Exploring the Pathogenesis of Spondylarthritis beyond HLA-B27: A Descriptive Review
Abstract
:1. Introduction
1.1. The Prevalence and Economic Burden of Spondylarthritis
1.2. HLA-B27 and Spondylarthritis
2. Various Genetic Factors, Other Than HLA-B*27, Are Involved in the Development of Spondylarthritis
2.1. The Involvement of the IL-23R Pathway in AS Pathogenesis
2.2. Role of Aminopeptidases—A HLA-B27-Dependent Mechanism and Beyond
- ERAP1
- ERAP2
- MICA
2.3. The Involvement of Non-B27 MHC Class I
- HLA-B7 CREG
- HLA-B16 (B38, B39)
- HLA-B15
- HLA-B40 (B60, B61)
- HLA-B51
- Other MHC I Alleles
2.4. The Involvement of MHC Class II
3. The Complex Relationship between Gut Microbiome Dysbiosis and Spondylarthritis Development
HLA-B27 and Its Potential Role in Intestinal Microbial Dysbiosis
4. Environmental Triggers of Spondyloarthropathies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Proft, F.; Poddubnyy, D. Ankylosing spondylitis and axial spondyloarthritis: Recent insights and impact of new classification criteria. Ther. Adv. Musculoskelet. Dis. 2018, 10, 129–139. [Google Scholar] [CrossRef] [PubMed]
- El Maghraoui, A. Extra-articular manifestations of ankylosing spondylitis: Prevalence, characteristics and therapeutic implications. Eur. J. Intern. Med. 2011, 22, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Essers, I.; Ramiro, S.; Stolwijk, C.; Blaauw, M.; Landewé, R.; van der Heijde, D.; Bosch, F.V.D.; Dougados, M.; van Tubergen, A. Characteristics associated with the presence and development of extra-articular manifestations in ankylosing spondylitis: 12-year results from OASIS. Rheumatology 2015, 54, 633–640. [Google Scholar] [CrossRef] [PubMed]
- de Winter, J.J.; van Mens, L.J.; van der Heijde, D.; Landewé, R.; Baeten, D.L. Prevalence of peripheral and extra-articular disease in ankylosing spondylitis versus non-radiographic axial spondyloarthritis: A meta-analysis. Arthritis Res. Ther. 2016, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Juanola, X.; Santamaría, E.L.; Cordero-Coma, M. Description and Prevalence of Spondyloarthritis in Patients with Anterior Uveitis: The SENTINEL Interdisciplinary Collaborative Project. Ophthalmology 2016, 123, 1632–1636. [Google Scholar] [CrossRef]
- Rudwaleit, M.; van der Heijde, D.; Landewe, R.; Listing, J.; Akkoc, N.; Brandt, J.; Braun, J.; Chou, C.T.; Collantes-Estevez, E.; Dougados, M.; et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): Validation and final selection. Ann. Rheum. Dis. 2009, 68, 777–783. [Google Scholar] [CrossRef]
- Rudwaleit, M.; van der Heijde, D.; Landewe, R.; Akkoc, N.; Brandt, J.; Chou, C.T.; Dougados, M.; Huang, F.; Gu, J.; Kirazli, Y.; et al. The Assessment of SpondyloArthritis international Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 2011, 70, 25–31. [Google Scholar] [CrossRef]
- Sepriano, A.; Ramiro, S.; van der Heijde, D.; van Gaalen, F.; Hoonhout, P.; Molto, A.; Saraux, A.; Ramonda, R.; Dougados, M.; Landewé, R. What is axial spondyloarthritis? A latent class and transition analysis in the SPACE and DESIR cohorts. Ann. Rheum. Dis. 2020, 79, 324–331. [Google Scholar] [CrossRef]
- Deodhar, A.; Reveille, J.D.; Bosch, F.v.D.; Braun, J.; Burgos-Vargas, R.; Caplan, L.; Clegg, D.O.; Colbert, R.A.; Gensler, L.S.; van der Heijde, D.; et al. The Concept of Axial Spondyloarthritis: Joint Statement of the Spondyloarthritis Research and Treatment Network and the Assessment of SpondyloArthritis international Society in Response to the US Food and Drug Administration’s Comments and Concerns. Arthritis Rheumatol. 2014, 66, 2649–2656. [Google Scholar] [CrossRef]
- Van Der Linden, S.; Valkenburg, H.A.; Cats, A. Evaluation of Diagnostic Criteria for Ankylosing Spondylitis. Arthritis Rheum. 1984, 27, 361–368. [Google Scholar] [CrossRef]
- Klingberg, E.; Sveälv, B.G.; Täng, M.S.; Bech-Hanssen, O.; Forsblad-D’Elia, H.; Bergfeldt, L. Aortic Regurgitation Is Common in Ankylosing Spondylitis: Time for Routine Echocardiography Evaluation? Am. J. Med. 2015, 128, 1244–1250.e1. [Google Scholar] [CrossRef] [PubMed]
- Feldtkeller, E.; Khan, M.; van der Heijde, D.; van der Linden, S.; Braun, J. Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol. Int. 2003, 23, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Nikiphorou, E.; Ramiro, S.; Van Der Heijde, D.; Norton, S.; Moltó, A.; Dougados, M.; Bosch, F.V.D.; Landewé, R.; The Assessment of SpondyloArthritis International Society Comorbidities in Spondyloarthritis Study Task Force. Association of Comorbidities in Spondyloarthritis with Poor Function, Work Disability, and Quality of Life: Results from the Assessment of SpondyloArthritis International Society Comorbidities in Spondyloarthritis Study. Arthritis Care Res. 2018, 70, 1257–1262. [Google Scholar] [CrossRef]
- Hay, C.A.; Ryan, S.; Packham, J.; Mallen, C.D.; Prior, J.A. P275 The extent and characteristics of diagnostic delay in axSpA: A systematic review. Rheumatology 2020, 59, keaa111.268. [Google Scholar] [CrossRef]
- Stolwijk, C.; van Onna, M.; Boonen, A.; van Tubergen, A. Global Prevalence of Spondyloarthritis: A Systematic Review and Meta-Regression Analysis. Arthritis Care Res. 2016, 68, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.Y.; Tam, L.-S.; Lee, V.W.-Y.; Hwang, W.W.; Li, T.K.; Lee, K.K.; Li, E.K. Costs and quality of life of patients with ankylosing spondylitis in Hong Kong. Rheumatology 2008, 47, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Palla, I.; Trieste, L.; Tani, C.; Talarico, R.; Cortesi, P.A.; Mosca, M.; Turchetti, G. A Systematic Literature Review of the Economic Impact of Ankylosing Spondylitis. Clin. Exp. Rheumatol. 2012, 30 (Suppl. 73), S136–S141. Available online: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L366151455 (accessed on 10 May 2024).
- Azevedo, V.F.; Rossetto, C.N.; Lorencetti, P.G.; Tramontin, M.Y.; Fornazari, B.; Araújo, D.V. Indirect and direct costs of treating patients with ankylosing spondylitis in the Brazilian public health system. Rev. Bras. Reum. 2016, 56, 131–137. [Google Scholar] [CrossRef]
- Kwan, Y.H.; Kwoh, S.Y.; Phang, J.K.; Cheen, M.H.H.; Lim, K.K.; Wang, C.T.M.; Leung, Y.Y.; Koh, H.; Ostbye, T.; Thumboo, J.; et al. The direct and indirect costs of axial spondyloarthritis (axSpA) in Singapore. Int. J. Rheum. Dis. 2020, 23, 334–341. [Google Scholar] [CrossRef]
- Boonen, A.; van der Heijde, D.; Landewé, R.; Guillemin, F.; Mölken, M.R.-V.; Dougados, M.; Mielants, H.; de Vlam, K.; van der Tempel, H.; Boesen, S.; et al. Direct costs of ankylosing spondylitis and its determinants: An analysis among three European countries. Ann. Rheum. Dis. 2003, 62, 732–740. [Google Scholar] [CrossRef]
- Krüger, K.; von Hinüber, U.; Meier, F.; Tian, H.; Böhm, K.; Jugl, S.M.; Borchert, K.; Meise, D.; König, C.; Braun, S. Ankylosing spondylitis causes high burden to patients and the healthcare system: Results from a German claims database analysis. Rheumatol. Int. 2018, 38, 2121–2131. [Google Scholar] [CrossRef]
- Śliwczyński, A.; Raciborski, F.; Kłak, A.; Brzozowska, M.; Czeleko, T.; Kwiatkowska, B.; Jędrzejczyk, T.; Marczak, M. Prevalence of ankylosing spondylitis in Poland and costs generated by AS patients in the public healthcare system. Rheumatol. Int. 2015, 35, 1361–1367. [Google Scholar] [CrossRef]
- Santos-Moreno, P.; Parra-Padilla, D.; la Rosa, F.G.-D.; Carrasquilla-Sotomayor, M.; Villarreal, L.; Jervis-Jalabe, D.S.; Alvis-Zakzuk, N.J. Direct Medical Costs and Healthcare Resource Utilization of Treating Patients With Two Clinical Subtypes of Axial Spondyloarthritis in Colombia. Value Health Reg. Issues 2022, 32, 88–94. [Google Scholar] [CrossRef]
- Yi, E.; Ahuja, A.; Rajput, T.; George, A.T.; Park, Y. Clinical, Economic, and Humanistic Burden Associated With Delayed Diagnosis of Axial Spondyloarthritis: A Systematic Review. Rheumatol. Ther. 2020, 7, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Mennini, F.S.; Viti, R.; Marcellusi, A.; Sciattella, P.; Viapiana, O.; Rossini, M. Economic evaluation of spondyloarthritis: Economic impact of diagnostic delay in Italy. Clin. Outcomes Res. 2018, 10, 45–51. [Google Scholar] [CrossRef]
- Webers, C.; Grimm, S.; van Tubergen, A.; van Gaalen, F.; van der Heijde, D.; Joore, M.; Boonen, A. The value of correctly diagnosing axial spondyloarthritis for patients and society. Semin. Arthritis Rheum. 2023, 62, 152242. [Google Scholar] [CrossRef]
- Tsui, F.W.; Tsui, H.W.; Akram, A.; Haroon, N.; Inman, R.D. The genetic basis of ankylosing spondylitis: New insights into disease pathogenesis. Appl. Clin. Genet. 2014, 7, 105–115. [Google Scholar] [CrossRef]
- Cortes, A.; Hadler, J.; Pointon, J.P.; Robinson, P.C.; Karaderi, T.; Leo, P.; Cremin, K.; Pryce, K.; Harris, J.; Lee, S.; et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 2013, 45, 730–738. [Google Scholar] [CrossRef]
- Brewerton, D.A.; Caffrey, M.; Hart, F.D.; James, D.C.O. Ankylosing spondylitis and HL-A27. Lancet 1973, 1, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Schlosstein, L.; Terasaki, P.I.; Bluestone, R.; Pearson, C.M. High association of an HL-A antigen W27, with ankylosing spondylitis. N. Eng. J. Med. 1973, 288, 704–705. [Google Scholar] [CrossRef]
- Colbert, R.A.; Navid, F.; Gill, T. The role of HLA-B*27 in spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 2018, 31, 797–815. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.L.; O’Callaghan, C.A.; McMichael, A.J.; Bowness, P. Cutting Edge: HLA-B27 can Form a Novel Beta 2-Microglobulin-free Heavy Chain Homodimer Structure. J. Immunol. 1999, 162, 5045–5048. Available online: http://www.ncbi.nlm.nih.gov/pubmed/10227970 (accessed on 15 November 2023). [CrossRef] [PubMed]
- Antoniou, A.N.; Ford, S.; Taurog, J.D.; Butcher, G.W.; Powis, S.J. Formation of HLA-B27 Homodimers and Their Relationship to Assembly Kinetics. J. Biol. Chem. 2004, 279, 8895–8902. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Pile, K.D.; Kennedy, L.G.; Calin, A.; Darke, C.; Bell, J.; Wordsworth, B.P.; Cornelis, F. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann. Rheum. Dis. 1996, 55, 268–270. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Peng, L.; Su, J.; Zeng, X.; Li, M.; Wu, Z.; Xu, J.; Yang, M.; Wu, L.; et al. Comparison of Clinical Features in HLA-B27 Positive and Negative Patients With Axial Spondyloarthritis: Results From a Cohort of 4,131 Patients. Front. Med. 2020, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rudwaleit, M.; Haibel, H.; Baraliakos, X.; Listing, J.; Märker-Hermann, E.; Zeidler, H.; Braun, J.; Sieper, J. The early disease stage in axial spondylarthritis: Results from the german spondyloarthritis inception cohort. Arthritis Rheum. 2009, 60, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Machado, P.; van der Heijde, D.; D’Agostino, M.-A.; Dougados, M. HLA-B27 positive patients differ from HLA-B27 negative patients in clinical presentation and imaging: Results from the DESIR cohort of patients with recent onset axial spondyloarthritis. Ann. Rheum. Dis. 2011, 70, 1930–1936. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Li, Z.; Cao, K.-A.L. Biomarker development for axial spondyloarthritis. Nat. Rev. Rheumatol. 2020, 16, 448–463. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.C.; Ridley, L.; Reveille, J.D. Ankylosing spondylitis risk factors: A systematic literature review. Clin. Rheumatol. 2021, 40, 3079–3093. [Google Scholar] [CrossRef] [PubMed]
- Wordsworth, B.P.; Cohen, C.J.; Davidson, C.; Vecellio, M. Perspectives on the Genetic Associations of Ankylosing Spondylitis. Front. Immunol. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Brown, M.A.; Xu, H.; Li, Z. Genetics and the axial spondyloarthritis spectrum. Rheumatology 2020, 59, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Busch, R.; Kollnberger, S.; Mellins, E.D. HLA associations in inflammatory arthritis: Emerging mechanisms and clinical implications. Nat. Rev. Rheumatol. 2019, 15, 364–381. [Google Scholar] [CrossRef] [PubMed]
- Costantino, F.; Breban, M.; Garchon, H.-J. Genetics and Functional Genomics of Spondyloarthritis. Front. Immunol. 2018, 9, 2933. [Google Scholar] [CrossRef] [PubMed]
- Simone, D.; Al Mossawi, M.H.; Bowness, P. Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatology 2018, 57, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Cortes, A.; Brown, M.A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 2010, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Uitterlinden, A.G. An Introduction to Genome-Wide Association Studies: GWAS for Dummies. Semin. Reprod. Med. 2016, 34, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Burton, P.R.; Clayton, D.G.; Cardon, L.R.; Craddock, N.; Deloukas, P.; Duncanson, A.; Ward, M.M.; Learch, T.L.; Weisman, M.H.; Brown, M.; et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 2007, 39, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- The Australo-Anglo-American Spondyloarthritis Consortium (TASC) Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 2010, 42, 123–127. [CrossRef] [PubMed]
- Lin, Z.; Bei, J.-X.; Shen, M.; Li, Q.; Liao, Z.; Zhang, Y.; Lv, Q.; Wei, Q.; Low, H.-Q.; Guo, Y.-M.; et al. A genome-wide association study in Han Chinese identifies new susceptibility loci for ankylosing spondylitis. Nat. Genet. 2012, 44, 73–77. [Google Scholar] [CrossRef]
- Robinson, P.C.; Costello, M.E.; Leo, P.; Bradbury, L.A.; Hollis, K.; Cortes, A.; Lee, S.; Joo, K.B.; Shim, S.C.; Weisman, M.; et al. ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann. Rheum. Dis. 2015, 74, 1627–1629. [Google Scholar] [CrossRef]
- Ellinghaus, D.; Jostins, L.; Spain, S.L.; Cortes, A.; Bethune, J.; Han, B.; Park, Y.R.; Raychaudhuri, S.; Pouget, J.G.; Hübenthal, M.; et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 2016, 48, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Akar, S.; Yarkan, H.; Lee, S.K.; Çetin, P.; Can, G.; Kenar, G.; Çapa, F.; Pamuk, O.N.; Pehlivan, Y.; et al. Genome-wide association study in Turkish and Iranian populations identify rare familial Mediterranean fever gene (MEFV) polymorphisms associated with ankylosing spondylitis. PLoS Genet. 2019, 15, e1008038. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kim, T.-H.; Li, Z.; Cortes, A.; Kim, K.; Bang, S.-Y.; Leo, P.; Brown, M.A.; Xu, H. MHC associations of ankylosing spondylitis in East Asians are complex and involve non-HLA-B27 HLA contributions. Arthritis Res. Ther. 2020, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cortes, A.; Pulit, S.L.; Leo, P.J.; Pointon, J.J.; Robinson, P.C.; Weisman, M.H.; Ward, M.; Gensler, L.S.; Zhou, X.; Garchon, H.-J.; et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun. 2015, 6, 7146. [Google Scholar] [CrossRef] [PubMed]
- Reveille, J.D.; Zhou, X.; Lee, M.; Weisman, M.H.; Yi, L.; Gensler, L.S.; Zou, H.; Ward, M.M.; Ishimori, M.L.; Learch, T.J.; et al. HLA class I and II alleles in susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 2018, 78, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.M.; Spencer, C.C.; Pointon, J.J.; Su, Z.; Harvey, D.; Kochan, G.; Oppermann, U.; Dilthey, A.; Pirinen, M.; Stone, M.A.; et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 2011, 43, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Sutton, C.E.; Lalor, S.J.; Sweeney, C.M.; Brereton, C.F.; Lavelle, E.C.; Mills, K.H. Interleukin-1 and IL-23 Induce Innate IL-17 Production from γδ T Cells, Amplifying Th17 Responses and Autoimmunity. Immunity 2009, 31, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Sewell, G.W.; Kaser, A. Interleukin-23 in the Pathogenesis of Inflammatory Bowel Disease and Implications for Therapeutic Intervention. J. Crohn’s Colitis 2022, 16 (Suppl. 2), ii3–ii19. [Google Scholar] [CrossRef]
- Mizuki, N.; Meguro, A.; Ota, M.; Ohno, S.; Shiota, T.; Kawagoe, T.; Ito, N.; Kera, J.; Okada, E.; Yatsu, K.; et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat. Genet. 2010, 42, 703–706. [Google Scholar] [CrossRef]
- Hüffmeier, U.; Lascorz, J.; Böhm, B.; Lohmann, J.; Wendler, J.; Mössner, R.; Reich, K.; Traupe, H.; Kurrat, W.; Burkhardt, H.; et al. Genetic Variants of the IL-23R Pathway: Association with Psoriatic Arthritis and Psoriasis Vulgaris, but No Specific Risk Factor for Arthritis. J. Investig. Dermatol. 2009, 129, 355–358. [Google Scholar] [CrossRef]
- Karaderi, T.; Harvey, D.; Farrar, C.; Appleton, L.H.; Stone, M.A.; Sturrock, R.D.; Brown, M.A.; Wordsworth, P.; Pointon, J.J. Association between the interleukin 23 receptor and ankylosing spondylitis is confirmed by a new UK case-control study and meta-analysis of published series. Rheumatology 2009, 48, 386–389. [Google Scholar] [CrossRef]
- Rueda, B.; Orozco, G.; Raya, E.; Fernandez-Sueiro, J.L.; Mulero, J.; Blanco, F.J.; Vilches, C.; Gonzalez-Gay, M.A.; Martin, J. The IL23R Arg381Gln non-synonymous polymorphism confers susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 2008, 67, 1451–1454. [Google Scholar] [CrossRef] [PubMed]
- Rahman, P.; Inman, R.D.; Gladman, D.D.; Reeve, J.P.; Peddle, L.; Maksymowych, W.P. Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum. 2008, 58, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Santos, F.M.; Ligeiro, D.; Matos, M.; Mourão, A.F.; Sousa, E.; Pinto, P.; Ribeiro, A.; Sousa, M.; Barcelos, A.; Godinho, F.; et al. Association of IL23R and ERAP1 genes with ankylosing spondylitis in a Portuguese population. Clin. Exp. Rheumatol. 2009, 27, 800–806. [Google Scholar] [PubMed]
- Sung, I.-H.; Bang, S.-Y.; Kim, T.-J.; Lee, B.; Peddle, L.; Rahman, P.; Greenwood, C.M.; Hu, P.; Inman, R.D. IL-23R Polymorphisms in Patients with Ankylosing Spondylitis in Korea. J. Rheumatol. 2009, 36, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.I.; Wu, X.; Liu, Y.; Wei, M.; Danoy, P.A.; Thomas, G.; Cai, Q.; Sun, L.; Duncan, E.; Wang, N.; et al. Association of ERAP1, but not IL23R, with ankylosing spondylitis in a Han Chinese population. Arthritis Rheum. 2009, 60, 3263–3268. [Google Scholar] [CrossRef]
- Su, S.-S.; Wang, S.-L.; Lu, L.-J.; Lin, L. Association of Interleukin-23 Receptor Gene Single Nucleotide Polymorphisms with Ankylosing Spondylitis. Ann. Clin. Lab. Sci. 2016, 46, 470–473. [Google Scholar] [PubMed]
- Qian, B.-P.; Jiang, J.; Ji, M.-L.; Wang, B.; Yu, Y.; Qiu, Y. Lack of associations between two previously identified susceptible single nucleotide polymorphisms of interleukin-23 receptor gene and ankylosing spondylitis: A replication study in a Chinese Han population. BMC Musculoskelet. Disord. 2013, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.I.; Jiang, L.; Cortes, A.; Wu, X.; Glazov, E.A.; Zheng, Y.; Danoy, P.A.; Liu, Y.; Thomas, G.P.; Brown, M.A.; et al. Brief Report: High-Throughput Sequencing of IL23R Reveals a Low-Frequency, Nonsynonymous Single-Nucleotide Polymorphism That Is Associated with Ankylosing Spondylitis in a Han Chinese Population. Arthritis Rheum. 2013, 65, 1747–1752. [Google Scholar] [CrossRef]
- Mathioudaki, A.; Nordin, J.; Kastbom, A.; Söderkvist, P.; Eriksson, P.; Cedergren, J.; Lindblad-Toh, K.; Meadows, J. Allele frequency spectrum of known ankylosing spondylitis associated variants in a Swedish population. Scand. J. Rheumatol. 2021, 51, 21–24. [Google Scholar] [CrossRef]
- Wong, R.-H.; Wei, J.C.-C.; Huang, C.-H.; Lee, H.-S.; Chiou, S.-Y.; Lin, S.-H.; Cai, Y.-W.; Hung, P.-H.; Wang, M.-F.; Yang, S.-F. Association of IL-12B Genetic Polymorphism with the Susceptibility and Disease Severity of Ankylosing Spondylitis. J. Rheumatol. 2012, 39, 135–140. [Google Scholar] [CrossRef]
- Paladini, F.; Fiorillo, M.T.; Tedeschi, V.; Mattorre, B.; Sorrentino, R. The Multifaceted Nature of Aminopeptidases ERAP1, ERAP2, and LNPEP: From Evolution to Disease. Front. Immunol. 2020, 11, 1576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dai, D.; Yu, K.; Yuan, F.; Jin, J.; Ding, L.; Hao, Y.; Liang, F.; Liu, N.; Zhao, X.; et al. Association of HLA-B27 and ERAP1 with ankylosing spondylitis susceptibility in Beijing Han Chinese. Tissue Antigens 2014, 83, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lin, Z.; Xie, Y.; Guo, Z.; Huang, J.; Wei, Q.; Li, Q.X.; Wang, X.; Cao, S.; Liao, Z.; et al. ERAP1 Is Associated with Ankylosing Spondylitis in Han Chinese. J. Rheumatol. 2011, 38, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.-Y.; Kim, T.-H.; Lee, B.; Kwon, E.; Choi, S.H.; Lee, K.S.; Shim, S.C.; Pope, A.; Rahman, P.; Reveille, J.D.; et al. Genetic Studies of Ankylosing Spondylitis in Koreans Confirm Associations with ERAP1 and 2p15 Reported in White Patients. J. Rheumatol. 2011, 38, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Maksymowych, W.P.; Inman, R.D.; Gladman, D.D.; Reeve, J.P.; Pope, A.; Rahman, P. Association of a specific ERAP1/ARTS1 haplotype with disease susceptibility in ankylosing spondylitis. Arthritis Rheum. 2009, 60, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Kadi, A.; Izac, B.; Said-Nahal, R.; Leboime, A.; Van Praet, L.; de Vlam, K.; Elewaut, D.; Chiocchia, G.; Breban, M. Investigating the genetic association between ERAP1 and spondyloarthritis. Ann. Rheum. Dis. 2013, 72, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Costantino, F.; Talpin, A.; Evnouchidou, I.; Kadi, A.; Leboime, A.; Said-Nahal, R.; Bonilla, N.; Letourneur, F.; Leturcq, T.; Ka, Z.; et al. ERAP1 Gene Expression Is Influenced by Nonsynonymous Polymorphisms Associated with Predisposition to Spondyloarthritis. Arthritis Rheumatol. 2015, 67, 1525–1534. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Wang, J.; Gao, X. Association between ERAP1 gene polymorphisms and ankylosing spondylitis susceptibility in Han population. Int. J. Clin. Exp. Pathol. 2015, 8, 11641–11646. [Google Scholar] [PubMed]
- Wang, C.-M.; Ho, H.-H.; Chang, S.-W.; Wu, Y.-J.J.; Lin, J.-C.; Chang, P.-Y.; Wu, J.; Chen, J.-Y. ERAP1 genetic variations associated with HLA-B27 interaction and disease severity of syndesmophytes formation in Taiwanese ankylosing spondylitis. Arthritis Res. Ther. 2012, 14, R125. [Google Scholar] [CrossRef]
- Wiśniewski, A.; Kasprzyk, S.; Majorczyk, E.; Nowak, I.; Wilczyńska, K.; Chlebicki, A.; Zoń-Giebel, A.; Kuśnierczyk, P. ERAP1-ERAP2 haplotypes are associated with ankylosing spondylitis in Polish patients. Hum. Immunol. 2019, 80, 339–343. [Google Scholar] [CrossRef]
- Harvey, D.; Pointon, J.J.; Evans, D.M.; Karaderi, T.; Farrar, C.; Appleton, L.H.; Sturrock, R.D.; Stone, M.A.; Oppermann, U.; Brown, M.A.; et al. Investigating the genetic association between ERAP1 and ankylosing spondylitis. Hum. Mol. Genet. 2009, 18, 4204–4212. [Google Scholar] [CrossRef] [PubMed]
- CChoi, C.-B.; Kim, T.-H.; Jun, J.-B.; Lee, H.-S.; Shim, S.C.; Lee, B.; Pope, A.; Uddin, M.; Rahman, P.; Inman, R.D. ARTS1 polymorphisms are associated with ankylosing spondylitis in Koreans. Ann. Rheum. Dis. 2009, 69, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Babaie, F.; Ebrazeh, M.; Hemmatzadeh, M.; Mohammadi, F.S.; Shabgah, A.G.; Hajaliloo, M.; Ebrahimi, A.A.; Shirafkan, N.; Azizi, G.; Mohammadi, H.; et al. Association analysis of ERAP1 gene single nucleotide polymorphism in susceptibility to ankylosing spondylitis in Iranian population. Immunol. Lett. 2018, 201, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Li, C.; Wang, G.; Zhu, X. Functional genomics research of NPEPPS gene in the pathogenesis of ankylosing spondylitis. J. Wezhou Med. Univ. 2021, 51, 181–187. [Google Scholar] [CrossRef]
- Bowness, P. HLA-B27. Annu. Rev. Immunol. 2015, 33, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Martín-Esteban, A.; Guasp, P.; Barnea, E.; Admon, A.; de Castro, J.A.L. Functional Interaction of the Ankylosing Spondylitis–Associated Endoplasmic Reticulum Aminopeptidase 2 with the HLA–B*27 Peptidome in Human Cells. Arthritis Rheumatol. 2016, 68, 2466–2475. [Google Scholar] [CrossRef] [PubMed]
- Ombrello, M.J.; Kastner, D.L.; Remmers, E.F. Endoplasmic reticulum-associated amino-peptidase 1 and rheumatic disease. Curr. Opin. Rheumatol. 2015, 27, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Popa, O.M.; Cherciu, M.; Cherciu, L.I.; Dutescu, M.I.; Bojinca, M.; Bojinca, V.; Bara, C.; Popa, L.O. ERAP1 and ERAP2 Gene Variations Influence the Risk of Psoriatic Arthritis in Romanian Population. Arch. Immunol. Ther. Exp. 2016, 64, 123–129. [Google Scholar] [CrossRef] [PubMed]
- de Castro, J.A.L. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins. Front. Immunol. 2018, 9, 2463. [Google Scholar] [CrossRef]
- Tran, T.M.; Gill, T.; Bennett, J.; Hong, S.; Holt, V.; Lindstedt, A.J.; Bakshi, S.; Sikora, K.; Taurog, J.D.; Breban, M.; et al. Paradoxical Effects of Endoplasmic Reticulum Aminopeptidase 1 Deficiency on HLA–B27 and Its Role as an Epistatic Modifier in Experimental Spondyloarthritis. Arthritis Rheumatol. 2023, 75, 220–231. [Google Scholar] [CrossRef]
- Chen, L.; Ridley, A.; Hammitzsch, A.; Al-Mossawi, M.H.; Bunting, H.; Georgiadis, D.; Chan, A.; Kollnberger, S.; Bowness, P. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis. Ann. Rheum. Dis. 2016, 75, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Hemmatzadeh, M.; Babaie, F.; Ezzatifar, F.; Mohammadi, F.S.; Ebrazeh, M.; Aghdam, S.G.; Hajaliloo, M.; Azizi, G.; Shabgah, A.G.; Shekari, N.; et al. Susceptibility to ERAP1 gene single nucleotide polymorphism modulates the inflammatory cytokine setting in ankylosing spondylitis. Int. J. Rheum. Dis. 2019, 22, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Strange, A.; Capon, F.; Spencer, C.C.; Knight, J.; Weale, M.E.; Allen, M.H.; Barton, A.; Band, G.; Bellenguez, C.; Bergboer, J.G.; et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 2010, 42, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Kirino, Y.; Bertsias, G.; Ishigatsubo, Y.; Mizuki, N.; Tugal-Tutkun, I.; Seyahi, E.; Ozyazgan, Y.; Sacli, F.S.; Erer, B.; Inoko, H.; et al. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet. 2013, 45, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, M.; Schuster, H.; Backert, L.; Ghosh, M.; Rammensee, H.-G.; Stevanović, S. Unveiling the Peptide Motifs of HLA-C and HLA-G from Naturally Presented Peptides and Generation of Binding Prediction Matrices. J. Immunol. 2017, 199, 2639–2651. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, A.; Reeves, E.; Vollmer, S.; Arakawa, Y.; He, M.; Galinski, A.; Stöhr, J.; Dornmair, K.; James, E.; Prinz, J.C. ERAP1 Controls the Autoimmune Response against Melanocytes in Psoriasis by Generating the Melanocyte Autoantigen and Regulating Its Amount for HLA-C*06:02 Presentation. J. Immunol. 2021, 207, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Du, L.; Liu, S.; Deng, J.; Cao, Q.; Yuan, G.; Kijlstra, A.; Yang, P. ERAP1/ERAP2 and RUNX3 polymorphisms are not associated with ankylosing spondylitis susceptibility in Chinese Han. Clin. Exp. Immunol. 2018, 193, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Saveanu, L.; Carroll, O.; Lindo, V.; Del Val, M.; Lopez, D.; Lepelletier, Y.; Greer, F.; Schomburg, L.; Fruci, D.; Niedermann, G.; et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol. 2005, 6, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Evnouchidou, I.; Weimershaus, M.; Saveanu, L.; van Endert, P. ERAP1–ERAP2 Dimerization Increases Peptide-Trimming Efficiency. J. Immunol. 2014, 193, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Andrés, A.M.; Dennis, M.Y.; Kretzschmar, W.W.; Cannons, J.L.; Lee-Lin, S.-Q.; Hurle, B.; Schwartzberg, P.L.; Williamson, S.H.; Bustamante, C.D.; Nielsen, R.; et al. Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation. PLoS Genet. 2010, 6, e1001157. [Google Scholar] [CrossRef]
- Evnouchidou, I.; Birtley, J.; Seregin, S.; Papakyriakou, A.; Zervoudi, E.; Samiotaki, M.; Panayotou, G.; Giastas, P.; Petrakis, O.; Georgiadis, D.; et al. A Common Single Nucleotide Polymorphism in Endoplasmic Reticulum Aminopeptidase 2 Induces a Specificity Switch That Leads to Altered Antigen Processing. J. Immunol. 2012, 189, 2383–2392. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, V.; Paldino, G.; Paladini, F.; Mattorre, B.; Tuosto, L.; Sorrentino, R.; Fiorillo, M.T. The Impact of the ‘Mis-Peptidome’ on HLA Class I-Mediated Diseases: Contribution of ERAP1 and ERAP2 and Effects on the Immune Response. Int. J. Mol. Sci. 2020, 21, 9608. [Google Scholar] [CrossRef] [PubMed]
- Paladini, F.; Fiorillo, M.T.; Vitulano, C.; Tedeschi, V.; Piga, M.; Cauli, A.; Mathieu, A.; Sorrentino, R. An allelic variant in the intergenic region between ERAP1 and ERAP2 correlates with an inverse expression of the two genes. Sci. Rep. 2018, 8, 10398. [Google Scholar] [CrossRef]
- Paladini, F.; Fiorillo, M.T.; Tedeschi, V.; D’otolo, V.; Piga, M.; Cauli, A.; Mathieu, A.; Sorrentino, R. The rs75862629 minor allele in the endoplasmic reticulum aminopeptidases intergenic region affects human leucocyte antigen B27 expression and protects from ankylosing spondylitis in Sardinia. Rheumatology 2019, 58, 2315–2324. [Google Scholar] [CrossRef] [PubMed]
- Amroun, H.; Djoudi, H.; Busson, M.; Allat, R.; El Sherbini, S.M.; Sloma, I.; Ramasawmy, R.; Brun, M.; Dulphy, N.; Krishnamoorthy, R.; et al. Early-Onset Ankylosing Spondylitis Is Associated With a Functional MICA Polymorphism. Hum. Immunol. 2005, 66, 1057–1061. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Zou, H.; Ward, M.M.; Weisman, M.H.; Espitia, M.G.; Xiao, X.; Petersdorf, E.; Mignot, E.; Martin, J.; et al. MICA, a gene contributing strong susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 2014, 73, 1552–1557. [Google Scholar] [CrossRef] [PubMed]
- Cortes, A.; Gladman, D.; Raychaudhuri, S.; Cui, J.; Wheeler, L.; Brown, M.A. Imputation-based analysis of MICA alleles in the susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 2018, 77, 1691–1692. [Google Scholar] [CrossRef]
- Arnett, F.C., Jr.; Hochberg, M.C.; Bias, W.B. Cross-Reactive HLA Antigens in B27-Negative Reiter’s Syndrome and Sacroiliitis. Johns Hopkins Med. J. 1977, 141, 193–197. Available online: https://www.ncbi.nlm.nih.gov/pubmed/909215 (accessed on 7 December 2023).
- Darke, C. The inclusion of HLA—Bw42, Bw54 and Bw55 within the HLA—B14 cross-reactive group. Tissue Antigens 1983, 21, 246–253. [Google Scholar] [CrossRef]
- Khan, B.Y.M.A. B7-CREG and Ankylosing Spondylitis. Br. J. Rheumatol. 1983, 22 (Suppl. 2), 129–133. [Google Scholar] [CrossRef]
- Cedoz, J.P.; Wendling, D.; Viel, J.F. The B7 Cross Reactive Group and Spondyloarthropathies: An Epidemiological Approach. J. Rheumatol. 1995, 22, 1884–1890. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8991986 (accessed on 7 December 2023). [PubMed]
- Siala, M.; Mahfoudh, N.; Fourati, H.; Gdoura, R.; Younes, M.; Kammoun, A.; Chour, I.; Meddeb, N.; Gaddour, L.; Hakim, F.; et al. MHC class I and class II genes in Tunisian patients with reactive and undifferentiated arthritis. Clin. Exp. Immunol. 2009, 27, 208–213. [Google Scholar]
- Sampaio-Barros, P.D.; Conde, R.A.; Donadi, E.; Kraemer, M.H.S.; Persoli, L.; Coimbra, I.B.; Costallat, L.T.L.; Samara, A.M.; Bértolo, M.B. Undifferentiated spondyloarthropathies in Brazilians: Importance of HLA-B27 and the B7-CREG alleles in characterization and disease progression. J. Rheumatol. 2003, 30, 2632–2637. [Google Scholar]
- Parasannanavar, D.J.; Rajadhyaksha, A.; Ghosh, K. Role of HLA-B Alleles and Clinical Presentation of B27 Negative Spondyloarthritis Patients from Mumbai, Western India. Autoimmune Dis. 2014, 2014, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kchir, M.M.; Hamdi, W.; Laadhar, L.; Kochbati, S.; Kaffel, D.; Saadellaoui, K.; Lahmar, H.; Ghannouchi, M.M.; Azzouz, D.; Daoud, L.; et al. HLA-B, DR and DQ antigens polymorphism in Tunisian patients with ankylosing spondylitis (a case–control study). Rheumatol. Int. 2010, 30, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Breban, M. Genetic Studies of Spondylarthropathies. French Spondylarthropathy Genetic Study Group. Ann. Med. Interne 1998, 149, 142–144. Available online: https://www.ncbi.nlm.nih.gov/pubmed/11499406 (accessed on 7 December 2023).
- López-Larrea, C.; Mijiyawa, M.; González, S.; Fernandez-Morera, J.L.; Blanco-Gelaz, M.A.; Martínez-Borra, J.; López-Vázquez, A. Association of ankylosing spondylitis with HLA-B*1403 in a West African population. Arthritis Rheum. 2002, 46, 2968–2971. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Peña, R.; Ouédraogo, D.D.; López-Vázquez, A.; Sawadogo, S.A.; López-Larrea, C. Ankylosing spondylitis in three Sub-Saharan populations: HLA-B*27 and HLA-B*14 contribution. Tissue Antigens 2012, 80, 14–15. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Peña, R.; Blanco-Gelaz, M.A.; Njobvu, P.; López-Vazquez, A.; Suárez-Álvarez, B.; López-Larrea, C. Influence of HLA-B*5703 and HLA-B*1403 on Susceptibility to Spondyloarthropathies in the Zambian Population. J. Rheumatol. 2008, 35, 2236–2240. [Google Scholar] [CrossRef]
- Berg-Loonen, E.M.v.D.; Dekker-Saeys, B.J.; Meuwissen, S.G.M.; Nijenhuis, L.E.; Engelfriet, C.P. Histocompatibility Antigens and Other Genetic Markers in Ankylosing Spondylitis and Inflammatory Bowel Diseases. Int. J. Immunogenet. 1977, 4, 167–175. Available online: https://www.ncbi.nlm.nih.gov/pubmed/901632 (accessed on 8 December 2023). [CrossRef]
- Yamaguchi, A.; Tsuchiya, N.; Mitsui, H.; Shiota, M.; Ogawa, A.; Tokunaga, K.; Yoshinoya, S.; Juji, T.; Ito, K. Association of HLA-B39 with HLA-B27-negative Ankylosing Spondylitis and Pauciarticular Juvenile Rheumatoid Arthritis in Japanese Patients. Evidence for a Role of the Peptide-Anchoring B Pocket. Arthritis Rheum. 1995, 38, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Peña, R.; Vidal-Castiñeira, J.R.; López-Larrea, C. HLA-B * 40: 01 Is Associated with Ankylosing Spondylitis in HLA-B27—Positive Populations. J. Rheumatol. 2016, 43, 1255–1256. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, E.E.; Citera, G.; Gil, G.R.; Granel, A.; Arturi, A.; Rosemffet, G.M.; Cocco, J.A.M.; Berman, A.; Spindler, A.; Morales, V.H. Clinical and immunogenetic characterization in psoriatic arthritis patients. Clin. Rheumatol. 2014, 34, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Eder, L.; Chandran, V.; Pellett, F.; Shanmugarajah, S.; Rosen, C.F.; Bull, S.B.; Gladman, D.D. Differential human leucocyte allele association between psoriasis and psoriatic arthritis: A family-based association study. Ann. Rheum. Dis. 2012, 71, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Wagener, P.; Zeidler, H.; Eckert, G.; Deicher, H. Increased Frequency of HLA-Bw62 and Bw35 CREG Antigens in HLA-B27 Negative Ankylosing Spondylitis. Z. Rheumatol. 1984, 43, 253–257. Available online: https://www.ncbi.nlm.nih.gov/pubmed/6335328 (accessed on 12 December 2023). [PubMed]
- Mielants, H.; Veys, E.M.; Cuvelier, C.; de Vos, M. Ileocolonoscopic Findings in Seronegative Spondylarthropathies. Br. J. Rheumatol. 1988, 27 (Suppl. II), 95–105. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Alarcon, G.; Londoño, J.D.; Hernández-Pacheco, G.; Pacheco-Tena, C.; Castillo, E.; Cardiel, M.H.; Granados, J.; Burgos-Vargas, R. Effect of HLA-B and HLA-DR genes on susceptibility to and severity of spondyloarthropathies in Mexican patients. Ann. Rheum. Dis. 2002, 61, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.M.; Peña, P.; Avila, M.; Briceño, I.; Jaramillo, C.; Vargas-Alarcon, G.; Rueda, J.C.; Saldarriaga, E.-L.; Angarita, J.-I.; Martinez-Rodriguez, N.; et al. Association of human leukocyte A, B, and DR antigens in Colombian patients with diagnosis of spondyloarthritis. Clin. Rheumatol. 2017, 36, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.C.C.; Tsai, W.C.; Lin, H.S.; Tsai, C.Y.; Chou, C.T. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology 2004, 43, 839–842. [Google Scholar] [CrossRef]
- Lim, M.J.; Noh, E.; Lee, R.-W.; Jung, K.-H.; Park, W. Occurrence of human leukocyte antigen B51-related ankylosing spondylitis in a family: Two case reports. World J. Clin. Cases 2022, 10, 992–999. [Google Scholar] [CrossRef]
- Chen, J.; Yang, F.; Zhang, Y.; Fan, X.; Xiao, H.; Qian, W.; Chang, Y.; Zuo, X.; Zheng, X.; Liang, B.; et al. HLA-A*01:01 in MHC is associated with psoriatic arthritis in Chinese Han population. Arch. Dermatol. Res. 2019, 311, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, Q.; Kong, X.; Zhao, M.; Liu, Y.; Gao, P.; Deng, G.; Cao, Y.; Ma, L. Role of HLA class I and II alleles in susceptibility to ankylosing spondylitis in Chinese Han. J. Clin. Lab. Anal. 2023, 37, e24964. [Google Scholar] [CrossRef] [PubMed]
- El Mouraghi, I.; Ouarour, A.; Ghozlani, I.; Collantes, E.; Solana, R.; El Maghraoui, A. Polymorphisms of HLA-A, -B, -Cw and DRB1 antigens in Moroccan patients with ankylosing spondylitis and a comparison of clinical features with frequencies of HLA-B*27. Tissue Antigens 2015, 85, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Bang, S.-Y.; Lee, S.; Lee, H.-S.; Shim, S.-C.; Kang, Y.M.; Suh, C.-H.; Sun, C.; Nath, S.K.; Bae, S.-C.; et al. An HLA-C amino-acid variant in addition to HLA-B*27 confers risk for ankylosing spondylitis in the Korean population. Arthritis Res. Ther. 2015, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-M.; Wang, S.-H.; Wu, Y.-J.J.; Lin, J.-C.; Wu, J.; Chen, J.-Y. Human Leukocyte Antigen C*12:02:02 and Killer Immunoglobulin-Like Receptor 2DL5 are Distinctly Associated with Ankylosing Spondylitis in the Taiwanese. Int. J. Mol. Sci. 2017, 18, 1775. [Google Scholar] [CrossRef]
- Santos, M.R.; Couto, A.R.; Foroni, I.; Bettencourt, B.F.; Li, Z.; Meneses, R.; Wheeler, L.; Pereira, J.; Pimentel-Santos, F.; Fonseca, J.E.; et al. Non-classical human leucocyte antigens in ankylosing spondylitis: Possible association with HLA-E and HLA-F. RMD Open 2018, 4, e000677. [Google Scholar] [CrossRef] [PubMed]
- Miehle, M.B.W.; Schattenkirchner, M.; Albert, D. HLA-DR4 in ankylosing spondylitis with different patterns of joint involvement. Ann. Rheum. Dis. 1985, 44, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Kennedy, L.G.; Darke, C.; Gibson, K.; Pile, K.D.; Shatford, J.L.; Taylor, A.; Calin, A.; Wordsworth, B.P. The Effect of HLA-DR Genes on Susceptibility to and Severity of Ankylosing Spondylitis. Arthritis Rheum. 1998, 41, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Mauro, D.; Ciccia, F. Gut dysbiosis in Spondyloarthritis: Cause or effect? Best Pract. Res. Clin. Rheumatol. 2019, 33, 101493. [Google Scholar] [CrossRef]
- Sharif, K.; Bridgewood, C.; Dubash, S.; McGonagle, D. Intestinal and enthesis innate immunity in early axial spondyloarthropathy. Rheumatology 2020, 59, 67–78. [Google Scholar] [CrossRef]
- Breban, M.; Beaufrère, M.; Glatigny, S. The microbiome in spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 2019, 33, 101495. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell 2006, 124, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2018, 50, 421–428. [Google Scholar] [CrossRef]
- Costello, M.; Ciccia, F.; Willner, D.; Warrington, N.; Robinson, P.C.; Gardiner, B.; Marshall, M.; Kenna, T.J.; Triolo, G.; Brown, M.A. Brief Report: Intestinal Dysbiosis in Ankylosing Spondylitis. Arthritis Rheumatol. 2015, 67, 686–691. [Google Scholar] [CrossRef]
- Breban, M.; Tap, J.; Leboime, A.; Said-Nahal, R.; Langella, P.; Chiocchia, G.; Furet, J.-P.; Sokol, H. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 2017, 76, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, E.; Magnusson, M.K.; Strid, H.; Deminger, A.; Ståhl, A.; Sundin, J.; Simrén, M.; Carlsten, H.; Öhman, L.; Forsblad-D’elia, H. A distinct gut microbiota composition in patients with ankylosing spondylitis is associated with increased levels of fecal calprotectin. Arthritis Res. Ther. 2019, 21, 1–12. [Google Scholar] [CrossRef]
- Scher, J.U.; Ubeda, C.; Artacho, A.; Attur, M.; Isaac, S.; Reddy, S.M.; Marmon, S.; Neimann, A.; Brusca, S.; Patel, T.; et al. Decreased Bacterial Diversity Characterizes the Altered Gut Microbiota in Patients With Psoriatic Arthritis, Resembling Dysbiosis in Inflammatory Bowel Disease. Arthritis Rheumatol. 2015, 67, 128–139. [Google Scholar] [CrossRef]
- Yin, J.; Sternes, P.R.; Wang, M.; Song, J.; Morrison, M.; Li, T.; Zhou, L.; Wu, X.; He, F.; Zhu, J.; et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann. Rheum. Dis. 2020, 79, 132–140. [Google Scholar] [CrossRef]
- Zhang, L.; Han, R.; Zhang, X.; Fang, G.; Chen, J.; Li, J.; Xu, S.; Qian, L.; Chen, W.; Pan, F. Fecal microbiota in patients with ankylosing spondylitis: Correlation with dietary factors and disease activity. Clin. Chim. Acta 2019, 497, 189–196. [Google Scholar] [CrossRef]
- Chen, Z.; Qi, J.; Wei, Q.; Zheng, X.; Wu, X.; Li, X.; Liao, Z.; Lin, Z.; Gu, J. Variations in gut microbial profiles in ankylosing spondylitis: Disease phenotype-related dysbiosis. Ann. Transl. Med. 2019, 7, 571. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, H.; Xiao, X.-Y.; Chen, B.-D.; Guo, R.-J.; Wang, Q.; Chen, H.; Zhao, L.-D.; Zhang, C.-C.; Jiao, Y.-H.; et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J. Autoimmun. 2020, 107, 102360. [Google Scholar] [CrossRef] [PubMed]
- Tito, R.Y.; Cypers, H.; Joossens, M.; Varkas, G.; Van Praet, L.; Glorieus, E.; Bosch, F.V.D.; De Vos, M.; Raes, J.; Elewaut, D. Brief Report: Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis Rheumatol. 2017, 69, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Dai, B.; Tang, Y.; Lei, L.; Li, N.; Liu, C.; Ge, T.; Zhang, L.; Xu, Y.; Hu, Y.; et al. Altered Bacterial-Fungal Interkingdom Networks in the Guts of Ankylosing Spondylitis Patients. mSystems 2019, 4, e00176-18. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zheng, Z.; Shao, T.; Liu, L.; Xie, Z.; Le Chatelier, E.; He, Z.; Zhong, W.; Fan, Y.; Zhang, L.; et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 2017, 18, 142. [Google Scholar] [CrossRef]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Lax, S.; Smith, D.P.; Hampton-Marcell, J.; Owens, S.M.; Handley, K.M.; Scott, N.M.; Gibbons, S.M.; Larsen, P.; Shogan, B.D.; Weiss, S.; et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014, 345, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Vaile, J.H.; Meddings, J.B.; Yacyshyn, B.R.; Russell, A.S.; Maksymowych, W.P. Bowel permeability and CD45RO expression on circulating CD20+ B cells in patients with ankylosing spondylitis and their relatives. J. Rheumatol. 1999, 26, 128–135. [Google Scholar] [PubMed]
- Averns, H.L.; Oxtoby, J.; Taylor, H.G.; Jones, P.W.; Dziedzic, K.; Dawes, P.T. Smoking and Outcome in Ankylosing Spondylitis. Scand. J. Rheumatol. 1996, 25, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Zeboulon-Ktorza, N.; Boelle, P.Y.; Nahal, R.S.; D’Agostino, M.A.; Vibert, J.F.; Turbelin, C.; Madrakian, H.; Durand, E.; Launay, O.; Mahr, A.; et al. Influence of Environmental Factors on Disease Activity in Spondyloarthritis: A Prospective Cohort Study. J. Rheumatol. 2013, 40, 469–475. [Google Scholar] [CrossRef]
- Lindström, U.; Exarchou, S.; Lie, E.; Dehlin, M.; Forsblad-D’elia, H.; Askling, J.; Jacobsson, L. Childhood hospitalisation with infections and later development of ankylosing spondylitis: A national case-control study. Arthritis Res. Ther. 2016, 18, 1–8. [Google Scholar] [CrossRef]
- Prada, P.A.Z.; Laurin, C.L.U.; Astete, C.A.G.; Caltelblanco, S.K.; Navarro-Compan, V. Influence of smoking and obesity on treatment response in patients with axial spondyloarthritis: A systematic literature review. Clin. Rheumatol. 2021, 40, 1673–1686. [Google Scholar] [CrossRef] [PubMed]
Year | Study | AS Cases/Controls | Population | Novel Data |
---|---|---|---|---|
2007 | WTCCC, TASC [47] | 1000/1500 | British and North American Caucasians | ERAP1, IL23R |
2010 | TASC [48] | 2053/5140 | Mixed European | ANTRX2, IL1R2, KIF21B, 2p15, 21q22 |
2011 | TASC, WCCC2 [56] | 3023/9141 | Mixed European | RUNX3, LTBR-TNFRSF1A, IL12B |
2011 | Lin [49] | 3937/8177 | Han Chinese | 5q14.3, 12q12 |
2013 | IGAS [28] | 10,619/15,145 | European, East Asian, and Latin American | IL6R, FCGR2A, UBE2E3, GPR35, BACH2, ZMIZI1, NKX2-3, SH2B3, GPR65, SULT1A1, NOS2, TYK2, ICOSLG |
2015 | Robinson [50] | 5040/21,133 | Mixed European | USP8, CDKAL1 |
2016 | Ellinghaus [51] | 8726/34,213 | European and East Asian | ITLN1, CTLA4, CMC1, NPM1P17, NFKB1, CDKAL1, FGFR10P, 6p22, 7p21, ACTA2, 11q24, PPP2R3C, CORO1A, 16p11, ERN1, PTPN2 FAM118A |
2019 | Li [52] | 1001/1011 | Turkish | M694V |
479/830 | Iranian |
SNP | SpA | Ancestry |
---|---|---|
rs11209026 | AS | British and North American Caucasian [47,61], Canadian [63], Spanish [62], Swedish [70], Mixed European [48] |
rs11465804 | AS | British and North American Caucasian [47,61], Canadian [63], Portuguese [64] |
rs11209032 | AS | British, Australian, and North American of European ancestry [47,56,61], Spanish [62], Canadian [63], Portuguese [64], Korean [65] |
rs10889677 | AS | British and North American Caucasian [47], Portuguese [64], Canadian [63], Spanish [62], Korean [65], Chinese [71] |
rs10489629 | AS | British and North American Caucasian [47], Canadian [63], Spanish [62] |
rs1495965 | AS | Portuguese [64], British and North American Caucasian [47,61], Canadian [63], Korean [65] |
rs2310173 | AS | Mixed European [48] |
rs2201841 | AS | Canadian [63] |
rs1343151 | AS | British and North American Caucasian [47,61], Portuguese [64], Spanish [62] |
rs1004819 | AS | British and North American Caucasian [47,61], Portuguese [64], Canadia [63], Korean [65] |
rs10489629 | AS | British and North American Caucasian [47,61], Portuguese [64], Canadian [63], Korean [65] |
SNP | SpA | Ancestry |
---|---|---|
rs30187 (K528R) | AS | British, North American, and Australian of European ancestry [47,56,82], Portuguese [64], French and Belgian [77], Polish [81], Mixed European [54], Korean [83], Taiwanese [80] |
PsA | Romanian [89] | |
rs27044 (Q730E) | AS | British and North American Caucasian [47,82], Portuguese [64], Polish [81], Korean [83], Taiwanese [80], Iranian [84] |
rs10050860 (D575N) | AS | British and North American Caucasian [47,82], Iranian [84] |
rs27434 | AS | Mixed European [48], Chinese Han [73,74,79], Korean [75] |
rs27037 | AS | Korean [75], Taiwanese [80] |
rs7711564 | AS | Chinese Han [79] |
rs2287987 (M349V) | AS | Polish [81] |
rs27044/10050860/30187-CCT | AS | Canadian of Northern European descent [76] |
rs17482078/rs10050860/rs30187-CCT | SpA | French, Belgian [77,78] |
rs30187/rs27044-CC | PsA | Romanian [89] |
MHC Class I | SpA Associations | Ancestry |
---|---|---|
B*07 | axSpA | French [112] |
ReA | American [109] | |
Idiopathic Sacroiliitis | American [109] | |
AS | American Black [111] | |
uSpA | Tunisian [113], Brazilian [114], West Indian [115] | |
B*13:02 | AS | European [54] |
PsA | Chinese [132] | |
B*14 | SpA | French [117] |
AS | European, Asian, African [55] | |
B*15 | uSpA | Belgian [127], Mexican [128] Tunisian [113], Colombian [129] |
B*22 | AS | West African [118,119,120] |
B*38 | AS | Caucasian [55,123] |
PsA | Argentinian [124], Canadian [125] | |
B*39 | As | Japanese [122] |
PsA | Canadia [125] | |
B*40 | peripheral SpA | French [112] |
AS | British [34], Taiwanese Chinese [53,130], Korean [53] | |
B*40:01, B*40:02 | AS | European, Asian, African [54,55] |
B*49 | AS | European, Asian, African [55] |
B*51 | ReA | Tunisian [113] |
B*51:01 | AS | Korean [131], European [54] |
B*52 | AS | Caucasian [55] |
B*57:03 | uSpA | African [120] |
PsA | Chinese [132] | |
A*02:01 | AS | European [54] |
A*29 | AS | European, Asian, African [55] |
A*01:01 | PsA | Chinese [132] |
A*32:01 | AS | Chinese Han [133] |
C*08:01 | AS | Chinese Han [133] |
Cw*02 | axSpA | Moroccan [134] |
C*15:02 | axSpA | Korean [135] |
C*15 | AS | Chinese, Taiwanese, and Korean AS [53] |
C*12 | PsA | Canadian [125] |
C*12:02:02 | axSpA | Taiwanese [136] |
Cw6 | PsA | Argentinian [124] |
C*06:02 | PsA | Chinese [132] |
F*01:01:01/01:03:01 | AS | Portuguese [137] |
MHC Class II | SpA Associations | Ancestry |
---|---|---|
DR4 | AS | German [138] |
DR1 | AS | British [139] |
uSpA | Mexican [128] | |
DRB1*04 | ReA | Tunisian [113] |
axSpA | Colombian [129] | |
DRB1*01 | axSpA | Colombian [129] |
DRB1*04:05 | AS | Chinese Han [133] |
DQB1*04 | AS | Chinese, Taiwanese, and Korean [53] |
DRB1*11, DPB1*03:01 | AS | European, Asian, African [55] |
Class | Order | Family | Genus | Species |
---|---|---|---|---|
Clostridia | Clostridiales | Lachnospiraceae
| Coprococcus
| C. comes
|
Blautia
| B. pruducta
| |||
Roseburia
| R. insulinivorans
| |||
Lachnospira
| ||||
Dorea
| ||||
Pseudobutyrivibrio
| ||||
Eubacteriaceae | Eubacterium | E. siraeum
| ||
Clostridiaceae | Clostridium
| C. bolteae, C. hathewayi
| ||
Ruminococcaceae
| Ruminococcus | R. gnavus
| ||
Faecalibacterium | F. prausnitzii
| |||
Bacilli | Lactobacillales | Streptococcaceae | Streptococcus
| |
Lactobacillaceae | Lactobacillus
| |||
Bacillales | Bacillaceae | Bacillus | ||
Negativicutes | Selenomonadales | Acidaminococcaceae | Acidaminococcus | A.fermentans
|
Veillonellaceae
| Megamonas
| |||
Dialister
|
Class | Order | Family | Genus | Species |
---|---|---|---|---|
Bacteroidia
| Bacteroidales | Rikenellaceae
| ||
Porphyromonadaceae
| Parabacteroides
| P. distasonis
| ||
Bacteroidaceae
| Bacteroides
| B. coprophilus
| ||
Prevotellaceae
| Prevotella
| P. copri
| ||
P. melaninogenica
| ||||
Prevotella sp. C561
| ||||
Alloprevotella
|
Phylum | Class | Order | Family | Genus |
---|---|---|---|---|
Proteobacteria | Gamma-proteobacteria | Enterobacterales | Enterobacteriaceae
| Shigella
|
Escherichia
| ||||
Enterobacter
| ||||
Citrobacter
| ||||
Beta-proteobacteria | Burkholderiales | Comamonadaceae | Comamonas
| |
Neisseriales | Neisseriaceae | Neisseria
| ||
Actinobacteria | Actinobacteria
| Actinomycetales | Actinomycetaceae | Actinomyces
|
Bifidobacteriales | Bifidobacteriaceae | Bifidobacterium
| ||
Coriobacteriales | Coriobacteriaceae
| Collinsella
| ||
Verrucomicrobia | Verrucomicrobiae | Verrucomicrobiales | Akkermansiaceae | Akkermansia
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagit, R.-E.; Rezus, E.; Cianga, P. Exploring the Pathogenesis of Spondylarthritis beyond HLA-B27: A Descriptive Review. Int. J. Mol. Sci. 2024, 25, 6081. https://doi.org/10.3390/ijms25116081
Nagit R-E, Rezus E, Cianga P. Exploring the Pathogenesis of Spondylarthritis beyond HLA-B27: A Descriptive Review. International Journal of Molecular Sciences. 2024; 25(11):6081. https://doi.org/10.3390/ijms25116081
Chicago/Turabian StyleNagit, Ruxandra-Elena, Elena Rezus, and Petru Cianga. 2024. "Exploring the Pathogenesis of Spondylarthritis beyond HLA-B27: A Descriptive Review" International Journal of Molecular Sciences 25, no. 11: 6081. https://doi.org/10.3390/ijms25116081
APA StyleNagit, R. -E., Rezus, E., & Cianga, P. (2024). Exploring the Pathogenesis of Spondylarthritis beyond HLA-B27: A Descriptive Review. International Journal of Molecular Sciences, 25(11), 6081. https://doi.org/10.3390/ijms25116081