Glycoprotein Acetyls Is a Novel Biomarker Predicting Cardiovascular Complications in Rheumatoid Arthritis
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Association
2.2. Genetic Association Study
2.3. Mendelian Randomization Analysis
2.4. Colocalization and Gene Enrichment Analyses
2.5. ABN Analysis
3. Discussion
3.1. Genes of Interest
3.2. Limitations
4. Material and Methods
4.1. Dataset
4.2. Statistical Analysis
4.3. Genetic Correlation
4.4. Mendelian Randomization (MR)
4.5. Colocalization Analysis and Gene Enrichment
4.6. Additive Bayesian Network (ABN) Modeling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chopra, A.; Abdel-Nasser, A. Epidemiology of Rheumatic Musculoskeletal Disorders in the Developing World. Best Pract. Res. Clin. Rheumatol. 2008, 22, 583–604. [Google Scholar] [CrossRef] [PubMed]
- Venetsanopoulou, A.I.; Alamanos, Y.; Voulgari, P.V.; Drosos, A.A. Epidemiology and Risk Factors for Rheumatoid Arthritis Development. Mediterr. J. Rheumatol. 2023, 34, 404. [Google Scholar] [CrossRef] [PubMed]
- Boots, A.M.H.; Maier, A.B.; Stinissen, P.; Masson, P.; Lories, R.J.; De Keyser, F. The Influence of Ageing on the Development and Management of Rheumatoid Arthritis. Nat. Rev. Rheumatol. 2013, 9, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Dadoun, S.; Zeboulon-Ktorza, N.; Combescure, C.; Elhai, M.; Rozenberg, S.; Gossec, L.; Fautrel, B. Mortality in Rheumatoid Arthritis over the Last Fifty Years: Systematic Review and Meta-Analysis. Joint Bone Spine 2013, 80, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Ahn, G.Y.; Lee, J.; Shin, J.M.; Lee, T.H.; Park, D.J.; Song, Y.J.; Kim, M.K.; Bae, S.C. Excess Mortality Persists in Patients with Rheumatoid Arthritis. Int. J. Rheum. Dis. 2021, 24, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Avina-Zubieta, J.A.; Thomas, J.; Sadatsafavi, M.; Lehman, A.J.; Lacaille, D. Risk of Incident Cardiovascular Events in Patients with Rheumatoid Arthritis: A Meta-Analysis of Observational Studies. Ann. Rheum. Disease 2012, 71, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Crowson, C.S.; Liao, K.P.; Davis, J.M., III; Solomon, D.H.; Matteson, E.L.; Knutson, K.L.; Hlatky, M.A.; Gabriel, S.E. Rheumatoid Arthritis and Cardiovascular Disease. Am. Heart J. 2013, 166, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Krüger, K.; Nüßlein, H. Cardiovascular Comorbidities in Rheumatoid Arthritis. Z. Rheumatol. 2019, 78, 221–227. [Google Scholar] [CrossRef]
- Ruscitti, P.; Cipriani, P.; Liakouli, V.; Iacono, D.; Pantano, I.; Margiotta, D.P.E.; Navarini, L.; Destro Castaniti, G.M.; Maruotti, N.; Di Scala, G.; et al. Subclinical and Clinical Atherosclerosis in Rheumatoid Arthritis: Results from the 3-Year, Multicentre, Prospective, Observational GIRRCS (Gruppo Italiano Di Ricerca in Reumatologia Clinica e Sperimentale) Study. Arthritis Res. Ther. 2019, 21, 204. [Google Scholar] [CrossRef] [PubMed]
- Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef]
- Frostegård, J. Immunity, Atherosclerosis and Cardiovascular Disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef]
- MacGregor, A.J.; Snieder, H.; Rigby, A.S.; Koskenvuo, M.; Kaprio, J.; Aho, K.; Silman, A.J. Characterizing the Quantitative Genetic Contribution to Rheumatoid Arthritis Using Data from Twins. Arthritis Rheum. 2000, 43, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Zdravkovic, S.; Wienke, A.; Pedersen, N.L.; Marenberg, M.E.; Yashin, A.I.; De Faire, U. Heritability of Death from Coronary Heart Disease: A 36-Year Follow-up of 20 966 Swedish Twins. J. Intern. Med. 2002, 252, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, L.; López-Mejías, R.; García-Bermúdez, M.; González-Juanatey, C.; González-Gay, M.A.; Martín, J. Genetic Markers of Cardiovascular Disease in Rheumatoid Arthritis. Mediat. Inflamm. 2012, 2012, 574817. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, L.; Boffini, N.; Cagnotto, G.; Inverardi, F.; Grosso, V.; Caporali, R. Atherosclerosis and Rheumatoid Arthritis: More Than a Simple Association. Mediat. Inflamm. 2012, 2012, 147354. [Google Scholar] [CrossRef] [PubMed]
- Connelly, M.A.; Otvos, J.D.; Shalaurova, I.; Playford, M.P.; Mehta, N.N. GlycA, a Novel Biomarker of Systemic Inflammation and Cardiovascular Disease Risk. J. Transl. Med. 2017, 15, 219. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrio, J.; Alperi-López, M.; López, P.; Pérez-álvarez, Á.I.; Gil-Serret, M.; Amigó, N.; Ulloa, C.; Benavente, L.; Ballina-García, F.J.; Suárez, A. GlycA Levels during the Earliest Stages of Rheumatoid Arthritis: Potential Use as a Biomarker of Subclinical Cardiovascular Disease. J. Clin. Med. 2020, 9, 2472. [Google Scholar] [CrossRef]
- Raj, R.; Thomas, S.; Gorantla, V. Accelerated Atherosclerosis in Rheumatoid Arthritis: A Systematic Review. F1000Res 2022, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-P.; Du, H.-C.; Xie, P.-J.; Zhang, L.-X.; Gao, H.-Z.; Luo, J.-H.; Chai, S.-T.; Qi, O.; Liu, P. Causal Relationship between Rheumatoid Arthritis and Atherosclerosis Risk: A Mendelian Randomized Study. medRxiv 2024. [Google Scholar] [CrossRef]
- Kasher, M.; Cherny, S.S.; Livshits, G. Exploring Potential Shared Genetic Influences between Rheumatoid Arthritis and Blood Lipid Levels. Atherosclerosis 2022, 363, 48–56. [Google Scholar] [CrossRef]
- Kasher, M.; Williams, F.M.K.; Freidin, M.B.; Malkin, I.; Cherny, S.S.; CHARGE Inflammation Working Group; Livshits, G. Understanding the Complex Genetic Architecture Connecting Rheumatoid Arthritis, Osteoporosis, and Inflammation: Discovering Causal Pathways. Hum. Mol. Genet. 2022, 26, 312–318. [Google Scholar] [CrossRef]
- Hedayatnia, M.; Asadi, Z.; Zare-Feyzabadi, R.; Yaghooti-Khorasani, M.; Ghazizadeh, H.; Ghaffarian-Zirak, R.; Nosrati-Tirkani, A.; Mohammadi-Bajgiran, M.; Rohban, M.; Sadabadi, F.; et al. Dyslipidemia and Cardiovascular Disease Risk among the MASHAD Study Population. Lipids Health Dis. 2020, 19, 2810–2819. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Henry, A.; Roselli, C.; Lin, H.; Sveinbjörnsson, G.; Fatemifar, G.; Hedman, Å.K.; Wilk, J.B.; Morley, M.P.; Chaffin, M.D.; et al. Genome-Wide Association and Mendelian Randomisation Analysis Provide Insights into the Pathogenesis of Heart Failure. Nat. Commun. 2020, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Myasoedova, E.; Crowson, C.S.; Kremers, H.M.; Roger, V.L.; Fitz-Gibbon, P.D.; Therneau, T.M.; Gabriel, S.E. Lipid Paradox In Rheumatoid Arthritis: The Impact of Serum Lipid Measures and Systemic Inflammation on the Risk of Cardiovascular Disease. Ann. Rheum. Dis. 2011, 70, 482. [Google Scholar] [CrossRef]
- Chen, G.; Farris, M.S.; Cowling, T.; Colgan, S.M.; Xiang, P.; Pericleous, L.; Rogoza, R.M.; Tai, M.H.; Anderson, T. Treatment and Low-Density Lipoprotein Cholesterol Management in Patients Diagnosed With Clinical Atherosclerotic Cardiovascular Disease in Alberta. Can. J. Cardiol. 2019, 35, 884–891. [Google Scholar] [CrossRef]
- Lin, Z.; Deng, Y.; Pan, W. Combining the Strengths of Inverse-Variance Weighting and Egger Regression in Mendelian Randomization Using a Mixture of Regressions Model. PLoS Genet. 2021, 17, e1009922. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Akinkuolie, A.O.; Buring, J.E.; Ridker, P.M.; Mora, S. A Novel Protein Glycan Biomarker and Future Cardiovascular Disease Events. J. Am. Heart Assoc. 2014, 3, e001221. [Google Scholar] [CrossRef]
- Kahlenberg, J.M.; Kaplan, M.J. Mechanisms of Premature Atherosclerosis in Rheumatoid Arthritis and Lupus. Annu. Rev. Med. 2013, 64, 249. [Google Scholar] [CrossRef]
- Mena-Vázquez, N.; Redondo-Rodríguez, R.; Rioja, J.; Jimenez-Nuñez, F.G.; Manrique-Arija, S.; Lisbona-Montañez, J.M.; Cano-García, L.; Rojas-Gimenez, M.; Ureña, I.; Valdivielso, P.; et al. Postprandial Hyperlipidemia: Association with Inflammation and Subclinical Atherosclerosis in Patients with Rheumatoid Arthritis. Biomedicines 2022, 10, 133. [Google Scholar] [CrossRef]
- Puig-Jové, C.; Julve, J.; Castelblanco, E.; Julián, M.T.; Amigó, N.; Andersen, H.U.; Ahluwalia, T.S.; Rossing, P.; Mauricio, D.; Jensen, M.T.; et al. The Novel Inflammatory Biomarker GlycA and Triglyceride-Rich Lipoproteins Are Associated with the Presence of Subclinical Myocardial Dysfunction in Subjects with Type 1 Diabetes Mellitus. Cardiovasc. Diabetol. 2022, 21, 257. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, T.S.; Prins, B.P.; Abdollahi, M.; Armstrong, N.J.; Aslibekyan, S.; Bain, L.; Jefferis, B.; Baumert, J.; Beekman, M.; Ben-Shlomo, Y.; et al. Genome-Wide Association Study of Circulating Interleukin 6 Levels Identifies Novel Loci. Hum. Mol. Genet. 2021, 30, 393. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.L.; Han, Z.J.; Yang, C.J.; Hang, Y.X.; Fang, D.Y.; Wang, K.; Zhu, X.; Ji, X.J.; Zhou, F.F. Association of SLC22A4 Gene Polymorphism with Rheumatoid Arthritis in the Chinese Population. J. Biochem. Mol. Toxicol. 2014, 28, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, A.; Paradowska-Gorycka, A.; Safranow, K.; Dziedziejko, V.; Dutkiewicz, G.; Słucznowska-Głabowska, S.; Juzyszyn, Z.; Drozdzik, M. SLC22A5 Polymorphism Associated with Risk of Extra-Articular Manifestations in Rheumatoid Arthritis Patients. Reumatologia 2019, 57, 3. [Google Scholar] [CrossRef] [PubMed]
- Perdaens, O.; van Pesch, V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front. Neurol. 2021, 12, 811518. [Google Scholar] [CrossRef] [PubMed]
- van Drongelen, V.; Holoshitz, J. HLA-Disease Associations in Rheumatoid Arthritis. Rheum. Dis. Clin. N. Am. 2017, 43, 363. [Google Scholar] [CrossRef] [PubMed]
- Malo, A.I.; Peraire, J.; Ruiz-Mateos, E.; Masip, J.; Amigó, N.; Alcamí, J.; Moreno, S.; Girona, J.; García-Pardo, G.; Reig, R.; et al. Evolution of Serum Acute-Phase Glycoproteins Assessed by 1H-NMR in HIV Elite Controllers. Front. Immunol. 2021, 12, 730691. [Google Scholar] [CrossRef] [PubMed]
- Fava, C.; Montagnana, M. Atherosclerosis Is an Inflammatory Disease Which Lacks a Common Anti-Inflammatory Therapy: How Human Genetics Can Help to This Issue. A Narrative Review. Front. Pharmacol. 2018, 9, 328994. [Google Scholar] [CrossRef]
- Ota, M.; Nagafuchi, Y.; Hatano, H.; Ishigaki, K.; Terao, C.; Takeshima, Y.; Yanaoka, H.; Kobayashi, S.; Okubo, M.; Shirai, H.; et al. Dynamic Landscape of Immune Cell-Specific Gene Regulation in Immune-Mediated Diseases. Cell 2021, 184, 3006–3021.e17. [Google Scholar] [CrossRef]
- Okada, Y.; Wu, D.; Trynka, G.; Raj, T.; Terao, C.; Ikari, K.; Kochi, Y.; Ohmura, K.; Suzuki, A.; Yoshida, S.; et al. Genetics of Rheumatoid Arthritis Contributes to Biology and Drug Discovery. Nature 2014, 506, 376–381. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, Z.; Fang, H.; Yang, J. A Generalized Linear Mixed Model Association Tool for Biobank-Scale Data. Nat. Genet. 2021, 53, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Aragam, K.G.; Jiang, T.; Goel, A.; Kanoni, S.; Wolford, B.N.; Atri, D.S.; Weeks, E.M.; Wang, M.; Hindy, G.; Zhou, W.; et al. Discovery and Systematic Characterization of Risk Variants and Genes for Coronary Artery Disease in over a Million Participants. Nat. Genet. 2022, 54, 1803–1815. [Google Scholar] [CrossRef] [PubMed]
- Rapid GWAS of Thousands of Phenotypes for 337,000 Samples in the UK Biobank—Neale Lab. Available online: http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank (accessed on 17 December 2020).
- Zheng, H.F.; Forgetta, V.; Hsu, Y.H.; Estrada, K.; Rosello-Diez, A.; Leo, P.J.; Dahia, C.L.; Park-Min, K.H.; Tobias, J.H.; Kooperberg, C.; et al. Whole-Genome Sequencing Identifies EN1 as a Determinant of Bone Density and Fracture. Nature 2015, 526, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Crick, D.C.P.; Sanderson, E.; Jones, H.; Goulding, N.; Borges, M.C.; Clayton, G.; Carter, A.R.; Halligan, S.; Lawlor, D.A.; Khandaker, G.M.; et al. Glycoprotein Acetyls and Depression: Testing for Directionality and Potential Causality Using Longitudinal Data and Mendelian Randomization Analyses. J. Affect. Disord. 2023, 335, 431. [Google Scholar] [CrossRef] [PubMed]
- Bulik-Sullivan, B.K.; Loh, P.-R.; Finucane, H.K.; Ripke, S.; Yang, J.; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M. LD Score Regression Distinguishes Confounding from Polygenicity in Genomewide Association Studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Yavorska, O.O.; Burgess, S. MendelianRandomization: An R Package for Performing Mendelian Randomization Analyses Using Summarized Data. Int. J. Epidemiol. 2017, 46, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Davey Smith, G.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Holmes, M.V.; Minelli, C.; Relton, C.L.; et al. Guidelines for Performing Mendelian Randomization Investigations. Wellcome Open Res. 2020, 4, 186. [Google Scholar] [CrossRef]
- Bowden, J.; Fabiola Del Greco, M.; Minelli, C.; Smith, G.D.; Sheehan, N.A.; Thompson, J.R. Assessing the Suitability of Summary Data for Two-Sample Mendelian Randomization Analyses Using MR-Egger Regression: The Role of the I 2 Statistic. Int. J. Epidemiol. 2016, 45, 1961–1974. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Davies, N.M.; Thompson, S.G. Bias Due to Participant Overlap in Two-Sample Mendelian Randomization. Genet. Epidemiol. 2016, 40, 597–608. [Google Scholar] [CrossRef]
- Wallace, C. Eliciting Priors and Relaxing the Single Causal Variant Assumption in Colocalisation Analyses. PLoS Genet. 2020, 16, e1008720. [Google Scholar] [CrossRef]
- Giambartolomei, C.; Vukcevic, D.; Schadt, E.E.; Franke, L.; Hingorani, A.D.; Wallace, C.; Plagnol, V. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet. 2014, 10, e1004383. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taskesen, E.; Van Bochoven, A.; Posthuma, D. Functional Mapping and Annotation of Genetic Associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, G.; Lewis, F.I.; Comin, A.; Pittavino, M.; Furrer, R. Additive Bayesian Network Modelling with the R Package Abn. arXiv 2019, arXiv:1911.09006. [Google Scholar]
Independent Variables | Estimate | SE | t-Value | p-Value |
---|---|---|---|---|
Intercept | −0.2497 | 0.0184 | −13.6 | <2.00 × 10−16 |
RA | 0.2740 | 0.0088 | 31.1 | <2.00 × 10−16 |
Atherosclerosis | 0.3197 | 0.0152 | 21.0 | <2.00 × 10−16 |
Total Cholesterol | −0.5652 | 0.0101 | −56.2 | <2.00 × 10−16 |
Triglycerides | 0.5772 | 0.0019 | 298.7 | <2.00 × 10−16 |
HDL | 0.2066 | 0.0037 | 55.3 | <2.00 × 10−16 |
LDL | 0.5970 | 0.0087 | 68.8 | <2.00 × 10−16 |
BMI | 0.1956 | 0.0016 | 125.7 | <2.00 × 10−16 |
Age | 0.0642 | 0.0015 | 44.3 | <2.00 × 10−16 |
Sex | −0.2442 | 0.0033 | −74.4 | <2.00 × 10−16 |
Phenotype Pairs | Rg | SE | p-Value |
---|---|---|---|
GlycA, RA | 0.0724 | 0.0344 | 3.56 × 10−2 |
GlycA, Atherosclerosis | 0.2311 | 0.0468 | 8.09 × 10−7 |
GlycA, CAD | 0.2934 | 0.0393 | 7.82 × 10−14 |
GlycA, Heart Failure | 0.3232 | 0.0383 | 3.34 × 10−17 |
GlycA, Heart Attack/MI | 0.3108 | 0.0494 | 3.11 × 10−10 |
GlycA, HDL | −0.2910 | 0.0611 | 1.94 × 10−6 |
GlycA, LDL | 0.3244 | 0.2425 | 1.81 × 10−1 |
GlycA, TC | 0.3479 | 0.1402 | 1.31 × 10−2 |
GlycA, TGs | 0.6046 | 0.0751 | 8.27 × 10−16 |
RA, Atherosclerosis | 0.0152 | 0.0476 | 7.49 × 10−1 |
RA, CAD | 0.0285 | 0.0342 | 4.06 × 10−1 |
RA, Heart Failure | 0.0981 | 0.0560 | 7.98 × 10−2 |
RA, Heart Attack/MI | 0.0291 | 0.0562 | 6.04 × 10−1 |
(a) | |||||||
---|---|---|---|---|---|---|---|
Outcome | IVs | Estimate | 95% Confidence Interval | p-Value | MR Egger Intercept p-Value | I2Gx | Heterogeneity |
RA | 40 | 0.019 | −0.180, 0.217 | 0.854 | 0.001 | 0.9988 | 97.7% |
Heart attack/MI | 46 | 0.004 | −0.001, 0.009 | 0.087 | 0.030 | 0.9940 | 94.3% |
Heart failure | 25 | 0.086 | −0.074, 0.246 | 0.246 | 0.052 | 0.9341 | 94.2% |
CAD | 22 | 0.084 | 0.009, 0.160 | 0.029 | 0.061 | 0.3833 | 97.3% |
Atherosclerosis | 22 | 0.237 | 0.043, 0.431 | 0.017 | 0.757 | 0.8650 | 96.8% |
HDL | 9 | −0.049 | −0.114, 0.016 | 0.143 | 0.574 | 0.3526 | 99.4% |
LDL | 5 | 0.153 | −0.196, 0.051 | 0.390 | 0.988 | 0.1189 | 97.5% |
TC | 9 | −0.021 | −0.180, 0.138 | 0.794 | 0.080 | 0.8227 | 98.2% |
TGs | 8 | 0.070 | −0.022, 0.162 | 0.135 | 0.439 | 0.1620 | 99.1% |
(b) | |||||||
Outcome | IVs | Estimate | 95% Confidence Interval | p-Value | MR Egger Intercept p-Value | I2Gx | Heterogeneity |
Heart attack/MI | 36 | 0.001 | 0.000, 0.001 | 0.171 | 0.004 | 0.9900 | 99.6% |
Heart failure | 38 | 0.016 | −0.003, 0.034 | 0.094 | 0.062 | 0.9956 | 99.4% |
CAD | 30 | 0.008 | −0.008, 0.023 | 0329 | 0.002 | 0.8684 | 99.1% |
Atherosclerosis | 40 | 0.005 | −0.023, 0.034 | 0.716 | <0.001 | 0.9656 | 99.3% |
(c) | |||||||
Exposure→Outcome | Global Test T-Value | Global Test p-Value | |||||
GlycA → RA | 4310.5 | <0.001 | |||||
GlycA → Atherosclerosis | 781.2 | <0.001 | |||||
GlycA → CAD | 1920.3 | <0.001 | |||||
GlycA → Heart Attack/MI | 394.8 | <0.001 | |||||
GlycA → Heart Failure | 232.0 | <0.001 | |||||
GlycA → HDL | 4574.1 | <0.001 | |||||
GlycA → LDL | 2464.9 | <0.001 | |||||
GlycA → TRIG | 9001.9 | <0.001 | |||||
GlycA → TCH | 4087.2 | <0.001 | |||||
RA → Atherosclerosis | 113.5 | 0.003 | |||||
RA → CAD | 168.4 | <0.001 | |||||
RA → Heart Attack/MI | 97.9 | 0.025 | |||||
RA → Heart Failure | 82.2 | 0.224 |
(a) | |||||
---|---|---|---|---|---|
Phenotype in Colocalization with GlycA | Genomic Region Chromosome: Base Pairs | Gene (SNP) Function | GlycA p-Value | Other Phenotype p-Value | PP.H4 (Posterior Probability of Shared Causal SNP) or PP.H3 (of SNPs in the Same Region) |
RA | Chr2: 110572432–113921856 | IL1F10/RNU6-1180P (rs6734238) intergenic | 4.00 × 10−9 | 1.40 × 10−4 | H4: 79.9% |
RA | Chr6: 28917608–29737971 | XXbac-BPG170G13.32/XXbac-BPG170G13.31 (rs2394164) intergenic | 6.40 × 10−9 | 8.60 × 10−44 | H3: 100% |
RA | Chr6: 31571218–32682664 | HLA-DRB1/HLA-DQA1 (rs532965) intergenic | 1.70 × 10−7 | 1.00 × 10−250 | H3: 100% |
RA | Chr6: 32682664–33236497 | HLA-DQB2/HLA-DOB (rs34422230) intergenic | 8.80 × 10−3 | 7.20 × 10−235 | H3: 100% |
RA | Chr6: 158218719–160580497 | RP1-111C20.3/RP11-13P5.1 (rs1994564) intergenic | 1.50 × 10−3 | 1.00 × 10−9 | H3: 100% |
RA | Chr8: 11278998–13491775 | BLK (rs2736345) intronic | 3.70 × 10−6 | 8.60 × 10−7 | H3: 99.9% |
(b) | |||||
Phenotype in Colocalization with GlycA | Genomic Region Chromosome: Base Pairs | Gene (SNP) Function | GlycA p-Value | Other Phenotype p-Value | PP.H4 (Posterior Probability of Shared Causal SNP) or PP.H3 (of SNPs in Same Region) |
Atherosclerosis | Chr4: 155056126–157485097 | FGB (rs6054) Nonsynonymous SNV, exon3 | 1.80 × 10−9 | 6.71 × 10−3 | H3: 94.5% |
Atherosclerosis | Chr6: 158218719–160580497 | SLC22A1 (rs2282143) Nonsynonymous SNV, exon6 | 7.40 × 10−9 | 6.73 × 10−20 | H4: 96.8% |
Atherosclerosis | Chr6: 160580497–162169564 | LPA (rs10455872) intronic | 1.00 × 10−25 | 3.52 × 10−75 | H4: 99.6% |
Atherosclerosis | Chr8: 19469840–20060856 | LPL (rs328) exon9 (stopagain) | 7.90 × 10−36 | 2.97 × 10−5 | H4: 73.7% |
Atherosclerosis | Chr14: 94325285–95750867 | SERPINA1 (rs28929474) Nonsynonymous SNV, exon6 | 3.80 × 10−80 | 5.90 × 10−5 | H4: 97.2% |
Atherosclerosis | Chr19: 8347513–9238393 | ANGPTL4 (rs116843064) Nonsynonymous SNV, exon11 | 4.00 × 10−11 | 4.94 × 10−11 | H4: 100% |
CAD | Chr6: 158218719–160580497 | SLC22A1 (rs2282143) Nonsynonymous SNV, exon6 | 7.40 × 10−9 | 7.35 × 10−42 | H4: 97.5% |
CAD | Chr6: 160580497–162169564 | LPA (rs10455872) intronic | 1.00 × 10−25 | 2.18 × 10−186 | H4: 99.8% |
CAD | Chr8: 19492840–20060856 | LPL (rs328) exon9 (stopagain) | 7.90 × 10−36 | 2.43 × 10−11 | H3: 100% |
CAD | Chr11: 116383348–117747110 | ZNF259 (rs964184) UTR3 | 2.70 × 10−68 | 4.41 × 10−17 | H4: 100% |
CAD | Chr14: 943252885–95750867 | SERPINA1 (rs28929474) Nonsynonymous SNV, exon6 | 3.80 × 10−80 | 5.23 × 10−10 | H4: 99.7% |
CAD | Chr19: 8347513–9238393 | ANGPTL4 (rs116843064) Nonsynonymous SNV, exon11 | 4.00 × 10−11 | 3.56 × 10−21 | H4: 100% |
CAD | Chr22: 43714200–44995308 | PNPLA3 (rs738409) Nonsynonymous SNV, exon3 | 7.50 × 10−11 | 1.13 × 10−5 | H4: 95.4% |
Heart failure | Chr6: 160580497–162169564 | LPA (rs10455872) intronic | 1.00 × 10−25 | 1.89 × 10−11 | H4: 99.7% |
Heart failure | Chr9: 135298842–137041122 | ABO (rs9411378) ncRNA_intronic | 5.80 × 10−9 | 4.11 × 10−9 | H4: 72.2% |
Heart failure | Chr11: 116383348–117747110 | ZNF259 (rs964184) UTR3 | 2.70 × 10−68 | 4.24 × 10−4 | H4: 70.1% |
Heart attack/MI | Chr6: 158218719–160580497 | SLC22A1 (rs3798170) intronic | 2.30 × 10−9 | 1.67 × 10−8 | H4: 96.8% |
Heart attack/MI | Chr6: 160580497–162169564 | LPA (rs10455872) intronic | 1.00 × 10−25 | 2.44 × 10−29 | H4: 99.7% |
(c) | |||||
Cytokine in Colocalization with GlycA | Genomic Region Chromosome: Base Pairs | Gene (SNP) Function | GlycA p-Value | Other Phenotype p-value | PP.H4 (Posterior Probability of Shared Causal SNP) or PP.H3 (of SNPs in Same Region) |
HDL | Chr1: 61922365–63445089 | DOCK7 (rs1167998) intronic | 3.00 × 10−20 | 4.90 × 10−5 | H4: 84.2% |
HDL | Chr2: 21050490–23341383 | APOB (rs676210) Nonsynonymous SNV, exon26 | 2.20 × 10−8 | 4.17 × 10−88 | H4: 99.8% |
HDL | Chr6: 30798168–31571218 | PPP1R18 (rs9262143) Nonsynonymous SNV, exon2 | 2.30 × 10−8 | 1.65 × 10−9 | H3: 100% |
HDL | Chr6: 158218719–160580497 | SLC22A1 (rs12208357) Nonsynonymous SNV, exon1 | 6.20 × 10−9 | 7.53 × 10−7 | H4: 99.8% |
HDL | Chr8: 9154694–9640787 | RP11-115J16.1 (rs4841132) ncRNA_exonic | 3.90 × 10−22 | 1.04 × 10−123 | H4: 97.6% |
HDL | Chr8: 19492840–20060856 | LPL (rs15825) UTR3 | 8.30 × 10−28 | 9.88 × 10−324 | H3: 100% |
HDL | Chr9: 135298842–137041122 | ABO (rs687621) ncRNA_intronic | 6.30 × 10−11 | 4.92 × 10−8 | H4: 99.9% |
HDL | Chr10: 63341695–65794114 | JMJD1C (rs1935) Nonsynonymous SNV, exon26 | 8.90 × 10−11 | 2.59 × 10−6 | H4: 98.7% |
HDL | Chr11: 116383348–117747110 | ZNF259 (rs964184) UTR3 | 2.70 × 10−68 | 2.60 × 10−217 | H4: 100% |
HDL | Chr11: 124495528–126311320 | TIRAP (rs8177399) Nonsynonymous SNV, exon4 | 1.80 × 10−4 | 1.84 × 10−7 | H4: 96.9% |
HDL | Chr15: 42776399–44198049 | MAP1A (rs55707100) Nonsynonymous SNV, exon4 | 1.50 × 10−7 | 2.26 × 10−34 | H4: 100% |
HDL | Chr19: 8347513–9238393 | ANGPTL4 (rs116843064) Nonsynonymous SNV, exon1 | 4.00 × 10−11 | 4.79 × 10−146 | H4: 100% |
HDL | Chr22: 43714200–44995308 | PNPLA3 (rs738409) Nonsynonymous SNV, exon3 | 7.50 × 10−11 | 6.99 × 10−5 | H4: 84.4% |
LDL | Chr1: 61922365–63445089 | DOCK7 (rs2131925) intronic | 1.10 × 10−19 | 1.44 × 10−24 | H4: 99.2% |
LDL | Chr2: 26894985–28598777 | GCKR (rs1260326) Nonsynonymous SNV, exon15 | 2.60 × 10−125 | 7.77 × 10−17 | H4: 100% |
LDL | Chr2: 110572432–113921856 | IL1F10/RNU6–1180P (rs6734238) intergenic | 4.00 × 10−9 | 1.39 × 10−5 | H4: 95.7% |
LDL | Chr4: 155056126–157485097 | FGB (rs6054) Nonsynonymous SNV, exon3 | 1.80 × 10−9 | 2.90 × 10−5 | H4: 98.7% |
LDL | Chr6: 31571218–32682664 | SKIV2L (rs437179) Nonsynonymous SNV, exon8 | 2.40 × 10−19 | 8.16 × 10−6 | H3: 100% |
LDL | Chr6: 32682664–33236497 | TAP12 (rs241447) Nonsynonymous SNV, exon12 | 6.80 × 10−5 | 6.22 × 10−9 | H3: 75.5% |
LDL | Chr6: 158218719–160580497 | SLC22A1 (rs15643438) intronic | 9.80 × 10−6 | 2.11 × 10−38 | H3: 88.0% |
LDL | Chr6: 160580497–162169564 | LPA (rs3798220) Nonsynonymous SNV, exon37 | 6.20 × 10−17 | 5.53 × 10−27 | H4: 99.6% |
LDL | Chr8: 10463197–11278998 | RP1L1 (rs35602868) Nonsynonymous SNV, exon4 | 6.70 × 10−7 | 1.34 × 10−5 | H4: 75.7% |
LDL | Chr10: 63341695–65794114 | JMJD1C (rs1935) Nonsynonymous SNV, exon26 | 8.90 × 10−11 | 6.95 × 10−12 | H4: 99.7% |
LDL | Chr11: 116383348–117747110 | ZNF259 (rs964184) UTR3 | 2.70 × 10−68 | 1.13 × 10−23 | H4: 100% |
LDL | Chr14: 943252885–95750867 | SERPINA1 (rs28929474) Nonsynonymous SNV, exon6 | 3.80 × 10−80 | 4.30 × 10−14 | H4: 100% |
LDL | Chr19: 18409862–19877471 | TM6SF2 (rs58542926) Nonsynonymous SNV, exon6 | 7.80 × 10−13 | 6.48 × 10−93 | H4: 100% |
LDL | Chr22: 43714200–44995308 | PNPLA3 (rs738409) Nonsynonymous SNV, exon3 | 7.50 × 10−11 | 1.00 × 10−8 | H4: 100% |
TGs | Chr1: 25516845–27401867 | NR0B2 (rs6659176) Nonsynonymous SNV, exon1 | 1.30 × 10−6 | 3.27 × 10−9 | H4: 99.8% |
TGs | Chr1: 61922365–63445089 | DOCK7 (rs10889353) intronic | 2.10 × 10−19 | 6.39 × 10−170 | H4: 99.2% |
TGs | Chr2: 21050490–23341383 | APOB (rs676210) Nonsynonymous SNV, exon26 | 2.20 × 10−8 | 4.94 × 10−118 | H4: 99.8% |
TGs | Chr2: 26894985–28598777 | GCKR (rs1260326) Nonsynonymous SNV, exon15 | 2.60 × 10−125 | 9.88 × 10−324 | H4: 100% |
TGs | Chr2: 110572432–113921856 | IL1F10/RNU6–1180P (rs6734238) intergenic | 4.00 × 10−9 | 1.06 × 10−4 | H4: 76.0% |
TGs | Chr2: 201576284–202818637 | CASP8 (rs3769823) Nonsynonymous SNV, exon1 | 1.70 × 10−6 | 1.36 × 10−9 | H4: 99.7% |
TGs | Chr4: 155056126–157485097 | FGB (rs6054) Nonsynonymous SNV, exon3 | 1.80 × 10−9 | 2.53 × 10−11 | H4: 100% |
TGs | Chr6: 31571218–32682664 | SKIV2L (rs419788) intronic | 3020 × 10−19 | 5.49 × 10−14 | H3: 100% |
TGs | Chr6: 158218719–160580497 | SLC22A1 (rs12208357) Nonsynonymous SNV, exon1 | 6.20 × 10−9 | 3.87 × 10−9 | H4: 99.9% |
TGs | Chr7: 71874885–73334602 | MLXIPL (rs35332062) Nonsynonymous SNV, exon4 | 4.10 × 10−56 | 5.22 × 10−205 | H3: 90.3% |
TGs | Chr8: 9154694–9640787 | RP11–115J16.1 (rs4841132) ncRNA_exonic | 3.90 × 10−22 | 1.29 × 10−15 | H4: 97.7% |
TGs | Chr8: 19492840–20060856 | LPL (rs328) exon9 (stopagain) | 7.90 × 10−36 | 9.88 × 10−324 | H4: 100% |
TGs | Chr10: 63341695–65794114 | JMJD1C (rs12355784) intronic | 1.00 × 10−10 | 4.96 × 10−13 | H4: 99.6% |
TGs | Chr11: 116383348–117747110 | ZNF259 (rs964184) UTR3 | 2.70 × 10−68 | 9.88 × 10−324 | H4: 100% |
TGs | Chr15: 42776399–44198049 | MAP1A (rs55707100) Nonsynonymous SNV, exon4 | 1.50 × 10−7 | 8.60 × 10−54 | H4: 100% |
TGs | Chr19: 8347513–9238393 | ANGPTL4 (rs116843064) Nonsynonymous SNV, exon11 | 4.00 × 10−11 | 4.19 × 10−175 | H4: 100% |
TGs | Chr19: 18409862–19877471 | TM6SF2 (rs58542926) Nonsynonymous SNV, exon6 | 7.80 × 10−13 | 3.75 × 10−125 | H4: 100% |
TGs | Chr20: 39610856–40585689 | PLGC1 (rs738409) Nonsynonymous SNV, exon21 | 2.80 × 10−7 | 1.12 × 10−5 | H4: 99.6% |
TGs | Chr22: 43714200–44995308 | PNPLA3 (rs738409) Nonsynonymous SNV, exon3 | 7.50 × 10−11 | 4.35 × 10−9 | H4: 100% |
TC | Chr1: 61922365–63445089 | DOCK7 (rs10889353) intronic | 2.10 × 10−19 | 9.15 × 10−158 | H4: 99.2% |
TC | Chr2: 26894985–28598777 | GCKR (rs1260326) Nonsynonymous SNV, exon15 | 2.60 × 10−125 | 5.25 × 10−102 | H4: 100% |
TC | Chr3: 49316972–51832015 | GRM2 (rs116567227) Nonsynonymous SNV, exon2 | 7.70 × 10−4 | 6.01 × 10−7 | H3: 83.2% |
TC | Chr4: 155056126–157485097 | FGB (rs6054) Nonsynonymous SNV, exon3 | 1.80 × 10−9 | 4.79 × 10−12 | H4: 100% |
TC | Chr6: 31571218–32682664 | SKIV2L (rs437179) Nonsynonymous SNV, exon8 | 2.40 × 10−19 | 5.03 × 10−14 | H3: 100% |
TC | Chr6: 158218719–160580497 | SLC22A1 (rs15643438) intronic | 9.80 × 10−6 | 3.52 × 10−37 | H3: 88.0% |
TC | Chr8: 9154694–9640787 | RP11-115J16.1 (rs4841132) ncRNA_exonic | 3.90 × 10−22 | 2.09 × 10−69 | H4: 98.1% |
TC | Chr10: 63341695–65794114 | JMJD1C (rs1935) Nonsynonymous SNV, exon26 | 8.90 × 10−11 | 3.11 × 10−5 | H4: 81.2% |
TC | Chr11: 116383348–117747110 | ZNF259 (rs964184) UTR3 | 2.70 × 10−68 | 4.71 × 10−135 | H4: 100% |
TC | Chr14: 943252885–95750867 | SERPINA1 (rs28929474) Nonsynonymous SNV, exon6 | 3.80 × 10−80 | 5.53 × 10−14 | H4: 100% |
TC | Chr19: 18409862–19877471 | TM6SF2 (rs28929474) Nonsynonymous SNV, exon6 | 7.80 × 10−13 | 7.03 × 10−155 | H4: 100% |
TC | Chr20: 39610856–40585689 | PLCG1 (rs755381) Nonsynonymous SNV, exon21 | 2.80 × 10−7 | 6.66 × 10−47 | H4: 99.9% |
TC | Chr22: 43714200–44995308 | PNPLA3 (rs738409) Nonsynonymous SNV, exon3 | 7.50 × 10−11 | 1.69 × 10−21 | H4: 100% |
(d) | |||||
Cytokine in Colocalization with RA | Genomic Region Chromosome: Base Pairs | Gene (SNP) Function | RA p-Value | Other Phenotype p-Value | PP.H4 (Posterior Probability of Shared Causal SNP) or PP.H3 (of SNPs in Same Region) |
Atherosclerosis | Chr6: 158218719–160580497 | IGF2R (rs2230044) Synonymous SNV, exon33 | 1.30 × 10−3 | 2.14 × 10−19 | H3: 100% |
CAD | Chr1: 1892607–3582736 | SKI/MORN1 (rs2643905) intergenic | 4.00 × 10−4 | 1.97 × 10−11 | H3: 100% |
CAD | Chr1: 37549183–38731847 | INPP5B (rs35267671) Nonsynonymous SNV, exon7 | 7.00 × 10−3 | 2.90 × 10−11 | H3: 100% |
CAD | Chr1: 113273306–114873845 | MAGI3 (rs183352775) intronic | 4.10 × 10−50 | 1.69 × 10−5 | H3: 100% |
CAD | Chr6: 31571218–32682664 | HLA-DRB1/HLA-DQA1 (rs532965) intergenic | 1.00 × 10−250 | 1.37 × 10−2 | H3: 99.7% |
CAD | Chr6: 158218719–160580497 | SLC22A1 (rs2282143) Nonsynonymous SNV, exon6 | 1.80 × 10−2 | 7.35 × 10−42 | H3: 100% |
CAD | Chr15: 38530777–40384132 | RASGRP1 (rs72727388) intronic | 1.80 × 10−11 | 2.70 × 10−6 | H4: 96.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasher, M.; Freidin, M.B.; Williams, F.M.K.; Cherny, S.S.; Ashkenazi, S.; Livshits, G. Glycoprotein Acetyls Is a Novel Biomarker Predicting Cardiovascular Complications in Rheumatoid Arthritis. Int. J. Mol. Sci. 2024, 25, 5981. https://doi.org/10.3390/ijms25115981
Kasher M, Freidin MB, Williams FMK, Cherny SS, Ashkenazi S, Livshits G. Glycoprotein Acetyls Is a Novel Biomarker Predicting Cardiovascular Complications in Rheumatoid Arthritis. International Journal of Molecular Sciences. 2024; 25(11):5981. https://doi.org/10.3390/ijms25115981
Chicago/Turabian StyleKasher, Melody, Maxim B. Freidin, Frances M. K. Williams, Stacey S. Cherny, Shai Ashkenazi, and Gregory Livshits. 2024. "Glycoprotein Acetyls Is a Novel Biomarker Predicting Cardiovascular Complications in Rheumatoid Arthritis" International Journal of Molecular Sciences 25, no. 11: 5981. https://doi.org/10.3390/ijms25115981
APA StyleKasher, M., Freidin, M. B., Williams, F. M. K., Cherny, S. S., Ashkenazi, S., & Livshits, G. (2024). Glycoprotein Acetyls Is a Novel Biomarker Predicting Cardiovascular Complications in Rheumatoid Arthritis. International Journal of Molecular Sciences, 25(11), 5981. https://doi.org/10.3390/ijms25115981