Immune Response to Respiratory Viral Infections
Abstract
:1. Introduction
2. The Airway Mucosal Surface
3. Respiratory Viral Infections and Immune Response
3.1. Innate Immune Response
3.2. Adaptive Immune Response
4. Host Responses to RSV, Influenza Virus, and SARS-CoV-2
4.1. Innate and Adaptive Immune Response to RSV
4.2. Innate and Adaptive Immune Response to SARS-CoV-2
4.3. Innate and Adaptive Immune Response to Influenza Virus
5. Special Population: Pregnant Women and Newborns
5.1. Role of RSV Infection in Pregnant Women and Newborns
5.2. Role of Influenza Virus Infection in Pregnant Women and Newborns
5.3. Role of SARS-CoV-2 Infection in Pregnant Women and Newborns
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, F.-F.; Yu, S.-J.; Du, W.-N.; Wang, H.-M.; Yao, X.-X.; Xue, D.-D.; Yu, Y. Global Morbidity and Mortality of Lower Respiratory Infections: A Population-Based Study. Respir. Med. 2022, 205, 107042. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Schwarze, J. Respiratory Viral Infections in Infants: Causes, Clinical Symptoms, Virology, and Immunology. Clin. Microbiol. Rev. 2010, 23, 74–98. [Google Scholar] [CrossRef]
- Stambas, J.; Lu, C.; Tripp, R.A. Innate and Adaptive Immune Responses in Respiratory Virus Infection: Implications for the Clinic. Expert Rev. Respir. Med. 2020, 14, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- De Conto, F.; Conversano, F.; Medici, M.C.; Ferraglia, F.; Pinardi, F.; Arcangeletti, M.C.; Chezzi, C.; Calderaro, A. Epidemiology of Human Respiratory Viruses in Children with Acute Respiratory Tract Infection in a 3-Year Hospital-Based Survey in Northern Italy. Diagn. Microbiol. Infect. Dis. 2019, 94, 260–267. [Google Scholar] [CrossRef]
- Zappa, A.; Perin, S.; Amendola, A.; Bianchi, S.; Pariani, E.; Ruzza, M.L.; Podestà, A.; Tanzi, E.; Farina, C. Epidemiological and Molecular Surveillance of Influenza and Respiratory Syncytial Viruses in Children with Acute Respiratory Infections (2004/2005 Season). Microbiol. Medica 2008, 23. [Google Scholar] [CrossRef]
- Hernandez-Vargas, E.A.; Wilk, E.; Canini, L.; Toapanta, F.R.; Binder, S.C.; Uvarovskii, A.; Ross, T.M.; Guzmán, C.A.; Perelson, A.S.; Meyer-Hermann, M. Effects of Aging on Influenza Virus Infection Dynamics. J. Virol. 2014, 88, 4123–4131. [Google Scholar] [CrossRef]
- Ni, L.; Ye, F.; Cheng, M.-L.; Feng, Y.; Deng, Y.-Q.; Zhao, H.; Wei, P.; Ge, J.; Gou, M.; Li, X.; et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 2020, 52, 971–977.e3. [Google Scholar] [CrossRef] [PubMed]
- Santos Coy-Arechavaleta, A.; Alvarado-Yaah, J.E.; Uribe-Noguez, L.A.; Guerra-Castillo, F.X.; Santacruz-Tinoco, C.E.; Ramón-Gallegos, E.; Muñoz-Medina, J.E.; Fernandes-Matano, L. Relationship between the Viral Load in Patients with Different COVID-19 Severities and SARS-CoV-2 Variants. Microorganisms 2024, 12, 428. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.N.; Rouse, B.T. Immune Responses to Viruses. In Clinical Immunology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 421–431. [Google Scholar] [CrossRef]
- Alonso, W.J.; Laranjeira, B.J.; Pereira, S.A.R.; Florencio, C.M.G.D.; Moreno, E.C.; Miller, M.A.; Giglio, R.; Schuck-Paim, C.; Moura, F.E.A. Comparative Dynamics, Morbidity and Mortality Burden of Pediatric Viral Respiratory Infections in an Equatorial City. Pediatr. Infect. Dis. J. 2012, 31, e9–e14. [Google Scholar] [CrossRef]
- Everard, M.L. Paediatric Respiratory Infections. Eur. Respir. Rev. 2016, 25, 36–40. [Google Scholar] [CrossRef]
- Shi, T.; Mcallister, D.A.; O’brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Young Children in 2015: A Systematic Review and Modelling Study. Lancet 2017, 390, 946–958. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Confirmed Cases and Deaths. The United Nations Children’s Fund (UNICEF). Available online: https://data.unicef.org/resources/covid-19-confirmed-cases-and-deaths-dashboard (accessed on 7 April 2024).
- Paget, J.; Spreeuwenberg, P.; Charu, V.; Taylor, R.J.; Danielle Iuliano, A.; Bresee, J.; Simonsen, L.; Viboud, C.; for the Global Seasonal Influenza-Associated Mortality Collaborator Network and GLaMOR Collaborating Teams. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J. Glob. Health 2019, 9, 020421. [Google Scholar] [CrossRef] [PubMed]
- Manti, S.; Leonardi, S.; Rezaee, F.; Harford, T.J.; Perez, M.K.; Piedimonte, G.; De Paris, K.; Coleman, M.; Gibbons, D. Effects of Vertical Transmission of Respiratory Viruses to the Offspring. Front. Immunol. 2022, 13, e853009. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.P.; Thomé, B.L.; da Souza, A.P.D. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. Biology 2023, 12, 1223. [Google Scholar] [CrossRef] [PubMed]
- Ardain, A.; Marakalala, M.J.; Leslie, A. Tissue-Resident Innate Immunity in the Lung. Immunology 2020, 159, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Rubin, B.K. Physiology of Airway Mucus Clearance. Respir. Care 2002, 47, 761–768. [Google Scholar] [PubMed]
- Knowles, M.R.; Boucher, R.C. Mucus Clearance as a Primary Innate Defense Mechanism for Mammalian Airways. J. Clin. Investig. 2002, 109, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Mettelman, R.C.; Kaitlynn Allen, E.; Thomas, P.G. Mucosal Immune Responses to Infection and Vaccination in the Respiratory Tract. Immunity 2022, 55, 749–780. [Google Scholar] [CrossRef] [PubMed]
- Watford, W.T.; Ghio, A.J.; Wright, J.R. Complement-Mediated Host Defense in the Lung. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2000, 279, L790–L798. [Google Scholar] [CrossRef]
- Watson, A.; Phipps, M.J.S.; Clark, H.W.; Skylaris, C.-K.; Madsen, J. Surfactant Proteins A and D: Trimerized Innate Immunity Proteins with an Affinity for Viral Fusion Proteins The Innate Immune Defence of the Upper and Lower Airways. J. Innate Immun. 2018, 11, 13–28. [Google Scholar] [CrossRef]
- Hartshorn, K.L.; White, M.R.; Shepherd, V.; Reid, K.; Jensenius, J.C.; Crouch, E.C. Mechanisms of Anti-Influenza Activity of Surfactant Proteins A and D: Comparison with Serum Collectins. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1997, 273, L1156–L1166. [Google Scholar] [CrossRef] [PubMed]
- Brügger, M.; Démoulins, T.; Barut, G.T.; Zumkehr, B.; Oliveira Esteves, B.I.; Mehinagic, K.; Haas, Q.; Schögler, A.; Rameix-Welti, M.-A.; Eléouët, J.-F.; et al. Pulmonary Mesenchymal Stem Cells Are Engaged in Distinct Steps of Host Response to Respiratory Syncytial Virus Infection. PLoS Pathog. 2021, 17, e1009789. [Google Scholar] [CrossRef] [PubMed]
- Kesimer, M.; Kirkham, S.; Pickles, R.J.; Henderson, A.G.; Alexis, N.E.; DeMaria, G.; Knight, D.; Thornton, D.J.; Sheehan, J.K. Tracheobronchial Air-Liquid Interface Cell Culture: A Model for Innate Mucosal Defense of the Upper Airways? Am. J. Physiol.-Lung Cell. Mol. Physiol. 2009, 296, L92–L100. [Google Scholar] [CrossRef]
- Sheng, Y.H.; Hasnain, S.Z. Mucus and Mucins: The Underappreciated Host Defence System. Front. Cell Infect. Microbiol. 2022, 12, e856962. [Google Scholar] [CrossRef]
- Roy, M.G.; Livraghi-Butrico, A.; Fletcher, A.A.; McElwee, M.M.; Evans, S.E.; Boerner, R.M.; Alexander, S.N.; Bellinghausen, L.K.; Song, A.S.; Petrova, Y.M.; et al. Muc5b Is Required for Airway Defence. Nature 2014, 505, 412–416. [Google Scholar] [CrossRef]
- de Souza, A.P.D.; Singanayagam, A.; Porto, B.N. Editorial: Role of Lung and Gut Microbiota in the Immune Response against Respiratory Viral Infections. Front. Immunol. 2023, 13, e1114581. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Gail, M.H.; Consonni, D.; Carugno, M.; Humphrys, M.; Pesatori, A.C.; Caporaso, N.E.; Goedert, J.J.; Ravel, J.; Landi, M.T. Characterizing Human Lung Tissue Microbiota and Its Relationship to Epidemiological and Clinical Features. Genome Biol. 2016, 17, 163. [Google Scholar] [CrossRef]
- Yagi, K.; Huffnagle, G.B.; Lukacs, N.W.; Asai, N. The Lung Microbiome during Health and Disease. Int. J. Mol. Sci. 2021, 22, 10872. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Zhang, N.; Wang, X.; Sun, L.; Chen, N.; Zhao, S.; He, Q. Airway Microbiome, Host Immune Response and Recurrent Wheezing in Infants with Severe Respiratory Syncytial Virus Bronchiolitis. Pediatr. Allergy Immunol. 2020, 31, 281–289. [Google Scholar] [CrossRef]
- Melo-González, F.; Sepúlveda-Alfaro, J.; Schultz, B.M.; Suazo, I.D.; Boone, D.L.; Kalergis, A.M.; Bueno, S.M. Distal Consequences of Mucosal Infections in Intestinal and Lung Inflammation. Front. Immunol. 2022, 13, e877533. [Google Scholar] [CrossRef]
- Misharin, A.V.; Morales-Nebreda, L.; Mutlu, G.M.; Budinger, G.R.S.; Perlman, H. Flow Cytometric Analysis of Macrophages and Dendritic Cell Subsets in the Mouse Lung. Am. J. Respir. Cell Mol. Biol. 2013, 49, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Hyland, L.; Hou, S. Nasal-Associated Lymphoid Tissue Is a Site of Long-Term Virus-Specific Antibody Production Following Respiratory Virus Infection of Mice. J. Virol. 2001, 75, 5416–5420. [Google Scholar] [CrossRef] [PubMed]
- Wiley, J.A.; Richert, L.E.; Swain, S.D.; Harmsen, A.; Barnard, D.L.; Randall, T.D.; Jutila, M.; Douglas, T.; Broomell, C.; Young, M.; et al. Inducible Bronchus-Associated Lymphoid Tissue Elicited by a Protein Cage Nanoparticle Enhances Protection in Mice against Diverse Respiratory Viruses. PLoS ONE 2009, 4, e7142. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.C. Mechanism of Membrane Fusion by Viral Envelope Proteins. Adv. Virus Res. 2005, 64, 231–261. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, T.H. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, M. Pattern Recognition Receptors in Health and Diseases. Sig. Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, S.; Rodriguez-Fernandez, R.; Diaz, A.; Oliva Rodriguez-Pastor, S.; Ramilo, O.; Mejias, A. Infant Immune Response to Respiratory Viral Infections. Immunol. Allergy Clin. N. Am. 2019, 39, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, H.C.; Hansen, M.R.; Tripp, R.A. Interferons—Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023, 11, 2179. [Google Scholar] [CrossRef]
- Todd, E.M.; Zhou, J.Y.; Szasz, T.P.; Deady, L.E.; D’angelo, J.A.; Cheung, M.D.; Kim, A.H.J.; Morley, S.C. Alveolar Macrophage Development in Mice Requires L-Plastin for Cellular Localization in Alveoli. Blood 2016, 128, 2785–2796. [Google Scholar] [CrossRef]
- Arish, M.; Sun, J. Monocyte and Macrophage Function in Respiratory Viral Infections. Anim. Dis. 2023, 3, 30. [Google Scholar] [CrossRef]
- Cortjens, B.; van Woensel, J.B.M.; Bem, R.A. Neutrophil Extracellular Traps in Respiratory Disease: Guided Anti-Microbial Traps or Toxic Webs? Paediatr. Respir. Rev. 2017, 21, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Macchia, I.; La Sorsa, V.; Urbani, F.; Moretti, S.; Antonucci, C.; Afferni, C.; Schiavoni, G. Eosinophils as Potential Biomarkers in Respiratory Viral Infections. Front. Immunol. 2023, 14, e1170035. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Simon, D.; Simon, H.-U. Eosinophil Extracellular DNA Traps: Molecular Mechanisms and Potential Roles in Disease. Curr. Opin. Immunol. 2012, 24, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.H.; Cardani, A.; Braciale, T.J. The Host Immune Response in Respiratory Virus Infection: Balancing Virus Clearance and Immunopathology. Semin. Immunopathol. 2016, 38, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Culley, F.J. Natural Killer Cells in Infection and Inflammation of the Lung. Immunology 2009, 128, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Pamer, E.G. Monocyte Recruitment during Infection and Inflammation. Nat. Rev. Immunol. 2014, 11, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.E.; Varga, S.M. The CD8 T Cell Response to Respiratory Virus Infections. Front. Immunol. 2018, 9, e00678. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Madan, R.; Karp, C.L.; Braciale, T.J. Effector T Cells Control Lung Inflammation during Acute Influenza Virus Infection by Producing IL-10. Nat. Med. 2009, 15, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Braciale, T.J.; Sun, J.; Kim, T.S. Regulating the Adaptive Immune Response to Respiratory Virus Infection. Nat. Rev. Immunol. 2012, 12, 295–305. [Google Scholar] [CrossRef]
- Mangodt, T.C.; Van Herck, M.A.; Nullens, S.; Ramet, J.; De Dooy, J.J.; Jorens, P.G.; De Winter, B.Y. The Role of Th17 and Treg Responses in the Pathogenesis of RSV Infection. Pediatr. Res. 2015, 78, 483–491. [Google Scholar] [CrossRef]
- Swarnalekha, N.; Schreiner, D.; Litzler, L.C.; Iftikhar, S.; Kirchmeier, D.; Künzli, M.; Son, Y.M.; Sun, J.; Moreira, E.A.; King, C.G. T Resident Helper Cells Promote Humoral Responses in the Lung. Sci. Immunol. 2021, 6, 6808. [Google Scholar] [CrossRef]
- Pruner, K.B.; Pepper, M. Immune Memory Focus Local Memory CD4 T Cell Niches in Respiratory Viral Infection. J. Exp. Med. 2021, 218, e20201733. [Google Scholar] [CrossRef]
- Tang, J.; Sun, J. Lung Tissue-Resident Memory T Cells: The Gatekeeper to Respiratory Viral (Re)-Infection. Curr. Opin. Immunol. 2023, 80, 102278. [Google Scholar] [CrossRef]
- Chiu, C.; Openshaw, P.J. Antiviral B Cell and T Cell Immunity in the Lungs. Nat. Immunol. 2015, 16, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Takahashi, Y.; Yokoi, Y.; Ato, M.; Kodama, Y.; Hachimura, S.; Kurosaki, T.; Kobayashi, K. Memory B Cells in the Lung Participate in Protective Humoral Immune Responses to Pulmonary Influenza Virus Reinfection. Proc. Natl. Acad. Sci. USA 2012, 109, 2485–2490. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Liao, H.; Hu, Y.; Luo, K.; Hu, S.; Zhu, H. Innate Immune Evasion by Human Respiratory Syncytial Virus. Front. Microbiol. 2022, 13, e865592. [Google Scholar] [CrossRef]
- Marr, N.; Wang, T.-I.; Kam, S.H.Y.; Hu, Y.S.; Sharma, A.A.; Lam, A.; Markowski, J.; Solimano, A.; Lavoie, P.M.; Turvey, S.E. Attenuation of Respiratory Syncytial Virus–Induced and RIG-I–Dependent Type I IFN Responses in Human Neonates and Very Young Children. J. Immunol. 2014, 192, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Zhang, Z.; Xie, T.; Xu, J.; Yan, J.; Kang, A.; Dai, Q.; Wang, S.; Ji, J.; Shan, J. Jinxin Oral Liquid Inhibits Human Respiratory Syncytial Virus-Induced Excessive Inflammation Associated with Blockade of the NLRP3/ASC/Caspase-1 Pathway. Biomed. Pharmacother. 2018, 103, 1376–1383. [Google Scholar] [CrossRef]
- Zheng, M.; Karki, R.; Peter Williams, E.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Beth Jonsson, C.; Kanneganti, T.-D. TLR2 Senses the SARS-CoV-2 Envelope Protein to Produce Inflammatory Cytokines. Nat. Immunol. 2021, 22, 829–838. [Google Scholar] [CrossRef]
- Manik, M.; Rakesh, S.K. Role of Toll-like Receptors in Modulation of Cytokine Storm Signaling in SARS-CoV-2-Induced COVID-19. J. Med. Virol. 2021, 94, 869–877. [Google Scholar] [CrossRef]
- Maison, D.P.; Deng, Y.; Gerschenson, M. SARS-CoV-2 and the Host-Immune Response. Front. Immunol. 2023, 14, e1195871. [Google Scholar] [CrossRef]
- Iwasaki, A.; Pillai, P.S. Innate Immunity to Influenza Virus Infection. Nat. Rev. Immunol. 2014, 14, 315–328. [Google Scholar] [CrossRef]
- Mejias, A.; Dimo, B.; Suarez, N.M.; Garcia, C.; Carmen Suarez-Arrabal, M.; Jartti, T.; Blankenship, D.; Jordan-Villegas, A.; Ardura, M.I.; Xu, Z.; et al. Whole Blood Gene Expression Profiles to Assess Pathogenesis and Disease Severity in Infants with Respiratory Syncytial Virus Infection. PLoS Med. 2013, 10, e1001549. [Google Scholar] [CrossRef]
- Selvaggi, C.; Pierangeli, A.; Fabiani, M.; Spano, L.; Nicolai, A.; Papoff, P.; Moretti, C.; Midulla, F.; Antonelli, G.; Scagnolari, C. Interferon Lambda 1e3 Expression in Infants Hospitalized for RSV or HRV Associated Bronchiolitis. J. Infect. 2014, 68, 467–477. [Google Scholar] [CrossRef]
- Hartenian, E.; Nandakumar, D.; Lari, A.; Ly, M.; Tucker, J.M.; Glaunsinger, B.A. The Molecular Virology of Coronaviruses. J. Biol. Chem. 2020, 295, 12910–12934. [Google Scholar] [CrossRef]
- Bergeron, H.C.; Tripp, R.A. Immunopathology of RSV: An Updated Review. Viruses 2021, 13, 2478. [Google Scholar] [CrossRef]
- Russell, C.D.; Unger, S.A.; Walton, M.; Schwarze, J. The Human Immune Response to Respiratory Syncytial Virus Infection. Clin. Microbiol. Rev. 2017, 30, e00090-16. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef] [PubMed]
- Nüssing, S.; Sant, S.; Koutsakos, M.; Subbarao, K.; Nguyen, T.H.O.; Kedzierska, K. Innate and Adaptive T Cells in Influenza Disease. Front. Med. 2018, 12, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.; Ahout, I.M.L.; De Jonge, M.I.; Ferwerda, G. Mucosal IgG Levels Correlate Better with Respiratory Syncytial Virus Load and Inflammation than Plasma IgG Levels. Clin. Vaccine Immunol. 2016, 23, 243–245. [Google Scholar] [CrossRef]
- Zhivaki, D.; Bastien Lemoine, S.; Lim, A.; Zhang, X.; Tissiè, P.; Lo, R.; Correspondence, M. Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity. Immunity 2017, 46, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Neufeldt, C.J.; Cerikan, B.; Cortese, M.; Frankish, J.; Lee, J.-Y.; Plociennikowska, A.; Heigwer, F.; Prasad, V.; Joecks, S.; Burkart, S.S.; et al. SARS-CoV-2 Infection Induces a pro-Inflammatory Cytokine Response through CGAS-STING and NF-ΚB. Commun. Biol. 2022, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, N.; Kuo, H.-H.; Boucau, J.; Farmer, J.R.; Allard-Chamard, H.; Mahajan, V.S.; Piechocka-Trocha, A.; Lefteri, K.; Osborn, M.; Bals, J.; et al. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell 2020, 183, 143–157.e13. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, S.; Goraya, M.U.; Maarouf, M.; Huang, S.; Chen, J.-L. Host Immune Response to Influenza A Virus Infection. Front. Immunol. 2018, 9, e00320. [Google Scholar] [CrossRef] [PubMed]
- Kikkert, M. Innate Immune Evasion by Human Respiratory RNA Viruses. J. Innate Immun. 2020, 12, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Van Royen, T.; Rossey, I.; Sedeyn, K.; Schepens, B.; Saelens, X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022, 14, 419. [Google Scholar] [CrossRef]
- Minkoff, J.M.; tenOever, B. Nature Reviews Microbiology Innate Immune Evasion Strategies of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Varghese, P.M.; Kishore, U.; Rajkumari, R. Innate and Adaptive Immune Responses against Influenza A Virus: Immune Evasion and Vaccination Strategies. Immunobiology 2022, 227, 152279. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y. Pathogenicity and Virulence of Influenza. Virulence 2023, 14. [Google Scholar] [CrossRef]
- Li, C.; Wang, T.; Zhang, Y.; Wei, F. Evasion Mechanisms of the Type I Interferons Responses by Influenza A Virus. Crit. Rev. Microbiol. 2020, 46, 420–432. [Google Scholar] [CrossRef]
- Bokun, V.; Moore, J.J.; Moore, R.; Smallcombe, C.C.; Harford, T.J.; Rezaee, F.; Esper, F.; Piedimonte, G. Respiratory Syncytial Virus Exhibits Differential Tropism for Distinct Human Placental Cell Types with Hofbauer Cells Acting as a Permissive Reservoir for Infection. PLoS ONE 2019, 14, e0225767. [Google Scholar] [CrossRef] [PubMed]
- Manti, S.; Piedimonte, G. An Overview on the RSV-Mediated Mechanisms in the Onset of Non-Allergic Asthma. Front. Pediatr. 2022, 10, e998296. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Varga, S.M. Modulation of the Host Immune Response by Respiratory Syncytial Virus Proteins. J. Microbiol. 2017, 55, 161–171. [Google Scholar] [CrossRef] [PubMed]
- González-Sanz, R.; Mata, M.; Bermejo-Martín, J.; Álvarez, A.; Cortijo, J.; Melero, J.A.; Martínez, I. ISG15 Is Upregulated in Respiratory Syncytial Virus Infection and Reduces Virus Growth through Protein ISGylation. J. Virol. 2016, 90, e02695-15. [Google Scholar] [CrossRef] [PubMed]
- Goritzka, M.; Makris, S.; Kausar, F.; Durant, L.R.; Pereira, C.; Kumagai, Y.; Culley, F.J.; Mack, M.; Akira, S.; Johansson, C. Alveolar Macrophage–Derived Type I Interferons Orchestrate Innate Immunity to RSV through Recruitment of Antiviral Monocytes. J. Exp. Med. 2015, 212, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Shehata, L.; Wieland-Alter, W.F.; Maurer, D.P.; Chen, E.; Connor, R.I.; Wright, P.F.; Walker, L.M. Systematic Comparison of Respiratory Syncytial Virus-Induced Memory B Cell Responses in Two Anatomical Compartments. Nat. Commun. 2019, 10, 1126. [Google Scholar] [CrossRef] [PubMed]
- Siefker, D.T.; Vu, L.; You, D.; Mcbride, A.; Taylor, R.; Jones, T.L.; Devincenzo, J.; Cormier, S.A. Respiratory Syncytial Virus Disease Severity Is Associated with Distinct CD8 1 T-Cell Profiles at a Glance Commentary. Am. J. Respir. Crit. Care Med. 2020, 201, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.W.; Moldoveanu, Z.; Ogra, P.L.; Mestecky, J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front. Immunol. 2020, 11, e611337. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ravichandran, S.; Lee, Y.; Grubbs, G.; Coyle, E.M.; Klenow, L.; Genser, H.; Golding, H.; Khurana, S. Antibody Affinity Maturation and Plasma IgA Associate with Clinical Outcome in Hospitalized COVID-19 Patients. Nat. Commun. 2021, 12, 1221. [Google Scholar] [CrossRef]
- Cervia, C.; Nilsson, J.; Zurbuchen, Y.; Valaperti, A.; Schreiner, J.; Wolfensberger, A.; Raeber, M.E.; Adamo, S.; Weigang, S.; Emmenegger, M.; et al. Systemic and Mucosal Antibody Responses Specific to SARS-CoV-2 during Mild versus Severe COVID-19. J. Allergy Clin. Immunol. 2021, 147, 545–557. [Google Scholar] [CrossRef]
- Gruber, C.N.; Patel, R.S.; Trachtman, R.; Gelb, B.D.; Merad, M.; Correspondence, D.B.; Lepow, L.; Amanat, F.; Krammer, F.; Wilson, K.M.; et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Cell 2020, 183, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Mifsud, E.J.; Kuba, M.; Barr, I.G.; Valkenburg, S. Innate Immune Responses to Influenza Virus Infections in the Upper Respiratory Tract. Viruses 2021, 13, 2090. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Prim. 2018, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F. The Human Antibody Response to Influenza A Virus Infection and Vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Wu, Y.; Huang, S.; Zhang, R.; Son, Y.M.; Li, C.; Cheon, I.S.; Gao, X.; Wang, M.; Chen, Y.; et al. Uncoupling of Macrophage Inflammation from Self-Renewal Modulates Host Recovery from Respiratory Viral Infection. Immunity 2021, 54, 1200–1218.e9. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhu, B.; Cheon, I.S.; Goplen, N.P.; Jiang, L.; Zhang, R.; Peebles, R.S.; Mack, M.; Kaplan, M.H.; Limper, A.H.; et al. PPAR-γ in Macrophages Limits Pulmonary Inflammation and Promotes Host Recovery Following Respiratory Viral Infection. J. Virol. 2019, 93, e00030-19. [Google Scholar] [CrossRef] [PubMed]
- Marvin, S.A.; Russier, M.; Huerta, C.T.; Russell, C.J.; Schultz-Cherry, S. Influenza Virus Overcomes Cellular Blocks To Productively Replicate, Impacting Macrophage Function. J. Virol. 2017, 91, e01417-16. [Google Scholar] [CrossRef] [PubMed]
- van de Sandt, C.E.; Hillaire, M.L.B.; Geelhoed-Mieras, M.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M.; Rimmelzwaan, G.F. Human Influenza A Virus–Specific CD8+ T-Cell Response Is Long-Lived. J. Infect. Dis. 2015, 212, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Thomas, P.G. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection. Front. Immunol. 2016, 7, e00025. [Google Scholar] [CrossRef]
- Hayward, A.C.; Wang, L.; Goonetilleke, N.; Fragaszy, E.B.; Bermingham, A.; Copas, A.; Dukes, O.; Millett, E.R.C.; Nazareth, I.; Nguyen-Van-Tam, J.S.; et al. Natural T Cell–Mediated Protection against Seasonal and Pandemic Influenza. Results of the Flu Watch Cohort Study. Am. J. Respir. Crit. Care Med. 2015, 191, 1422–1431. [Google Scholar] [CrossRef]
- Manti, S.; Spoto, G.; Nicotera, A.G.; Di Rosa, G.; Piedimonte, G. Impact of Respiratory Viral Infections during Pregnancy on the Neurological Outcomes of the Newborn: Current Knowledge. Front. Neurosci. 2024, 17, e1320319. [Google Scholar] [CrossRef]
- Cervantes, O.; Cruz Talavera, I.; Every, E.; Coler, B.; Li, M.; Li, A.; Li, H.; Adams Waldorf, K. Role of Hormones in the Pregnancy and Sex-specific Outcomes to Infections with Respiratory Viruses. Immunol. Rev. 2022, 308, 123–148. [Google Scholar] [CrossRef]
- Schumacher, A.; Heinze, K.; Witte, J.; Poloski, E.; Linzke, N.; Woidacki, K.; Zenclussen, A.C. Human Chorionic Gonadotropin as a Central Regulator of Pregnancy Immune Tolerance. J. Immunol. 2013, 190, 2650–2658. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Chi, H.; Qiao, J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front. Immunol. 2020, 11, e01023. [Google Scholar] [CrossRef]
- Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol. 2020, 11, e02025. [Google Scholar] [CrossRef] [PubMed]
- Szekeres-Bartho, J.; Polgar, B. PIBF: The Double Edged Sword. Pregnancy and Tumor. Am. J. Reprod. Immunol. 2010, 64, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Littauer, E.Q.; Skountzou, I. Hormonal Regulation of Physiology, Innate Immunity and Antibody Response to H1N1 Influenza Virus Infection During Pregnancy. Front. Immunol. 2018, 9, e02455. [Google Scholar] [CrossRef] [PubMed]
- Muzzio, D.; Zenclussen, A.C.; Jensen, F. The Role of B Cells in Pregnancy: The Good and the Bad. Am. J. Reprod. Immunol. 2013, 69, 408–412. [Google Scholar] [CrossRef]
- Trinh, I.V.; Desai, S.P.; Ley, S.H.; Mo, Z.; Satou, R.; Pridjian, G.C.; Longo, S.A.; Shaffer, J.G.; Robinson, J.E.; Norton, E.B.; et al. Prenatal Infection by Respiratory Viruses Is Associated with Immunoinflammatory Responses in the Fetus. Am. J. Respir. Crit. Care Med. 2024, 209, 693–702. [Google Scholar] [CrossRef]
- Ma, J.; Chen, L.; Tang, S.; Shi, Y. Efficacy and Safety of Respiratory Syncytial Virus Vaccination during Pregnancy to Prevent Lower Respiratory Tract Illness in Newborns and Infants: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Pediatr. 2024, 11, e1260740. [Google Scholar] [CrossRef]
- Lambert, L.; Sagfors, A.M.; Openshaw, P.J.M.; Culley, F.J.; Kollmann, T.R.; Del Giudice, G.; Vaccines, N.; Jürgen Schwarze, I. Immunity to RSV in Early-Life. Front. Immunol. 2014, 5, e00466. [Google Scholar] [CrossRef] [PubMed]
- Harford, T.J.; Rezaee, F.; Dye, B.R.; Fan, J.; Spence, J.R.; Piedimonte, G. RSV-Induced Changes in a 3-Dimensional Organoid Model of Human Fetal Lungs. PLoS ONE 2022, 17, e0265094. [Google Scholar] [CrossRef] [PubMed]
- Kolli, D.; Velayutham, T.S.; Casola, A. Host-Viral Interactions: Role of Pattern Recognition Receptors (PRRs) in Human Pneumovirus Infections. Pathogens 2013, 2, 232–263. [Google Scholar] [CrossRef] [PubMed]
- Ruckwardt, T.J.; Morabito, K.M.; Graham, B.S. Determinants of Early Life Immune Responses to RSV Infection. Curr. Opin. Virol. 2016, 16, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Faber, T.E.; Groen, H.; Welfing, M.; Jansen, K.J.G.; Bont, L.J. Specific Increase in Local IL-17 Production during Recovery from Primary RSV Bronchiolitis. J. Med. Virol. 2012, 84, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Raj, R.S.; Bonney, E.A.; Phillippe, M. Influenza, Immune System, and Pregnancy. Reprod. Sci. 2014, 21, 1434–1451. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Guillot, L.; Le Goffic, R.; Bloch, S.; Escriou, N.; Akira, S.; Chignard, M.; Si-Tahar, M. Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-Stranded RNA and Influenza A Virus. J. Biol. Chem. 2005, 280, 5571–5580. [Google Scholar] [CrossRef] [PubMed]
- Khaitov, M.R.; Laza-Stanca, V.; Edwards, M.R.; Walton, R.P.; Rohde, G.; Contoli, M.; Papi, A.; Stanciu, L.A.; Kotenko, S.V.; Johnston, S.L. Respiratory Virus Induction of Alpha-, Beta- and Lambda-Interferons in Bronchial Epithelial Cells and Peripheral Blood Mononuclear Cells. Allergy Eur. J. Allergy Clin. Immunol. 2009, 64, 375–386. [Google Scholar] [CrossRef]
- Mckinstry, K.K.; Strutt, T.M.; Swain, S.L. Hallmarks of CD4 T Cell Immunity against Influenza. J. Intern. Med. 2011, 269, 507–518. [Google Scholar] [CrossRef]
- Gordon, C.L.; Johnson, P.D.R.; Permezel, M.; Holmes, N.E.; Gutteridge, G.; Mcdonald, C.F.; Eisen, D.P.; Stewardson, A.J.; Edington, J.; Charles, P.G.P.; et al. Association between Severe Pandemic 2009 Influenza A (H1N1) Virus Infection and Immunoglobulin G2 Subclass Deficiency. Clin. Infect. Dis. 2010, 50, 672–678. [Google Scholar] [CrossRef]
- Zheng, R.; Qin, X.; Li, Y.; Yu, X.; Wang, J.; Tan, M.; Yang, Z.; Li, W. Imbalanced Anti-H1N1 Immunoglobulin Subclasses and Dysregulated Cytokines in Hospitalized Pregnant Women with 2009 H1N1 Influenza and Pneumonia in Shenyang, China. Hum. Immunol. 2012, 73, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.; Arck, P.C. Vertically Transferred Immunity in Neonates: Mothers, Mechanisms and Mediators. Front. Immunol. 2020, 11, e00555. [Google Scholar] [CrossRef] [PubMed]
- Pou, C.; Nkulikiyimfura, D.; Henckel, E.; Olin, A.; Lakshmikanth, T.; Mikes, J.; Wang, J.; Chen, Y.; Karin Bernhardsson, A.; Gustafsson, A.; et al. The Repertoire of Maternal Anti-Viral Antibodies in Human Newborns. Nat. Med. 2019, 25, 591–596. [Google Scholar] [CrossRef]
- Pyzik, M.; Sand, K.M.K.; Hubbard, J.J.; Andersen, J.T.; Sandlie, I.; Blumberg, R.S. The Neonatal Fc Receptor (FcRn): A Misnomer? Front. Immunol. 2019, 10, e01540. [Google Scholar] [CrossRef] [PubMed]
- Schlaudecker, E.P.; Steinhoff, M.C.; Omer, S.B.; McNeal, M.M.; Roy, E.; Arifeen, S.E.; Dodd, C.N.; Raqib, R.; Breiman, R.F.; Zaman, K. IgA and Neutralizing Antibodies to Influenza A Virus in Human Milk: A Randomized Trial of Antenatal Influenza Immunization. PLoS ONE 2013, 8, e70867. [Google Scholar] [CrossRef]
- Jacobs, M.B.; Valentine, H.D.; Adkins, S.; Magallanes, C.; Morgan, S.C.; Pereira, L.M.; Tekkatte, C.; Hakim, A.; De Hoff, P.; Laurent, L.C.; et al. Humoral Immune Response to SARS-CoV-2 in Pregnant and Nonpregnant Women Following Infection. AJOG Glob. Rep. 2023, 3, 100192. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, J.M.; Murphy, E.A.; Yee, J.; Cagino, K.A.; Friedlander, R.L.; Glynn, S.M.; Matthews, K.C.; Jurkiewicz, M.; Sukhu, A.C.; Zhao, Z.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Serology Levels in Pregnant Women and Their Neonates. Am. J. Obstet. Gynecol. 2021, 225, 73.e1–73.e7. [Google Scholar] [CrossRef]
- González-Mesa, E.; García-Fuentes, E.; Carvia-Pontiasec, R.; Lavado-Fernández, A.I.; Cuenca-Marín, C.; Suárez-Arana, M.; Blasco-Alonso, M.; Benítez-Lara, B.; Mozas-Benítez, L.; González-Cazorla, A.; et al. Transmitted Fetal Immune Response in Cases of SARS-CoV-2 Infections during Pregnancy. Diagnostics 2022, 12, 245. [Google Scholar] [CrossRef]
- Zelini, P.; Perotti, F.; Licia Scatigno, A.; Dominoni, M.; Zavaglio, F.; Arossa, A.; Piccini, S.; Angelini, M.; Ghirardello, S.; Lilleri, D.; et al. Impact of SARS-CoV-2 Infection during Pregnancy and Persistence of Antibody Response. New Microbiol. 2022, 45, 181–189. [Google Scholar]
Immunological Mechanism | RSV | SARS-CoV-2 | Influenza Virus |
---|---|---|---|
Innate immune response | |||
PRRs | TLR2, TLR3, TLR4, TLR7, and TLR8 recognize the virus [58]. RIG-I and MDA5 recognize the virus [59]. NLRP3 promotes secretion of pro-inflammatory cytokines [60]. NLRC5 regulates IFN-I expression [58]. | TLR2 recognizes the virus, triggering the release of TNF-α and IFN-γ [61]. TLR3 induces the production of IL-1β and IL-18 via the NLRP3 inflammasome [61]. TLR4, TLR1, TLR5, TLR7, TLR8, and TLR9 detect viral RNA, realizing cytokines, including IFN I/III [62]. RIG-I and MDA5 activate NF-kB signaling and IFN I/III [63]. | TLR3, TLR7, TLR8, RIG-I, and NLRP3 induce the expression of IFNs I/III and pro-inflammatory cytokines, stimulating antiviral ISGs, and recruit immune cells [64]. NLRP3 inflammasome releases IL-1β and IL-18 triggering pyroptosis in infected cells [64]. |
IFNs | Viral proteins inhibit IFN production [65]. Increased levels of IFN-λ 1–3 are associated with the disease severity [66]. | IFNs I/III activate JAK/STAT pathway and induce the expression of MHC class I and ISGs [67]. | IFNs I/III stimulate antiviral ISGs and recruit pro-inflammatory cells [64]. |
Adaptive immune response | |||
T cells’ response | CD4 cells promote the differentiation of cytotoxic CD8 cells and B cells [68]. Th2 response contributes to antibody and eosinophils’ responses [69]. | CD4 cells stimulate B cells and activate CD8 cells, which contribute to eliminate virus-infected cells [70]. | CD4 T cells produce IFNs and IL-2, provide help to B cells for antibody production, and contribute to the generation and recall of CD8 T cell memory. CD8 cells promote viral clearance and reduce the disease severity [71]. |
B cells’ response | B cells produce antibodies, and anti-F protein antibodies exhibit superior neutralization capabilities [72]. Neonatal B cells contribute to heightened Th2 response [73]. Reduced IFN responses potentially result in decreased B cell function in newborns [73]. | B cells produce neutralizing antibodies [74]. Acute COVID-19 is marked by the absence of germinal centers, leading to the generation of “disease-related” B cells with limited protective capacity [75]. | B cells produce antibodies, targeting the surface glycoproteins HA and NA. These antibodies neutralize viral particles, inhibit viral entry and release, and promote opsonization for phagocytosis [76]. |
Mechanisms of evasions | NS1 and NS2 suppress IFN-I production and signaling [77]. G, N, M, and SH proteins disrupt innate immune recognition by PRRs and modulate the host’s innate immune response, facilitating persistent infection and recurrent respiratory tract infections [78]. | Inhibits the IFNs production and signaling, delaying immune response activation [79]. Evades recognition by TLRs and RLRs and modulates antigen presentation [79]. Manipulates cytokine signaling pathways, exacerbating inflammation and disease severity [79]. Undergoes antigenic variation, evading recognition by pre-existing immunity and leading to reinfection or reduced vaccine efficacy [79]. | Rapid mutations of HA and NA allow the virus to escape recognition [80]. Antigenic drift and shift lead to the emergence of novel strains with altered antigenic properties, complicating immune recognition [81]. NS1 inhibits IFN response. Induces immunosuppression, facilitating viral persistence and dissemination [82]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambadauro, A.; Galletta, F.; Li Pomi, A.; Manti, S.; Piedimonte, G. Immune Response to Respiratory Viral Infections. Int. J. Mol. Sci. 2024, 25, 6178. https://doi.org/10.3390/ijms25116178
Gambadauro A, Galletta F, Li Pomi A, Manti S, Piedimonte G. Immune Response to Respiratory Viral Infections. International Journal of Molecular Sciences. 2024; 25(11):6178. https://doi.org/10.3390/ijms25116178
Chicago/Turabian StyleGambadauro, Antonella, Francesca Galletta, Alessandra Li Pomi, Sara Manti, and Giovanni Piedimonte. 2024. "Immune Response to Respiratory Viral Infections" International Journal of Molecular Sciences 25, no. 11: 6178. https://doi.org/10.3390/ijms25116178
APA StyleGambadauro, A., Galletta, F., Li Pomi, A., Manti, S., & Piedimonte, G. (2024). Immune Response to Respiratory Viral Infections. International Journal of Molecular Sciences, 25(11), 6178. https://doi.org/10.3390/ijms25116178