A.; Thompson, C.B.; Youn, J.H. Skeletal muscle regulates extracellular potassium. Am. J. Physiol. Renal. Physiol. 2002, 282, F967–F974. [Google Scholar] [CrossRef]
- Salhi, A.; Lamouroux, C.; Pestov, N.B.; Modyanov, N.N.; Doucet, A.; Crambert, G. A link between fertility and K+ homeostasis: Role of the renal H,K-ATPase type 2. Pflug. Arch. Eur. J. Physiol. 2013, 465, 1149–1158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasaad, S.; Crambert, G. GDF15, an Emerging Player in Renal Physiology and Pathophysiology. Int. J. Mol. Sci. 2024, 25, 5956. https://doi.org/10.3390/ijms25115956
Lasaad S, Crambert G. GDF15, an Emerging Player in Renal Physiology and Pathophysiology. International Journal of Molecular Sciences. 2024; 25(11):5956. https://doi.org/10.3390/ijms25115956
Chicago/Turabian StyleLasaad, Samia, and Gilles Crambert. 2024. "GDF15, an Emerging Player in Renal Physiology and Pathophysiology" International Journal of Molecular Sciences 25, no. 11: 5956. https://doi.org/10.3390/ijms25115956
APA StyleLasaad, S., & Crambert, G. (2024). GDF15, an Emerging Player in Renal Physiology and Pathophysiology. International Journal of Molecular Sciences, 25(11), 5956. https://doi.org/10.3390/ijms25115956