Genetic Polymorphisms of P2RX7 but Not of ADORA2A Are Associated with the Severity of SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Characteristics of the Subjects
2.2. Impact of rs2298383 SNP of ADORA2A and of rs208294 SNP of P2RX7 in the Severity of SARS-CoV-2 Infection
2.3. Impact of the Combined Genotypes of Both SNPs in the Severity of SARS-CoV-2 Infection
2.4. Impact of rs2298383 SNP of ADORA2A and of rs208294 SNP of P2RX7 in the Development of Comorbidities
3. Discussion
4. Materials and Methods
4.1. Study Design and Subjects
4.2. Isolation and Extraction of Genomic DNA
4.3. SNPs Selection
4.4. Genotyping
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, L.F. Immune response, inflammation, and the clinical spectrum of COVID-19. Front. Immunol. 2020, 11, 1441. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, K. UpToDate. COVID-19: Clinical Features. Available online: https://www.uptodate.com/contents/covid-19-clinical-features (accessed on 19 August 2021).
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; Maertens de Noordhout, C.; Primus-de Jong, C.; Cleemput, I.; Van den Heede, K. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Sharma, K.; Silakari, O. The interplay between inflammatory pathways and COVID-19: A critical review on pathogenesis and therapeutic options. Microb. Pathog. 2021, 150, 104673. [Google Scholar] [CrossRef] [PubMed]
- Perico, L.; Benigni, A.; Casiraghi, F.; Ng, L.F.P.; Renia, L.; Remuzzi, G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat. Rev. Nephrol. 2021, 17, 46–64. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, F.; Sarti, A.C.; Coutinho-Silva, R. Purinergic signaling, DAMPs, and inflammation. Am. J. Physiol. Cell Physiol. 2020, 318, C832–C835. [Google Scholar] [CrossRef]
- Linden, J.; Koch-Nolte, F.; Dahl, G. Purine release, metabolism, and signaling in the inflammatory response. Annu. Rev. Immunol. 2019, 37, 325–347. [Google Scholar] [CrossRef]
- Burnstock, G.; Kennedy, C. P2X receptors in health and disease. Adv. Pharmacol. 2011, 61, 333–372. [Google Scholar] [CrossRef] [PubMed]
- IJzerman, A.P.; Jacobson, K.A.; Müller, C.E.; Cronstein, B.N.; Cunha, R.A. International Union of Basic and Clinical Pharmacology. CXII: Adenosine receptors: A further update. Pharmacol. Rev. 2022, 74, 340–372. [Google Scholar] [CrossRef]
- Adinolfi, E.; Giuliani, A.L.; De Marchi, E.; Pegoraro, A.; Orioli, E.; Di Virgilio, F. The P2X7 receptor: A main player in inflammation. Biochem. Pharmacol. 2018, 151, 234–244. [Google Scholar] [CrossRef]
- Sitkovsky, M.V.; Lukashev, D.; Apasov, S.; Kojima, H.; Koshiba, M.; Caldwell, C.; Ohta, A.; Thiel, M. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 2004, 22, 657–682. [Google Scholar] [CrossRef]
- Santana, P.T.; Benjamim, C.F.; Martinez, C.G.; Kurtenbach, E.; Takiya, C.M.; Coutinho-Silva, R. The P2X7 receptor contributes to the development of the exacerbated inflammatory response associated with sepsis. J. Innate Immun. 2015, 7, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Grado, V.H.; Ermler, M.E.; Schotsaert, M.; Gonzalez, M.G.; Gillespie, V.; Lim, J.K.; Garcia-Sastre, A. Contribution of the purinergic receptor P2X7 to development of lung immunopathology during influenza virus infection. mBio 2017, 8, e00229-17. [Google Scholar] [CrossRef] [PubMed]
- Rosli, S.; Kirby, F.J.; Lawlor, K.E.; Rainczuk, K.; Drummond, G.R.; Mansell, A.; Tate, M.D. Repurposing drugs targeting the P2X7 receptor to limit hyperinflammation and disease during influenza virus infection. Br. J. Pharmacol. 2019, 176, 3834–3844. [Google Scholar] [CrossRef] [PubMed]
- Amaral, E.P.; Ribeiro, S.C.M.; Lanes, V.R.; Almeida, F.M.; de Andrade, M.R.M.; Bomfim, C.C.B.; Salles, E.M.; Bortoluci, K.R.; Coutinho-Silva, R.; Hirata, M.H.; et al. Pulmonary infection with hypervirulent Mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis. PLoS Pathog. 2014, 10, e1004188. [Google Scholar] [CrossRef] [PubMed]
- Monção-Ribeiro, L.C.; Cagido, V.R.; Lima-Murad, G.; Santana, P.T.; Riva, D.R.; Borojevic, R.; Zin, W.A.; Cavalcante, M.C.M.; Riça, I.; Brando-Lima, A.C.; et al. Lipopolysaccharide-induced lung injury: Role of P2X7 receptor. Respir. Physiol. Neurobiol. 2011, 179, 314–325. [Google Scholar] [CrossRef]
- Mishra, A.; Chintagari, N.R.; Guo, Y.; Weng, T.; Su, L.; Liu, L. Purinergic P2X7 receptor regulates lung surfactant secretion in a paracrine manner. J. Cell Sci. 2011, 124 Pt 4, 657–668. [Google Scholar] [CrossRef] [PubMed]
- De Salis, S.K.F.; Li, L.; Chen, Z.; Lam, K.W.; Skarratt, K.K.; Balle, T.; Fuller, S.J. Alternatively spliced isoforms of the P2X7 receptor: Structure, function and disease associations. Int. J. Mol. Sci. 2022, 23, 8174. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Yu, F.; Ye, C.; Huang, X.; Lei, X.; Dai, Y.; Xu, H.; Wang, Y.; Yu, Y. The presence of P2RX7 single nuclear polymorphism is associated with a gain of function in P2X7 receptor and inflammasome activation in SLE complicated with pericarditis. Clin. Exp. Rheumatol. 2020, 38, 442–449. [Google Scholar]
- Pegoraro, A.; Bortolotti, D.; Marci, R.; Caselli, E.; Falzoni, S.; De Marchi, E.; Di Virgilio, F.; Rizzo, R.; Adinolfi, E. The P2X7 receptor 489C>T gain of function polymorphism favors HHV-6A infection and associates with female idiopathic infertility. Front. Pharmacol. 2020, 11, 96. [Google Scholar] [CrossRef]
- Sanz, J.M.; Falzoni, S.; Rizzo, R.; Cipollone, F.; Zuliani, G.; Di Virgilio, F. Possible protective role of the 489C>T P2X7R polymorphism in Alzheimer’s disease. Exp. Gerontol. 2014, 60, 117–119. [Google Scholar] [CrossRef]
- Ohta, A.; Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001, 414, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Miranda, I.M.; Andrade, G.M.; Mota, M.; Cortes, L.; Rodrigues, A.G.; Cunha, R.A.; Gonçalves, T. Blunted dynamics of adenosine A2A receptors is associated with increased susceptibility to Candida albicans infection in the elderly. Oncotarget 2016, 7, 62862–62872. [Google Scholar] [CrossRef] [PubMed]
- Folkesson, H.G.; Kuzenko, S.R.; Lipson, D.A.; Matthay, M.A.; Simmons, M.A. The adenosine 2A receptor agonist GW328267C improves lung function after acute lung injury in rats. Am. J. Physiol. 2012, 303, L259–L271. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Harjai, K.; Chhibber, S. 2-Chloroadenosine (2-CADO) treatment modulates the pro-inflammatory immune response to prevent acute lung inflammation in BALB/c mice suffering from Klebsiella pneumoniae B5055-induced pneumonia. Int. J. Antimicrob. Agents. 2010, 35, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Konrad, F.M.; Neudeck, G.; Vollmer, I.; Ngamsri, K.C.; Thiel, M.; Reutershan, J. Protective effects of pentoxifylline in pulmonary inflammation are adenosine receptor A2A dependent. FASEB J. 2013, 27, 3524–3535. [Google Scholar] [CrossRef] [PubMed]
- Huin, V.; Dhaenens, C.-M.; Homa, M.; Carvalho, K.; Buée, L.; Sablonnière, B. Neurogenetics of the human adenosine receptor genes: Genetic structures and involvement in brain diseases. J. Caffeine Adenosine Res. 2019, 9, 3. [Google Scholar] [CrossRef]
- Cannata, A.; De Luca, C.; Korkina, L.G.; Ferlazzo, N.; Ientile, R.; Currò, M.; Andolina, G.; Caccamo, D. The SNP rs2298383 reduces ADORA2A gene transcription and positively associates with cytokine production by peripheral blood mononuclear cells in patients with multiple chemical sensitivity. Int. J. Mol. Sci. 2020, 21, 1858. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, P.A.F.; Faria, R.X. The potential involvement of P2X7 receptor in COVID-19 pathogenesis: A new therapeutic target? Scand. J. Immunol. 2021, 93, e12960. [Google Scholar] [CrossRef] [PubMed]
- Franciosi, M.L.M.; Lima, M.D.M.; Schetinger, M.R.C.; Cardoso, A.M. Possible role of purinergic signaling in COVID-19. Mol. Cell Biochem. 2021, 476, 2891–2898. [Google Scholar] [CrossRef]
- Ribeiro, D.E.; Oliveira-Giacomelli, Á.; Glaser, T.; Arnaud-Sampaio, V.F.; Andrejew, R.; Dieckmann, L.; Baranova, J.; Lameu, C.; Ratajczak, M.Z.; Ulrich, H. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol. Psychiatry 2021, 26, 1044–1059. [Google Scholar] [CrossRef]
- Dos Anjos, F.; Simões, J.L.B.; Assmann, C.E.; Carvalho, F.B.; Bagatini, M.D. Potential therapeutic role of purinergic receptors in cardiovascular disease mediated by SARS-CoV-2. J. Immunol. Res. 2020, 2020, 8632048. [Google Scholar] [CrossRef] [PubMed]
- Abouelkhair, M.A. Targeting adenosinergic pathway and adenosine A2A receptor signaling for the treatment of COVID-19: A hypothesis. Med. Hypotheses 2020, 144, 110012. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; Barroso-Aranda, J. Harnessing adenosine A2A receptors as a strategy for suppressing the lung inflammation and thrombotic complications of COVID-19: Potential of pentoxifylline and dipyridamole. Med. Hypotheses 2020, 143, 110051. [Google Scholar] [CrossRef] [PubMed]
- Correale, P.; Caracciolo, M.; Bilotta, F.; Conte, M.; Cuzzola, M.; Falcone, C.; Mangano, C.; Falzea, A.C.; Luliano, E.; Morabito, A.; et al. Therapeutic effects of adenosine in high flow 21% oxygen aereosol in patients with Covid19-pneumonia. PLoS ONE 2020, 15, e0239692. [Google Scholar] [CrossRef] [PubMed]
- Rabin, J.; Zhao, Y.; Mostafa, E.; Al-Suqi, M.; Fleischmann, E.; Conaway, M.R.; Mann, B.J.; Chhabra, P.; Brayman, K.L.; Krupnick, A.; et al. Regadenoson for the treatment of COVID-19: A five case clinical series and mouse studies. PLoS ONE 2023, 18, e0288920. [Google Scholar] [CrossRef] [PubMed]
- Lécuyer, D.; Nardacci, R.; Tannous, D.; Gutierrez-Mateyron, E.; Deva Nathan, A.; Subra, F.; Di Primio, C.; Quaranta, P.; Petit, V.; Richetta, C.; et al. The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection. Front. Immunol. 2023, 14, 1270081. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, J.; Hurtado-Navarro, L.; Peñín-Franch, A.; Molina-López, C.; Martínez-Alarcón, L.; Angosto-Bazarra, D.; Baroja-Mazo, A.; Pelegrin, P. Soluble P2X7 receptor is elevated in the plasma of covid-19 patients and correlates with disease severity. Front. Immunol. 2022, 13, 894470. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.M. Genetic association studies: Design, analysis and interpretation. Brief. Bioinform. 2002, 3, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, F.Q.; Lopes, J.P.; Silva, H.B.; Lemos, C.; Silva, A.C.; Gonçalves, N.; Tomé, Â.R.; Ferreira, S.G.; Canas, P.M.; Rial, D. Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol. Dis. 2019, 132, 104570. [Google Scholar] [CrossRef]
- Carmo, M.; Gonçalves, F.Q.; Canas, P.M.; Oses, J.P.; Fernandes, F.D.; Duarte, F.V.; Palmeira, C.M.; Tomé, A.R.; Agostinho, P.; Andrade, G.M.; et al. Enhanced ATP release and CD73-mediated adenosine formation sustain adenosine A2A receptor over-activation in a rat model of Parkinson’s disease. Br. J. Pharmacol. 2019, 176, 3666–3680. [Google Scholar] [CrossRef]
- Augusto, E.; Gonçalves, F.Q.; Real, J.E.; Silva, H.B.; Pochmann, D.; Silva, T.S.; Matos, M.; Gonçalves, N.; Tomé, Â.R.; Chen, J.F. Increased ATP release and CD73-mediated adenosine A2A receptor activation mediate convulsion-associated neuronal damage and hippocampal dysfunction. Neurobiol. Dis. 2021, 157, 105441. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.; Pochmann, D.; Lemos, C.; Silva, H.B.; Real, J.I.; Gonçalves, F.Q.; Rial, D.; Gonçalves, N.; Simões, A.P.; Ferreira, S.G.; et al. Increased synaptic ATP release and CD73-mediated formation of extracellular adenosine in the control of behavioral and electrophysiological modifications caused by chronic stress. ACS Chem. Neurosci. 2023, 14, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Gidlöf, O.; Smith, J.G.; Melander, O.; Lövkvist, H.; Hedblad, B.; Engström, G.; Nilsson, P.; Carlson, J.; Berglund, G.; Olsson, S.; et al. A common missense variant in the ATP receptor P2X7 is associated with reduced risk of cardiovascular events. PLoS ONE 2012, 7, e37491. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.; Xu, Y.S.; He, P.F.; Zhang, W.J. ATP ion channel P2X7 receptor as a regulatory molecule in the progression of colorectal cancer. Eur. J. Med. Chem. 2023, 261, 115877. [Google Scholar] [CrossRef] [PubMed]
- Lara, R.; Adinolfi, E.; Harwood, C.A.; Philpott, M.; Barden, J.A.; Di Virgilio, F.; McNulty, S. P2X7 in cancer: From molecular mechanisms to therapeutics. Front. Pharmacol. 2020, 11, 793. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; Lukhey, M.S.; Thawkar, B.S.; Chintamaneni, M.; Kaur, G.; Joshi, H.; Ramniwas, S.; Tuli, H.S. A current review on P2X7 receptor antagonist patents in the treatment of neuroinflammatory disorders: A patent review on antagonists. Naunyn Schmiedebergs Arch. Pharmacol. 2024, in press. [CrossRef] [PubMed]
- Zhang, F.; Fu, H.Y.; Zhou, H.R.; Chen, R.; Shen, J.Z. A case-control study on receptor gene polymorphism and risk suffering from adult acute leukemia in Fujian area. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2021, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Park, H.A.; Seibold, P.; Edelmann, D.; Benner, A.; Canzian, F.; Alwers, E.; Jansen, L.; Schneider, M.; Hoffmeister, M.; Brenner, H.; et al. Validation of genetic markers associated with survival in colorectal cancer patients treated with oxaliplatin-based chemotherapy. Cancer Epidemiol. Biomark. Prev. 2022, 31, 352–361. [Google Scholar] [CrossRef]
- Solini, A.; Simeon, V.; Derosa, L.; Orlandi, P.; Rossi, C.; Fontana, A.; Galli, L.; Di Desidero, T.; Fioravanti, A.; Lucchesi, S.; et al. Genetic interaction of P2X7 receptor and VEGFR-2 polymorphisms identifies a favorable prognostic profile in prostate cancer patients. Oncotarget 2015, 6, 28743–28754. [Google Scholar] [CrossRef]
- Cunha, R.A. How does adenosine control neuronal dysfunction and neurodegeneration? J. Neurochem. 2016, 139, 1019–1055. [Google Scholar] [CrossRef]
- Tsujimoto, T.; Kajio, H.; Sugiyama, T. Association between caffeine intake and all-cause and cause-specific mortality: A population-based prospective cohort study. Mayo Clin. Proc. 2017, 92, 1190–1202. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wang, J.; Jose, M.; Seo, Y.; Feng, L.; Ge, S. Association between caffeine intake and all-cause and cause-specific mortality: An analysis of the national health and nutrition examination survey (NHANES) 1999-2014 database. Nurs. Rep. 2021, 11, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y.; Giovannucci, E. Coffee consumption and all-cause and cause-specific mortality: A meta-analysis by potential modifiers. Eur. J. Epidemiol. 2019, 34, 731–752. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.; Larranaga-Vera, A.; Castro, C.M.; Corciulo, C.; Rabbani, P.; Cronstein, B.N. Adenosine A2A receptor activation reduces chondrocyte senescence. FASEB J. 2023, 37, e22838. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.M.; Falzoni, S.; Morieri, M.L.; Passaro, A.; Zuliani, G.; Di Virgilio, F. Association of hypomorphic P2X7 receptor genotype with age. Front. Mol. Neurosci. 2020, 13, 8. [Google Scholar] [CrossRef]
- Maier, H.E.; Kuan, G.; Saborio, S.; Carrillo, F.A.B.; Plazaola, M.; Barilla, C.; Sanchez, N.; Lopez, R.; Smith, M.; Kubale, J.; et al. Clinical spectrum of SARS-CoV-2 infection and protection from symptomatic re-infection. Clin. Infect. Dis. 2021, 75, e257–e266. [Google Scholar] [CrossRef]
Severity | ||||||
---|---|---|---|---|---|---|
Asymptomatic + Mild | Moderate + Severe | |||||
Frequency 1 | Mean 2 | Frequency 1 | Mean 2 | p-Value 3 | ||
Sex | Male | 28.3% (13) | 66.7% (6) | 0.051 | ||
Female | 71.7% (33) | 33.3% (3) | ||||
Age | 65.0 (±20.4) | 65.7 (±18.6) | 0.964 | |||
Sequelae | Recovered | 84.8% (39) | 0% (0) | 0.002 | ||
Physical and/or Psychological | 15.2% (7) | 22.2% (2) | ||||
Death | 0% (0) | 11.1% (1) | ||||
Comorbidities | Absence | 10.9% (5) | 11.1% (1) | 1.000 | ||
Presence | 89.1% (41) | 88.9% (8) | ||||
Usual Medications | Absence | 26.7% (12) | 37.5% (3) | 0.673 | ||
Presence | 73.3% (33) | 62.5% (5) | ||||
Total | 83.6% (46) | 16.4% (9) |
ADORA2A rs2298383 SNP | ||||
---|---|---|---|---|
Asymptomatic + Mild 1 | Moderate + Severe 1 | p-Value 2 | ||
General model | C/C | 17.4% (8) | 22.2% (2) | 0.552 |
C/T | 52.2% (24) | 33.3% (3) | ||
T/T | 30.4% (14) | 44.4% (4) | ||
Dominant model | C/T; T/T | 82.6% (38) | 77.8% (7) | 0.661 |
C/C | 17.4% (8) | 22.2% (2) | ||
Recessive model | T/T | 30.4% (14) | 44.4% (4) | 0.454 |
C/T; C/C | 69.6% (32) | 55.6% (5) | ||
Allele | T allele frequency | 56.5% | 61.1% | 0.719 |
C allele frequency | 43.5% | 38.9% | ||
P2RX7 rs208294 SNP | ||||
Asymptomatic + Mild 1 | Moderate + Severe 1 | p-Value 2 | ||
General model | C/C | 37.0% (17) | 22.2% (2) | 0.070 |
C/T | 45.7% (21) | 22.2% (2) | ||
T/T | 17.4% (8) | 55.6% (5) | ||
Dominant model | C/T; T/T | 63.0% (29) | 77.8% (7) | 0.473 |
C/C | 37.0% (17) | 22.2% (2) | ||
Recessive model | T/T | 17.4% (8) | 55.6% (5) | 0.026 * |
C/T; C/C | 82.6% (38) | 44.4% (4) | ||
Allele | T allele frequency | 40.2% | 66.7% | 0.039 ** |
C allele frequency | 59.8% | 33.3% |
Combined Genotypes of Both SNPs | Asymptomatic + Mild | Moderate + Severe | p-Value 1 |
---|---|---|---|
P2X7R—T/T A2AR—T/T | 2.2% (1) | 11.1% (1) | 0.166 |
P2X7R—T/T A2AR—T/C | 6.5% (3) | 22.2% (2) | |
P2X7R—T/T A2AR—C/C | 8.7% (4) | 22.2% (2) | |
P2X7R—T/C A2AR—T/T | 13.0% (6) | 22.2% (2) | |
P2X7R—T/C A2AR—T/C | 30.4% (14) | 0% (0) | |
P2X7R—T/C A2AR—C/C | 2.2% (1) | 0% (0) | |
P2X7R—C/C A2AR—T/T | 15.2% (7) | 11.1% (1) | |
P2X7R—C/C A2AR—T/C | 15.2% (7) | 11.1% (1) | |
P2X7R—C/C A2AR—C/C | 6.5% (3) | 0% (0) |
ADORA2A rs2298383 SNP | |||||
---|---|---|---|---|---|
General Model 1 | Dominant Model 1 | Recessive Model 1 | Allele 1 | Multivariable Analysis 2 | |
TT vs. CT vs CC | TT; CT vs. CC | TT vs. CT; CC | T vs. C | ||
Presence of comorbidities | 0.067 | 0.066 | 1.000 | 0.327 | NS |
Number of comorbidities | 0.018 | 0.020 | 0.466 | 0.437 | NS |
0, 1 or >1 comorbidity | 0.113 | 0.072 | 0.774 | 0.507 | NS |
P2RX7 rs208294 SNP | |||||
General Model 1 | Dominant Model 1 | Recessive Model 1 | Allele 1 | Multivariable Analysis 2 | |
TT vs. CT vs CC | TT; CT vs. CC | TT vs. CT; CC | T vs. C | ||
Presence of comorbidities | 0.174 | 0.167 | 0.317 | 0.181 | NS |
Number of comorbidities | 0.153 | 0.053 | 0.417 | 0.070 | NS |
0, 1 or >1 comorbidity | 0.138 | 0.043 | 0.438 | 0.047 | Sig. * |
p-Value 1 | Multivariable Analysis 2 | |
---|---|---|
Presence of comorbidities | 0.015 | NS |
Number of comorbidities | 0.021 | NS |
0, 1 or >1 comorbidity | 0.030 | NS |
ADORA2A rs2298383 SNP | P2RX7 rs208294 SNP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gen. Model 1 | Dom. Model 1 | Rec. Model 1 | Allele 1 | Gen. Model 1 | Dom. Model 1 | Rec. Model 1 | Allele 1 | Combined Genotypes 1 | Multivariable Analysis 2 | |
T/T vs. C/T vs. C/C | T/T; C/T vs. C/C | T/T vs. C/T; C/C | T vs. C | T/T vs. C/T vs. C/C | T/T; C/T vs. C/C | T/T vs. C/T; C/C | T vs. C | |||
Cardiovascular conditions | 0.097 | 0.164 | 0.391 | 0.763 | 0.181 | 0.086 | 0.215 | 0.047 | 0.102 | Sig. 3 |
Hypertension | 0.011 | 0.039 | 0.197 | 0.753 | 0.643 | 0.354 | 0.604 | 0.347 | 0.006 | NS 4 |
Dyslipidemia | 0.056 | 0.423 | 0.110 | 0.647 | 0.299 | 0.334 | 0.218 | 0.120 | 0.221 | - |
Cancer | 0.328 | 0.490 | 0.391 | 0.933 | 0.497 | 0.577 | 0.238 | 0.276 | 0.421 | - |
Mammary cancer | 0.907 | 1.000 | 1.000 | 0.772 | 0.524 | 1.000 | 0.266 | 0.388 | 0.934 | - |
Colorectal cancer | 0.882 | 1.000 | 1.000 | 0.929 | 0.046 | 0.040 | 1.000 | 0.118 | 0.202 | - |
Neuropsychiatric conditions | 0.131 | 0.287 | 0.268 | 0.983 | 0.184 | 0.082 | 0.498 | 0.090 | 0.235 | - |
Depression | 0.119 | 0.095 | 1.000 | 0.339 | 0.366 | 0.734 | 0.156 | 0.244 | 0.501 | - |
Gene | SNP | 5′-3′ Sequence |
---|---|---|
ADORA2A | rs2298383 | TGC TTT GAC CCC TAT AGG AAT TCA GAC CGG AAG GTG TGT AGT G[C/T]A TGA AGG GAA CCA GAA GAC CTG TGA AGT CTC TGC CTG GTG |
P2RX7 | rs208294 | CCA GAT CCT GGC CCC GCC CCC TCC C[C/T]G GGG CCT CTG ACC TTC CTG TCA CTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindo, J.; Nogueira, C.; Soares, R.; Cunha, N.; Almeida, M.R.; Rodrigues, L.; Coelho, P.; Rodrigues, F.; Cunha, R.A.; Gonçalves, T. Genetic Polymorphisms of P2RX7 but Not of ADORA2A Are Associated with the Severity of SARS-CoV-2 Infection. Int. J. Mol. Sci. 2024, 25, 6135. https://doi.org/10.3390/ijms25116135
Lindo J, Nogueira C, Soares R, Cunha N, Almeida MR, Rodrigues L, Coelho P, Rodrigues F, Cunha RA, Gonçalves T. Genetic Polymorphisms of P2RX7 but Not of ADORA2A Are Associated with the Severity of SARS-CoV-2 Infection. International Journal of Molecular Sciences. 2024; 25(11):6135. https://doi.org/10.3390/ijms25116135
Chicago/Turabian StyleLindo, Jorge, Célia Nogueira, Rui Soares, Nuno Cunha, Maria Rosário Almeida, Lisa Rodrigues, Patrícia Coelho, Francisco Rodrigues, Rodrigo A. Cunha, and Teresa Gonçalves. 2024. "Genetic Polymorphisms of P2RX7 but Not of ADORA2A Are Associated with the Severity of SARS-CoV-2 Infection" International Journal of Molecular Sciences 25, no. 11: 6135. https://doi.org/10.3390/ijms25116135
APA StyleLindo, J., Nogueira, C., Soares, R., Cunha, N., Almeida, M. R., Rodrigues, L., Coelho, P., Rodrigues, F., Cunha, R. A., & Gonçalves, T. (2024). Genetic Polymorphisms of P2RX7 but Not of ADORA2A Are Associated with the Severity of SARS-CoV-2 Infection. International Journal of Molecular Sciences, 25(11), 6135. https://doi.org/10.3390/ijms25116135