Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics
Abstract
:1. Introduction
2. Results
2.1. Chronic Infection of S. gordonii Effectively Colonized in Mice Gingival Surface
2.2. Higher Alveolar Bone Resorption (ABR) and Bacterial Dissemination to Distal Organs
2.3. NanoString Analysis of miRNAs in S. gordonii-Infected Mandibles
2.4. Identification of Differentially Expressed (DE) miRNAs
Upregulated miRNAs in 8-Week S. gordonii Infection | ||||
---|---|---|---|---|
miRNA | Fold Change | p-Value | Reported Function | Number of Target Genes |
miR-375 | 2.68 | 0.0079 | Facilitated the proliferation and osteogenic differentiation capacity in human periodontal ligament stem cells [33]. Potential biomarker in esophageal cancer [15]. Upregulated in the saliva of migraine without aura patients [34]. | 27 (e.g., Akap2, Atrn, Lpin1, Rpsa, Pacsin1) |
miR-34b-5p | 1.76 | 0.0292 | Upregulated in acute lung injury [35]. Regulates the lung inflammation, and apoptosis in LPS-induced ALI mouse model [36]. Upregulated in the saliva of migraine without aura patients [34]. | 354 (e.g., 2310010M20Rik, Rg9mtd2, Dnase2a, Epb4.2, Fyco1) |
miR-142-5p | 1.58 | 0.0002 | High levels were reported in the condition of experimental autoimmune encephalomyelitis mice [37]. Promoting brain inflammation through astrocyte activation in traumatic brain injury [38]. | 24 (e.g., Abcg1, Cd28, Sort1, Slc35a1, Cwc25) |
miR-135a | 1.56 | 0.0056 | Inhibiting the differentiation of osteoblasts [39], and regulating osteoblastic activity [40]. Serving the role in osteoporosis progression by regulating osteogenic differentiation via RUNX2 [41]. | 19 (e.g., Nup133, Adamts14, Cep170, App, Smad5) |
miR-323-3p | 1.55 | 0.0011 | Upregulated in obese individuals with periodontitis [42]. | 25 (e.g., Fam190a, Eed, Fzd3, Pira1, Tyw1, Ccser1) |
miR-485 | 1.45 | 0.0015 | up-regulated in osteoporosis patients [43]. Dysregulated miR-485 is associated with AD and Parkinson’s disease [44]. | 14 (Cd93, Pigm, Fasl, Gns) |
miR-881 | 1.44 | 0.0007 | Upregulated in dental pulp cells induced by 5-AZA-CdR [45]. Upregulated in the NAFLD liver tissue [46]. Downregulated in the chronic alcoholic rats [47]. Upregulated in the acute lung injury mice [48]. | 50 (e.g., Xiap, Stxbp5, Slc31a2, Wbp1l) |
miR-669e | 1.43 | 0.0004 | Downregulated in the flavonoid-treated mice [49]. | 108 (e.g., Wdr59, Mmp25, Ubac1, Mzt1, Fzd2) |
miR-187 | 1.43 | 0.0004 | Upregulated in the sepsis-induced myocardial dysfunction- mice supplemented with mesenchymal stem cells [50]. Reported as a diagnostic and predictive factor for oral squamous cell carcinoma patients [51]. Restoring the osteogenic differentiation capacity in bone marrow-derived mesenchymal stem cells [52]. The most abundant miR in the serum of women in different stages of pregnancy or patients with different urothelial cancers [53]. | 14 (e.g., Cd93, Dmpk, Rgs4, Rnaseh2a, Adcy1). |
miR-1306 | 1.43 | 0.0027 | Mediating the feedback regulation of the TGF-β signaling pathway in granulosa cells [54]. Regulating the human ameloblastoma AM-1 cells differentiation [55]. | 22 (e.g., Rinl, Frmd3, Tpmt, Ptprb, Map3k7). |
miR-200b | 1.43 | 0.0253 | Variations in the levels of miR-200b were observed in gingival tissue of obese periodontitis subjects [42]. | 55 (e.g., Zeb2, Suz12, Bmi1, Flt1, Mapk14) |
miR-767 | 1.42 | 0.0076 | Upregulated in hepatocellular carcinoma [56]. Forced upregulation of miR-767-5p may represent a novel therapeutic strategy for glioma patients by targeting SUZ12 [57]. Highly expressed in senescent vascular endothelial cells [58]. | 13 (e.g., Mcl1, Gtpbp1, Klf6, Pigs, Tmem178b) |
miR-455 | 1.41 | 0.0006 | Associated with cartilage development, adipogenesis, preeclampsia, and cancers in humans [59]. | 31 (e.g., Acvr2b, Smad2, Chrdl1, Fut1, Cd36) |
miR-2140 | 1.4 | 0.0007 | Predictive markers for the onset of cognitive impairment [60]. Upregulated in the differentiated P19 embryonic carcinoma cells [61]. | ------------ |
miR-1187 | 1.4 | 0.0027 | Upregulated in hypoxia-induced apoptotic HL-1 cardiomyocytes [62]. Functions as a negative regulator of osteogenesis [63]. Upregulated in high glucose-treated kidney podocytes, and kidney tissue in db/db mice [64]. Regulates hepatocyte apoptosis by targeting caspase-8 [65]. | 148 (e.g., Ado, Lifr, Igf2, Zfp157, Slc39a14) |
miR-291a-3p | 1.4 | 0.0039 | Improve cell viability and osteogenic differentiation of BMSCs [66]. Decreased expression was reported in Cigarette smoke components exposed rat models [67] and in the lungs of LPS-induced ALI mouse models [68] and in spinal cord ischemia-reperfusion injury [69]. | 73 (e.g., Cdkn1a, Dkk1, Pax6, Myl6b, Zfp568) |
miR-1968 | 1.4 | 0.0071 | Downregulated in lupus nephritis mice [70]. Associated with hepatic energy metabolism [71]. | 19 (e.g., Snx27, Creb5, Ptpre, Itgav, Cdc42bpa) |
miR-1957 | 1.39 | 0.0018 | Expressed in the lophotrochozoan taxon [72] | 12 (Sorcs1, Il18r1, Tbc1d24, Pla2r1, Pin1) |
miR-129-3p | 1.39 | 0.0025 | Downregulated in periodontitis patients [73]. Reported as protective miR from cardiomyocyte hypertrophy [74]. Tumor suppressor miR in the ovarian cancer cells [75]. | 0 |
miR-1942 | 1.39 | 0.0029 | Upregulated in tumors that evaded the prevention of immunotherapy [76]. | 14 (e.g., Zfp760, Rapgef3, Il17ra, Alkbh1, Slc8a1) |
miR-2861 | 1.38 | 0.0006 | Promoting osteoblast differentiation [77]. Downregulated in HPV-E6 overexpressed HEK293T cells and HaCaT cells [78]. Upregulated in papillary thyroid carcinoma with lymph node metastasis [79]. | 11 (e.g., Hdac5, Runx2, Hlcs, Plxnc1, Cyb5r1) |
miR-671-3p | 1.38 | 0.0006 | Involved in the pathogenesis of atherosclerosis, rheumatoid arthritis, and acute myocardial infarction [80]. Reported as a positive regulator of glioma progression and development [81]. | 1 (Pbx1) |
miR-290-5p | 1.38 | 0.0078 | Reported to suppress the breast cancer progression [82]. | 160 (e.g., Adra2b, Birc5, Rplp0, Bach2, Chic1) |
miR-509-5p | 1.38 | 0.017 | Has a role in alleviating myocardial infarction damage [83]. Serving as a potential biomarker for evaluating osteosarcoma prognosis [84]. | 43 (e.g., BC016495, Abcb7, Slc7a2, Cflar, Cxcr2) |
miR-205 | 1.38 | 0.0179 | Downregulated in chronic periodontitis patients [85]. Downregulated in LPS-induced periodontal ligament stem cells [86]. Plays an important role in the physiology of epithelia via regulation of pathways governing differentiation and morphogenesis [87]. Reduces actomyosin contractility and activates hair regeneration in young and old mice [88]. | 44 (e.g., Pten, Lrrk2, Dok4, Atp1a1, Gsk3b) |
miR-466d-3p | 1.37 | 0.0022 | Downregulated in infarction-exposed fetal and adolescent sheep heart tissue [89]. | 202 (e.g., Rad51l3, Gcfc1, Fam54a, Tmem20, Chic1) |
miR-34a | 1.37 | 0.0032 | Potential therapeutic anticancer miRNA [90]. Downregulated in adolescent sheep heart infarct samples [89]. | 40 (e.g., Dnase2a, Mapre1, Cd93, Mbd4, Fyco1) |
miR-2139 | 1.37 | 0.0039 | Upregulated in UV-B-induced tumors [91]. | 1 (Cd4) |
miR-34b-3p | 1.37 | 0.0075 | Significantly expressed in the mice’s spinal cord development [90]. | 11(e.g., Raph1, Pbx1, Cops2, Sec61b, Ttc19) |
Upregulated miRNAs in 16-Week S. gordonii Infection | ||||
---|---|---|---|---|
miRs | Fold Change | p-Value | Reported Function | Number of Target Genes |
miR-1902 | 1.88 | 0.0005 | Overexpressed in mice serum and whole blood after intraperitoneal injection of lipoteichoic acid (LTA) [92] | 5 (e.g., Evi2b, Arhgef15, Itga11, Myo9a, Tsn) |
miR-203 | 1.47 | 0.0012 | Upregulated in the human periodontal disease [27]. Elevated in diabetic periodontal patients [93]. Elevated in primary gingival epithelial cell infection with P. gingivalis 33277 [94]. Regulating the periodontal ligament cells—stimulated by LPS of P. gingivalis bacteria [95]. Master modulator and fine-tuning neuro-inflammation [96]. Decreased expression is reported in periodontitis and is consistent with increased angiogenesis in periodontitis [97]. | 70 (e.g., Stxbp4, Trp63, Zfp281, Snora62, Cav1, Vcan) |
miR-98 | 1.42 | 0.0013 | Overexpression protects the cardiomyocytes against apoptosis [98]. Critical miRNAs are regarded as a potential biomarker candidate for Crohn’s disease [16] | 39 (e.g., Acvr1b, Mmp11, Il6, Phka1, Poteg) |
miR-210 | 1.39 | 0.0105 | Elevated in obese periodontitis patients [99]. Human periodontal ligament stem cells had elevated miR-210 in the presence of Endobon-xenograft granules [100]. | 47 (e.g., Tcf7l2, Acvr1b, Ucp2, NFKB1, Bcl2) |
miR-876-3p | 1.29 | 0.01 | miR-876-3p suppresses the progression of colon cancer and correlates with the prognosis of patients [101]. | 19 (e.g., Sorcs1, Ccsap, Plekha2, Il18r1, Fam161b) |
mmu-let-7c | 1.29 | 0.0305 | Interfere with critical inflammatory cytokine production viz., IL-1β, IL-6, and TNF-α in human osteoarthritis (OA) and RA [102]. Playing a role in cardiomyogenesis promotion activity [103]. | 37 (e.g., Sall4, Myc, Lin28a, EZH2, Gnl3l) |
miR-423-5p | 1.25 | 0.0165 | Upregulated expression in severe periodontal disease [104]. Higher expression in obese periodontitis subjects [105]. Identified as a new candidate biomarker in the cross-talk between diabetes mellitus and AD [106]. | 2 (e.g., Map1b, Zmat3) |
miR-361 | 1.21 | 0.0257 | miR-361-3p/Nfat5 signaling axis controls cementoblast differentiation [107]. | 31 (e.g., Eea1, Dnmt3a, Ctbp2, Vps26a, Zfp120) |
mmu-let-7a | 1.19 | 0.0343 | A proinflammatory role for let-7 miRNAs in experimental asthma [108]. | |
miR-101b | 1.16 | 0.021 | Increased expression promotes apoptosis of endothelial cells in acute coronary syndrome [109]. Major mediator of tauopathy and dendritic abnormalities in AD progression [110]. | 44 (e.g., Stc1, Atxn1, Map7d1, Rcor3, Msi2) |
2.5. DE miRNAs and Functional Pathway Analysis
2.6. Machine Learning Analysis of miRNA Copies
miRNA | MIMAT # | Target Functions |
---|---|---|
8-Week Analysis | ||
miR-30c | MIMAT0000514 | Suppressing the osteogenic differentiation in the human periodontal ligamental stem cells [111]. miR-30 family had a role in the occurrence and development of bone and joint disease [112]. Serving as a non-invasive biomarker for early oral squamous cell carcinoma [17]. Upregulated in multiple system atrophy compared with Parkinson’s disease and healthy subjects [18]. Decreased expression was observed in fasting and post-prandial period of high post-prandial response [113]. |
miR-323-3p | MIMAT0000551 | Highly expressed in blood samples from patients with coronary heart diseases and rat models of CHD [114]. |
16-Week Analysis | ||
miRNA | MIMAT # | Target Functions |
miR-339-5p | MIMAT0000584 | Most predictive periodontal miRNA in the T. forsythia-induced mice periodontitis [23]. Downregulated in human atherosclerotic plaques and ox-LDL-induced cells [115]. Downregulated in cardiac tissue of 7-day-old mice [116]. |
Combined 8 and 16 Weeks | ||
miRNA | MIMAT # | Target Functions |
miR-339-5p | MIMAT0000584 | Shown in the 16-week analysis |
miR-323-3p | MIMAT0000551 | Shown in the 8-week analysis. |
miR-142-5p | MIMAT0000154 | Upregulated in human gingival crevicular fluids [117]. Regulates inflammation in multiple sclerosis mice models [37]. Decreased expression was reported in breast cancer [118]. Increased expression was reported in macrophages from the tissue samples of patients with liver cirrhosis and idiopathic pulmonary fibrosis [119]. |
miRNA Feature Rank | ||||||
---|---|---|---|---|---|---|
Dataset | miRNA | 1 | 2 | 3 | 4 | 5 |
8 weeks | miR-22 | LR, SVC, MLP | ||||
miR-1 | LR, SVC, MLP | |||||
miR-720 | LR, MLP | |||||
let-7a | LR | SVC | ||||
miR-23a | LR | |||||
miR148a | SVC | |||||
let-7c | SVC | |||||
miR-125b-5p | MLP | |||||
miR-199a-3p | MLP | |||||
mR-30c | RFC, XGB | |||||
miR-340-3p | XGB | |||||
miR-323-3p | RFC | XGB | ||||
miR-499 | XGB | |||||
miR-449b | RFC | XGB | ||||
miR-29a | RFC | |||||
miR-291b-5p | RFC | |||||
16 weeks | miR-22 | LR | MLP | |||
miR-720 | LR, SVC, MLP | |||||
let-7c | SVC, MLP | |||||
miR-1 | SVC, MLP | LR | ||||
miR-205 | LR, SVC | MLP | ||||
miR-126-3p | LR | |||||
miR-133a | SVC | |||||
miR-339-5p | RFC, XGB | |||||
miR-325 | XGB | |||||
miR-503 | XGB | |||||
miR-711 | XGB | |||||
miR-343 | XGB | |||||
8 and 16 weeks | miR-22 | LR | SVC, MLP | |||
miR-720 | SVC, MLP | LR | ||||
let-7a | LR, SVC, MLP | |||||
let-7c | LR, SVC, MLP | |||||
miR-1 | LR, SVC | |||||
let-7g | MLP | |||||
miR-339-5p | RFC, XGB | |||||
miR-345-3p | RFC | |||||
miR-323-3p | RFC | XGB | ||||
miR-m59-2 | RFC | |||||
miR-142-5p | RFC, XGB | |||||
miR-342-5p | XGB | |||||
miR-450a-5p | XGB |
miRNA Feature Rank | ||||||
---|---|---|---|---|---|---|
Cohort | miRNA | 1 | 2 | 3 | 4 | 5 |
8 weeks | miR-22 | LR, SVC, MLP | ||||
miR-1 | LR, SVC, MLP | |||||
miR-720 | LR, MLP | |||||
let-7a | LR | SVC | ||||
mR-30c | RFC, XGB | |||||
miR-323-3p | RFC | XGB | ||||
16 weeks | miR-720 | LR, SVC, MLP | ||||
let-7c | SVC, MLP | |||||
miR-1 | SVC, MLP | LR | ||||
miR-205 | LR, SVC | MLP | ||||
miR-339-5p | RFC, XGB | |||||
8 and 16 weeks | miR-22 | LR | SVC, MLP | |||
miR-720 | SVC, MLP | LR | ||||
let-7a | LR, SVC, MLP | |||||
let-7c | LR, SVC, MLP | |||||
miR-1 | LR, SVC | |||||
miR-339-5p | RFC, XGB | |||||
miR-323-3p | RFC | XGB | ||||
miR-142-5p | RFC, XGB |
3. Discussion
4. Materials and Methods
4.1. Animal Models and Ethics Statement
4.2. Bacterial Culture and Mice Oral Administration
4.3. Molecular Detection of Bacteria
4.4. Measurement of Alveolar Bone Resorption (ABR)
4.5. Total RNA Isolation and Quality Assessment
4.6. NanoString nCounter miRNA Panel Analysis
4.7. NanoString Data Analysis
4.8. Bioinformatics Analysis
4.8.1. Kyoto Encyclopedia of Genes and Genomes (KEGG)
4.8.2. Multiple Machine Learning (ML) Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.R.; Chakraborty, B.; Wen, Z.T.; Richards, V.P.; Brady, L.J.; Lemos, J.A. Biology of Oral Streptococci. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Okahashi, N.; Nakata, M.; Kuwata, H.; Kawabata, S. Oral mitis group streptococci: A silent majority in our oral cavity. Microbiol. Immunol. 2022, 66, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Chavez de Paz, L.; Svensater, G.; Dahlen, G.; Bergenholtz, G. Streptococci from root canals in teeth with apical periodontitis receiving endodontic treatment. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2005, 100, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Mosailova, N.; Truong, J.; Dietrich, T.; Ashurst, J. Streptococcus gordonii: A Rare Cause of Infective Endocarditis. Case Rep. Infect. Dis. 2019, 2019, 7127848. [Google Scholar] [CrossRef]
- Chang, C.Y.; Gan, Y.L.; Radhakrishnan, A.P.; Ong, E.L.C. Acute abdomen revealed Streptococcus gordonii infective endocarditis with systemic embolism. Oxf. Med. Case Rep. 2022, 2022, omab145. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Hu, H.; Fang, W.; Shi, D.; Liang, C.; Sun, Y.; Gao, G.; Wang, H.; Zhang, Q.; Wang, L.; et al. Detection of pathogens from resected heart valves of patients with infective endocarditis by next-generation sequencing. Int. J. Infect. Dis. 2019, 83, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Kilic, A.O.; Tao, L.; Zhang, Y.; Lei, Y.; Khammanivong, A.; Herzberg, M.C. Involvement of Streptococcus gordonii beta-glucoside metabolism systems in adhesion, biofilm formation, and in vivo gene expression. J. Bacteriol. 2004, 186, 4246–4253. [Google Scholar] [CrossRef] [PubMed]
- Kolenbrander, P.E.; Palmer, R.J., Jr.; Periasamy, S.; Jakubovics, N.S. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 2010, 8, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Kreth, J. The role of hydrogen peroxide in environmental adaptation of oral microbial communities. Oxid. Med. Cell Longev. 2012, 2012, 717843. [Google Scholar] [CrossRef]
- Park, O.J.; Kwon, Y.; Park, C.; So, Y.J.; Park, T.H.; Jeong, S.; Im, J.; Yun, C.H.; Han, S.H. Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms 2020, 8, 1852. [Google Scholar] [CrossRef]
- Daep, C.A.; Lamont, R.J.; Demuth, D.R. Interaction of Porphyromonas gingivalis with oral streptococci requires a motif that resembles the eukaryotic nuclear receptor box protein-protein interaction domain. Infect. Immun. 2008, 76, 3273–3280. [Google Scholar] [CrossRef]
- Yang, R.; Liu, T.; Pang, C.; Cai, Y.; Lin, Z.; Guo, L.; Wei, X. The Regulatory Effect of Coaggregation Between Fusobacterium nucleatum and Streptococcus gordonii on the Synergistic Virulence to Human Gingival Epithelial Cells. Front. Cell Infect. Microbiol. 2022, 12, 879423. [Google Scholar] [CrossRef]
- Antezack, A.; Etchecopar-Etchart, D.; La Scola, B.; Monnet-Corti, V. New putative periodontopathogens and periodontal health-associated species: A systematic review and meta-analysis. J. Periodontal Res. 2023, 58, 893–906. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Chen, J.; Cai, Z.; Hu, J.; Zhou, L.; Zhang, P.; Xu, X. MicroRNA-375 in extracellular vesicles—Novel marker for esophageal cancer diagnosis. Medicine 2023, 102, e32826. [Google Scholar] [CrossRef]
- Coskun, M.; Bjerrum, J.T.; Seidelin, J.B.; Troelsen, J.T.; Olsen, J.; Nielsen, O.H. miR-20b, miR-98, miR-125b-1*, and let-7e* as new potential diagnostic biomarkers in ulcerative colitis. World J. Gastroenterol. 2013, 19, 4289–4299. [Google Scholar] [CrossRef]
- Mehterov, N.; Vladimirov, B.; Sacconi, A.; Pulito, C.; Rucinski, M.; Blandino, G.; Sarafian, V. Salivary miR-30c-5p as Potential Biomarker for Detection of Oral Squamous Cell Carcinoma. Biomedicines 2021, 9, 1079. [Google Scholar] [CrossRef]
- Vallelunga, A.; Iannitti, T.; Dati, G.; Capece, S.; Maugeri, M.; Tocci, E.; Picillo, M.; Volpe, G.; Cozzolino, A.; Squillante, M.; et al. Serum miR-30c-5p is a potential biomarker for multiple system atrophy. Mol. Biol. Rep. 2019, 46, 1661–1666. [Google Scholar] [CrossRef]
- Aravindraja, C.; Kashef, M.R.; Vekariya, K.M.; Ghanta, R.K.; Karanth, S.; Chan, E.K.L.; Kesavalu, L. Global Noncoding microRNA Profiling in Mice Infected with Partial Human Mouth Microbes (PAHMM) Using an Ecological Time-Sequential Polybacterial Periodontal Infection (ETSPPI) Model Reveals Sex-Specific Differential microRNA Expression. Int. J. Mol. Sci. 2022, 23, 5107. [Google Scholar] [CrossRef]
- Tubero Euzebio Alves, V.; Al-Attar, A.; Alimova, Y.; Maynard, M.H.; Kirakodu, S.; Martinez-Porras, A.; Hawk, G.S.; Ebersole, J.L.; Stamm, S.; Gonzalez, O.A. Streptococcus gordonii-Induced miRNAs Regulate CCL20 Responses in Human Oral Epithelial Cells. Infect. Immun. 2022, 90, e0058621. [Google Scholar] [CrossRef]
- Zhou, W.; Su, L.; Duan, X.; Chen, X.; Hays, A.; Upadhyayula, S.; Shivde, J.; Wang, H.; Li, Y.; Huang, D.; et al. MicroRNA-21 down-regulates insflammation and inhibits periodontitis. Mol. Immunol. 2018, 101, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Shao, P.; Wang, L.; Bao, X.; Hu, M. IL1β inhibits differentiation of cementoblasts via microRNA-325-3p. J. Cell Biochem. 2020, 121, 2606–2617. [Google Scholar] [CrossRef] [PubMed]
- Aravindraja, C.; Jeepipalli, S.; Duncan, W.; Vekariya, K.M.; Bahadekar, S.; Chan, E.K.L.; Kesavalu, L. Unique miRomics Expression Profiles in Tannerella forsythia-Infected Mandibles during Periodontitis Using Machine Learning. Int. J. Mol. Sci. 2023, 24, 16393. [Google Scholar] [CrossRef] [PubMed]
- Nahid, M.A.; Rivera, M.; Lucas, A.; Chan, E.K.; Kesavalu, L. Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE-/- mice during experimental periodontal disease. Infect. Immun. 2011, 79, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Aravindraja, C.; Jeepipalli, S.; Vekariya, K.M.; Botello-Escalante, R.; Chan, E.K.L.; Kesavalu, L. Oral Spirochete Treponema denticola Intraoral Infection Reveals Unique miR-133a, miR-486, miR-126-3p, miR-126-5p miRNA Expression Kinetics during Periodontitis. Int. J. Mol. Sci. 2023, 24, 12105. [Google Scholar] [CrossRef] [PubMed]
- Motedayyen, H.; Ghotloo, S.; Saffari, M.; Sattari, M.; Amid, R. Evaluation of MicroRNA-146a and Its Targets in Gingival Tissues of Patients With Chronic Periodontitis. J. Periodontol. 2015, 86, 1380–1385. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.F.; Shu, R.; Jiang, S.Y.; Liu, D.L.; Zhang, X.L. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues. Int. J. Oral. Sci. 2011, 3, 125–134. [Google Scholar] [CrossRef]
- Amaral, S.A.; Pereira, T.S.F.; Brito, J.A.R.; Cortelli, S.C.; Cortelli, J.R.; Gomez, R.S.; Costa, F.O.; Miranda Cota, L.O. Comparison of miRNA expression profiles in individuals with chronic or aggressive periodontitis. Oral. Dis. 2019, 25, 561–568. [Google Scholar] [CrossRef]
- Nik Mohamed Kamal, N.N.S.; Awang, R.A.R.; Mohamad, S.; Shahidan, W.N.S. Plasma- and Saliva Exosome Profile Reveals a Distinct MicroRNA Signature in Chronic Periodontitis. Front. Physiol. 2020, 11, 587381. [Google Scholar] [CrossRef]
- Aravindraja, C.; Vekariya, K.M.; Botello-Escalante, R.; Rahaman, S.O.; Chan, E.K.L.; Kesavalu, L. Specific microRNA Signature Kinetics in Porphyromonas gingivalis-Induced Periodontitis. Int. J. Mol. Sci. 2023, 24, 2327. [Google Scholar] [CrossRef]
- Chukkapalli, S.S.; Rivera, M.F.; Velsko, I.M.; Lee, J.Y.; Chen, H.; Zheng, D.; Bhattacharyya, I.; Gangula, P.R.; Lucas, A.R.; Kesavalu, L. Invasion of oral and aortic tissues by oral spirochete Treponema denticola in ApoE(-/-) mice causally links periodontal disease and atherosclerosis. Infect. Immun. 2014, 82, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Usui, M.; Onizuka, S.; Sato, T.; Kokabu, S.; Ariyoshi, W.; Nakashima, K. Mechanism of alveolar bone destruction in periodontitis—Periodontal bacteria and inflammation. Jpn. Dent. Sci. Rev. 2021, 57, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Deppe, H.; Reitberger, J.; Behr, A.V.; Vitanova, K.; Lange, R.; Wantia, N.; Wagenpfeil, S.; Sculean, A.; Ritschl, L.M. Oral bacteria in infective endocarditis requiring surgery: A retrospective analysis of 134 patients. Clin. Oral. Investig. 2022, 26, 4977–4985. [Google Scholar] [CrossRef] [PubMed]
- Gallelli, L.; Cione, E.; Peltrone, F.; Siviglia, S.; Verano, A.; Chirchiglia, D.; Zampogna, S.; Guidetti, V.; Sammartino, L.; Montana, A.; et al. Hsa-miR-34a-5p and hsa-miR-375 as Biomarkers for Monitoring the Effects of Drug Treatment for Migraine Pain in Children and Adolescents: A Pilot Study. J. Clin. Med. 2019, 8, 928. [Google Scholar] [CrossRef]
- Lv, H.; Liu, Q.; Wen, Z.; Feng, H.; Deng, X.; Ci, X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3beta-Nrf2 signal axis. Redox Biol. 2017, 12, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Lu, Q.; Wang, K.; Lu, J.; Gu, X.; Zhu, D.; Liu, F.; Guo, Z. miR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin. J. Cell Physiol. 2018, 233, 6615–6631. [Google Scholar] [CrossRef] [PubMed]
- Talebi, F.; Ghorbani, S.; Chan, W.F.; Boghozian, R.; Masoumi, F.; Ghasemi, S.; Vojgani, M.; Power, C.; Noorbakhsh, F. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J. Neuroinflamm. 2017, 14, 55. [Google Scholar] [CrossRef]
- Korotkov, A.; Puhakka, N.; Gupta, S.D.; Vuokila, N.; Broekaart, D.W.M.; Anink, J.J.; Heiskanen, M.; Karttunen, J.; van Scheppingen, J.; Huitinga, I.; et al. Increased expression of miR142 and miR155 in glial and immune cells after traumatic brain injury may contribute to neuroinflammation via astrocyte activation. Brain Pathol. 2020, 30, 897–912. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, R.L.; Croce, C.M.; Stein, J.L.; Lian, J.B.; van Wijnen, A.J.; Stein, G.S. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc. Natl. Acad. Sci. USA 2011, 108, 9863–9868. [Google Scholar] [CrossRef]
- Imamura, K.; Tachi, K.; Takayama, T.; Shohara, R.; Kasai, H.; Dai, J.; Yamano, S. Released fibroblast growth factor18 from a collagen membrane induces osteoblastic activity involved with downregulation of miR-133a and miR-135a. J. Biomater. Appl. 2018, 32, 1382–1391. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, Z. MicroRNA-135a-5p is involved in osteoporosis progression through regulation of osteogenic differentiation by targeting RUNX2. Exp. Ther. Med. 2019, 18, 2393–2400. [Google Scholar] [CrossRef]
- Kalea, A.Z.; Hoteit, R.; Suvan, J.; Lovering, R.C.; Palmen, J.; Cooper, J.A.; Khodiyar, V.K.; Harrington, Z.; Humphries, S.E.; D’Aiuto, F. Upregulation of gingival tissue miR-200b in obese periodontitis subjects. J. Dent. Res. 2015, 94, 59S–69S. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Gao, F.; Peng, C.G.; Zheng, C.J.; Wu, M.F. miR-485-5p promotes osteoporosis via targeting Osterix. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 4792–4799. [Google Scholar] [CrossRef] [PubMed]
- Ryu, I.S.; Kim, D.H.; Cho, H.J.; Ryu, J.H. The role of microRNA-485 in neurodegenerative diseases. Rev. Neurosci. 2023, 34, 49–62. [Google Scholar] [CrossRef]
- Kearney, M.; Cooper, P.R.; Smith, A.J.; Duncan, H.F. Characterisation of miRNA Expression in Dental Pulp Cells during Epigenetically-Driven Reparative Processes. Int. J. Mol. Sci. 2023, 24, 8631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiang, D.; Hu, X.; Ruan, Q.; Wang, L.; Bao, Z. Identification and study of differentially expressed miRNAs in aged NAFLD rats based on high-throughput sequencing. Ann. Hepatol. 2020, 19, 302–312. [Google Scholar] [CrossRef]
- Choi, M.R.; Han, J.S.; Jin, Y.B.; Lee, S.R.; Choi, I.Y.; Lee, H.; Cho, H.; Kim, D.J. Differential expression of microRNAs in the hippocampi of male and female rodents after chronic alcohol administration. Biol. Sex. Differ. 2020, 11, 65. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, W.; Xia, Q.; Lin, J.; Xu, J.; Zhang, S.; Tian, L.; Han, X. Construction of a potential microRNA and messenger RNA regulatory network of acute lung injury in mice. Sci. Rep. 2022, 12, 777. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Marugame, Y.; Yamada, S.; Lin, I.; Yamashita, S.; Fujimura, Y.; Tachibana, H. Circulating miRNA profiles in mice plasma following flavonoid intake. Mol. Biol. Rep. 2022, 49, 10399–10407. [Google Scholar] [CrossRef]
- Ektesabi, A.M.; Mori, K.; Tsoporis, J.N.; Vaswani, C.M.; Gupta, S.; Walsh, C.; Varkouhi, A.K.; Mei, S.H.J.; Stewart, D.J.; Liles, W.C.; et al. Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis. Shock 2021, 56, 133–141. [Google Scholar] [CrossRef]
- Sinha, A.; Bhattacharjee, R.; Bhattacharya, B.; Nandi, A.; Shekhar, R.; Jana, A.; Saha, K.; Kumar, L.; Patro, S.; Panda, P.K.; et al. The paradigm of miRNA and siRNA influence in Oral-biome. Biomed. Pharmacother. 2023, 159, 114269. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Yang, K.; Yu, R.; Hui, H.; Wu, W. circ-Iqsec1 induces bone marrow-derived mesenchymal stem cell (BMSC) osteogenic differentiation through the miR-187-3p/Satb2 signaling pathway. Arthritis Res. Ther. 2022, 24, 273. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Du, X.; Liu, L.; Cao, Q.; Pan, Z.; Li, Q. miR-1306 Mediates the Feedback Regulation of the TGF-beta/SMAD Signaling Pathway in Granulosa Cells. Cells 2019, 8, 298. [Google Scholar] [CrossRef]
- Yoshioka, H.; Wang, Y.Y.; Suzuki, A.; Shayegh, M.; Gajera, M.V.; Zhao, Z.; Iwata, J. Overexpression of miR-1306-5p, miR-3195, and miR-3914 Inhibits Ameloblast Differentiation through Suppression of Genes Associated with Human Amelogenesis Imperfecta. Int. J. Mol. Sci. 2021, 22, 2202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Geng, Z.; Wan, Y.; Meng, F.; Meng, X.; Wang, L. Functional analysis of miR-767-5p during the progression of hepatocellular carcinoma and the clinical relevance of its dysregulation. Histochem. Cell Biol. 2020, 154, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, S.; Xu, J.; Li, Y.; Zhang, J.; Zhang, J.; Lu, X. miR-767-5p inhibits glioma proliferation and metastasis by targeting SUZ12. Oncol. Rep. 2019, 42, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tan, J.; Song, Q.; Yang, X.; Zhang, X.; Qin, H.; Huang, G.; Su, X.; Li, J. Exosomal miR-767 from senescent endothelial-derived accelerating skin fibroblasts aging via inhibiting TAB1. J. Mol. Histol. 2023, 54, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Reddy, P.H. A New Discovery of MicroRNA-455-3p in Alzheimer’s Disease. J. Alzheimers Dis. 2019, 72, S117–S130. [Google Scholar] [CrossRef]
- Chum, P.P.; Hakim, M.A.; Behringer, E.J. Cerebrovascular microRNA Expression Profile During Early Development of Alzheimer’s Disease in a Mouse Model. J. Alzheimers Dis. 2022, 85, 91–113. [Google Scholar] [CrossRef]
- Hu, D.L.; Liu, Y.Q.; Chen, F.K.; Sheng, Y.H.; Yang, R.; Kong, X.Q.; Cao, K.J.; Zhang, J.S.; Qian, L.M. Differential expression of microRNAs in cardiac myocytes compared to undifferentiated P19 cells. Int. J. Mol. Med. 2011, 28, 59–64. [Google Scholar] [CrossRef]
- Hu, S.; Huang, M.; Li, Z.; Jia, F.; Ghosh, Z.; Lijkwan, M.A.; Fasanaro, P.; Sun, N.; Wang, X.; Martelli, F.; et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 2010, 122, S124–S131. [Google Scholar] [CrossRef]
- John, A.A.; Prakash, R.; Kureel, J.; Singh, D. Identification of novel microRNA inhibiting actin cytoskeletal rearrangement thereby suppressing osteoblast differentiation. J. Mol. Med. 2018, 96, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; He, Q. miR-1187 induces podocyte injury and diabetic nephropathy through autophagy. Diab. Vasc. Dis. Res. 2023, 20, 14791641231172139. [Google Scholar] [CrossRef]
- Yu, D.S.; An, F.M.; Gong, B.D.; Xiang, X.G.; Lin, L.Y.; Wang, H.; Xie, Q. The regulatory role of microRNA-1187 in TNF-alpha-mediated hepatocyte apoptosis in acute liver failure. Int. J. Mol. Med. 2012, 29, 663–668. [Google Scholar] [CrossRef]
- Li, Z.H.; Hu, H.; Zhang, X.Y.; Liu, G.D.; Ran, B.; Zhang, P.G.; Liao, M.M.; Wu, Y.C. MiR-291a-3p regulates the BMSCs differentiation via targeting DKK1 in dexamethasone-induced osteoporosis. Kaohsiung J. Med. Sci. 2020, 36, 35–42. [Google Scholar] [CrossRef]
- Ge, J.; Xu, W.J.; Chen, H.F.; Dong, Z.H.; Liu, W.; Nian, F.Z.; Liu, J. Induction mechanism of cigarette smoke components (CSCs) on dyslipidemia and hepatic steatosis in rats. Lipids Health Dis. 2022, 21, 117. [Google Scholar] [CrossRef]
- Cao, J.; Kuang, D.; Luo, M.; Wang, S.; Fu, C. Targeting circNCLN/miR-291a-3p/TSLP signaling axis alleviates lipopolysaccharide-induced acute lung injury. Biochem. Biophys. Res. Commun. 2022, 617, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Han, J.; Wang, D. Identification of key microRNAs and the underlying molecular mechanism in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021, 9, e11454. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Zhu, X.; Xue, Y.; Zhang, J.; Tan, X.; Deng, J.; Li, C.; Kuang, W.; Li, C. miR-1968-5p is involved in the pathogenesis of lupus nephritis of NZBWF1 mice by targeting csf1. Clin. Exp. Nephrol. 2021, 25, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Hochreuter, M.Y.; Altintas, A.; Garde, C.; Emanuelli, B.; Kahn, C.R.; Zierath, J.R.; Vienberg, S.; Barres, R. Identification of two microRNA nodes as potential cooperative modulators of liver metabolism. Hepatol. Res. 2019, 49, 1451–1465. [Google Scholar] [CrossRef] [PubMed]
- Kenny, N.J.; Namigai, E.K.; Marletaz, F.; Hui, J.H.; Shimeld, S.M. Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida). Mar. Genom. 2015, 24 Pt 2, 139–146. [Google Scholar] [CrossRef]
- Cheng, L.; Fan, Y.; Cheng, J.; Wang, J.; Liu, Q.; Feng, Z. Long non-coding RNA ZFY-AS1 represses periodontitis tissue inflammation and oxidative damage via modulating microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered 2022, 13, 12691–12705. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Xu, G.; Zhang, D.; Wang, R. The protective effects of the miR-129-5p/keap-1/Nrf2 axis on Ang II-induced cardiomyocyte hypertrophy. Ann. Transl. Med. 2021, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, H.; Gong, L.; Yao, L.; Li, Y.; Zhang, W. MicroRNA-129-3p functions as a tumor suppressor in serous ovarian cancer by targeting BZW1. Int. J. Clin. Exp. Pathol. 2018, 11, 5901–5908. [Google Scholar] [PubMed]
- Birkhauser, F.D.; Koya, R.C.; Neufeld, C.; Rampersaud, E.N.; Lu, X.; Micewicz, E.D.; Chodon, T.; Atefi, M.; Kroeger, N.; Chandramouli, G.V.; et al. Dendritic cell-based immunotherapy in prevention and treatment of renal cell carcinoma: Efficacy, safety, and activity of Ad-GM.CAIX in immunocompetent mouse models. J. Immunother. 2013, 36, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Liu, W.; Li, H.; Yang, L.; Chen, C.; Xia, Z.Y.; Guo, L.J.; Xie, H.; Zhou, H.D.; Wu, X.P.; et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J. Biol. Chem. 2011, 286, 12328–12339. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wan, X.; Chen, X.; Fang, Y.; Cheng, X.; Xie, X.; Lu, W. miR-2861 acts as a tumor suppressor via targeting EGFR/AKT2/CCND1 pathway in cervical cancer induced by human papillomavirus virus 16 E6. Sci. Rep. 2016, 6, 28968. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, H.; Zhang, P.; Li, J.; Shan, Z.; Teng, W. Upregulation of miR-2861 and miR-451 expression in papillary thyroid carcinoma with lymph node metastasis. Med. Oncol. 2013, 30, 577. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Askari, A.; Hussen, B.M.; Rasul, M.F.; Hatamian, S.; Taheri, M.; Kiani, A. A review on the role of miR-671 in human disorders. Front. Mol. Biosci. 2022, 9, 1077968. [Google Scholar] [CrossRef]
- Lu, G.F.; You, C.Y.; Chen, Y.S.; Jiang, H.; Zheng, X.; Tang, W.W.; Wang, X.Y.; Xu, H.Y.; Geng, F. MicroRNA-671-3p promotes proliferation and migration of glioma cells via targeting CKAP4. OncoTargets Ther. 2018, 11, 6217–6226. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, N.; Walker, R.C.; Kim, C.H.; Winter, S.; Hunter, K.W. Inherited variation in miR-290 expression suppresses breast cancer progression by targeting the metastasis susceptibility gene Arid4b. Cancer Res. 2013, 73, 2671–2681. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.T.; Sun, H.X.; Zhou, X.H.; Tang, B.P. Long non-coding RNA DANCR alleviates acute myocardial infarction damage via regulating microRNA-509-5p/KLF transcription factor 13 pathway. Kaohsiung J. Med. Sci. 2023, 39, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Fang, X.; Zhou, J.; Zeng, L.; Yu, B. Identification and validation of miR-509-5p as a prognosticator for favorable survival in osteosarcoma. Medicine 2022, 101, e29705. [Google Scholar] [CrossRef]
- Jiang, F.; Zhou, Y.; Zhang, R.; Wen, Y. miR-205 and HMGB1 expressions in chronic periodontitis patients and their associations with the inflammatory factors. Am. J. Transl. Res. 2021, 13, 9224–9232. [Google Scholar] [PubMed]
- Kang, L.; Miao, Y.; Jin, Y.; Shen, S.; Lin, X. Exosomal miR-205-5p derived from periodontal ligament stem cells attenuates the inflammation of chronic periodontitis via targeting XBP1. Immun. Inflamm. Dis. 2023, 11, e743. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Gandellini, P. Unveiling the ups and downs of miR-205 in physiology and cancer: Transcriptional and post-transcriptional mechanisms. Cell Death Dis. 2020, 11, 980. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, Y.; Huang, W.; Biswas, R.; Banerjee, A.; Broussard, J.A.; Zhao, Z.; Wang, D.; Bjerke, G.; Raghavan, S.; et al. MicroRNA-205 promotes hair regeneration by modulating mechanical properties of hair follicle stem cells. Proc. Natl. Acad. Sci. USA 2023, 120, e2220635120. [Google Scholar] [CrossRef] [PubMed]
- Lock, M.C.; Tellam, R.L.; Darby, J.R.T.; Soo, J.Y.; Brooks, D.A.; Seed, M.; Selvanayagam, J.B.; Morrison, J.L. Identification of Novel miRNAs Involved in Cardiac Repair Following Infarction in Fetal and Adolescent Sheep Hearts. Front. Physiol. 2020, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Su, Y.C.; Chang, M.; Chen, J.A. MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs. eLife 2021, 10, e63768. [Google Scholar] [CrossRef]
- Agarwal, A.; Kansal, V.; Farooqi, H.; Singh, V.K.; Prasad, R. Differentially deregulated microRNAs contribute to ultraviolet radiation-induced photocarcinogenesis through immunomodulation: An-analysis of microRNAs expression profiling. bioRxiv 2023. [CrossRef] [PubMed]
- Hsieh, C.H.; Yang, J.C.; Jeng, J.C.; Chen, Y.C.; Lu, T.H.; Tzeng, S.L.; Wu, Y.C.; Wu, C.J.; Rau, C.S. Circulating microRNA signatures in mice exposed to lipoteichoic acid. J. Biomed. Sci. 2013, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawi, N.H.; Al-Marzooq, F.; Al-Nuaimi, A.S.; Hachim, M.Y.; Hamoudi, R. Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLoS ONE 2020, 15, e0237004. [Google Scholar] [CrossRef]
- Moffatt, C.E.; Lamont, R.J. Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect. Immun. 2011, 79, 2632–2637. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ren, D.; Zhao, D.; Zhang, B.; Ye, R. MicroRNA-203 mediates Porphyromonas gingivalis LPS-induced inflammation and differentiation of periodontal ligament cells. Oral. Dis. 2023, 29, 1715–1725. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Li, J.; Liang, X.; Song, C.; Zou, Y. miR-203, fine-tunning neuroinflammation by juggling different components of NF-kappaB signaling. J. Neuroinflamm. 2022, 19, 84. [Google Scholar] [CrossRef]
- Friedman, J.M.; Jones, P.A. MicroRNAs: Critical mediators of differentiation, development and disease. Swiss Med. Wkly. 2009, 139, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, H.; Guo, J.; Yu, Y.; Yang, D.; He, F.; Du, Z. MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Sci. Rep. 2017, 7, 7460. [Google Scholar] [CrossRef]
- Perri, R.; Nares, S.; Zhang, S.; Barros, S.P.; Offenbacher, S. MicroRNA modulation in obesity and periodontitis. J. Dent. Res. 2012, 91, 33–38. [Google Scholar] [CrossRef]
- Pizzicannella, J.; Cavalcanti, M.; Trubiani, O.; Diomede, F. MicroRNA 210 Mediates VEGF Upregulation in Human Periodontal Ligament Stem Cells Cultured on 3DHydroxyapatite Ceramic Scaffold. Int. J. Mol. Sci. 2018, 19, 3916. [Google Scholar] [CrossRef]
- Ma, H.; Li, M.; Jia, Z.; Chen, X.; Bu, N. miR-876-3p suppresses the progression of colon cancer and correlates the prognosis of patients. Exp. Mol. Pathol. 2021, 122, 104682. [Google Scholar] [CrossRef]
- Law, Y.Y.; Lee, W.F.; Hsu, C.J.; Lin, Y.Y.; Tsai, C.H.; Huang, C.C.; Wu, M.H.; Tang, C.H.; Liu, J.F. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts. Aging 2021, 13, 17227–17236. [Google Scholar] [CrossRef] [PubMed]
- Coppola, A.; Romito, A.; Borel, C.; Gehrig, C.; Gagnebin, M.; Falconnet, E.; Izzo, A.; Altucci, L.; Banfi, S.; Antonarakis, S.E.; et al. Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res. 2014, 12, 323–337. [Google Scholar] [CrossRef]
- Costantini, E.; Sinjari, B.; Di Giovanni, P.; Aielli, L.; Caputi, S.; Muraro, R.; Murmura, G.; Reale, M. TNFalpha, IL-6, miR-103a-3p, miR-423-5p, miR-23a-3p, miR-15a-5p and miR-223-3p in the crevicular fluid of periodontopathic patients correlate with each other and at different stages of the disease. Sci. Rep. 2023, 13, 126. [Google Scholar] [CrossRef]
- Naqvi, A.R.; Brambila, M.F.; Martinez, G.; Chapa, G.; Nares, S. Dysregulation of human miRNAs and increased prevalence of HHV miRNAs in obese periodontitis subjects. J. Clin. Periodontol. 2019, 46, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Ghiam, S.; Eslahchi, C.; Shahpasand, K.; Habibi-Rezaei, M.; Gharaghani, S. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 955461. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.Q.; Liu, H.; Sun, H.L.; Xiang, J.B.; Wang, X.X.; Jiang, C.X.; Ma, L.; Cao, Z.G. MiR-361-3p/Nfat5 Signaling Axis Controls Cementoblast Differentiation. J. Dent. Res. 2019, 98, 1131–1139. [Google Scholar] [CrossRef]
- Polikepahad, S.; Knight, J.M.; Naghavi, A.O.; Oplt, T.; Creighton, C.J.; Shaw, C.; Benham, A.L.; Kim, J.; Soibam, B.; Harris, R.A.; et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J. Biol. Chem. 2010, 285, 30139–30149. [Google Scholar] [CrossRef]
- Cao, S.; Li, L.; Geng, X.; Ma, Y.; Huang, X.; Kang, X. The upregulation of miR-101 promotes vascular endothelial cell apoptosis and suppresses cell migration in acute coronary syndrome by targeting CDH5. Int. J. Clin. Exp. Pathol. 2019, 12, 3320–3328. [Google Scholar]
- Liu, D.; Tang, H.; Li, X.Y.; Deng, M.F.; Wei, N.; Wang, X.; Zhou, Y.F.; Wang, D.Q.; Fu, P.; Wang, J.Z.; et al. Targeting the HDAC2/HNF-4A/miR-101b/AMPK Pathway Rescues Tauopathy and Dendritic Abnormalities in Alzheimer’s Disease. Mol. Ther. 2017, 25, 752–764. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, H.; Wang, C.; Zhu, Z. Long non-coding RNA Linc01133 promotes osteogenic differentiation of human periodontal ligament stem cells via microRNA-30c / bone gamma-carboxyglutamate protein axis. Bioengineered 2022, 13, 9602–9612. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Zhu, S.; Wang, L.; Yang, L.; He, C. MiR-30 Family: A Novel Avenue for Treating Bone and Joint Diseases? Int. J. Med. Sci. 2023, 20, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Yaman, S.O.; Orem, A.; Yucesan, F.B.; Kural, B.V.; Orem, C. Evaluation of circulating miR-122, miR-30c and miR-33a levels and their association with lipids, lipoproteins in postprandial lipemia. Life Sci. 2021, 264, 118585. [Google Scholar] [CrossRef]
- Du, S.; Shen, S.; Ding, S.; Wang, L. Suppression of microRNA-323-3p restrains vascular endothelial cell apoptosis via promoting sirtuin-1 expression in coronary heart disease. Life Sci. 2021, 270, 119065. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, H.Y.; Zhang, X.B.; Gao, X.L.; Peng, W.P.; Zhou, Y.; Zhao, W.H.; Yang, H.F. LncRNA ANRIL regulates cell proliferation and migration via sponging miR-339-5p and regulating FRS2 expression in atherosclerosis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1956–1969. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhu, J.G.; Liu, Y.Q.; Fan, Z.G.; Zhu, C.; Qian, L.M. Identification of the microRNA expression profile in the regenerative neonatal mouse heart by deep sequencing. Cell Biochem. Biophys. 2014, 70, 635–642. [Google Scholar] [CrossRef]
- Saito, A.; Horie, M.; Ejiri, K.; Aoki, A.; Katagiri, S.; Maekawa, S.; Suzuki, S.; Kong, S.; Yamauchi, T.; Yamaguchi, Y.; et al. MicroRNA profiling in gingival crevicular fluid of periodontitis-a pilot study. FEBS Open Bio. 2017, 7, 981–994. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, H.H.; Chen, Q.; Wang, Y.Y.; Fan, C.C.; Duan, Y.Y.; Huang, Y.; Zhang, H.M.; Li, J.P.; Zhang, X.Y.; et al. miR-142-5p Inhibits Cell Invasion and Migration by Targeting DNMT1 in Breast Cancer. Oncol. Res. 2022, 28, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Zhao, Q.; He, C.; Huang, D.; Liu, J.; Chen, F.; Chen, J.; Liao, J.Y.; Cui, X.; Zeng, Y.; et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat. Commun. 2015, 6, 8523. [Google Scholar] [CrossRef]
- Guzeldemir-Akcakanat, E.; Sunnetci-Akkoyunlu, D.; Balta-Uysal, V.M.; Ozer, T.; Isik, E.B.; Cine, N. Differentially expressed miRNAs associated with generalized aggressive periodontitis. Clin. Oral. Investig. 2023, 28, 7. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Wen, J.; Wu, Y.; Man, C. MiR-375: A novel multifunctional regulator. Life Sci. 2021, 275, 119323. [Google Scholar] [CrossRef]
- Ren, S.; Tan, X.; Fu, M.Z.; Ren, S.; Wu, X.; Chen, T.; Latham, P.S.; Lin, P.; Man, Y.G.; Fu, S.W. Downregulation of miR-375 contributes to ERBB2-mediated VEGFA overexpression in esophageal cancer. J. Cancer 2021, 12, 7138–7146. [Google Scholar] [CrossRef] [PubMed]
- Piano, M.A.; Gianesello, L.; Grassi, A.; Del Bianco, P.; Mattiolo, A.; Cattelan, A.M.; Sasset, L.; Zanovello, P.; Calabro, M.L. Circulating miRNA-375 as a potential novel biomarker for active Kaposi’s sarcoma in AIDS patients. J. Cell Mol. Med. 2019, 23, 1486–1494. [Google Scholar] [CrossRef]
- Biton, M.; Levin, A.; Slyper, M.; Alkalay, I.; Horwitz, E.; Mor, H.; Kredo-Russo, S.; Avnit-Sagi, T.; Cojocaru, G.; Zreik, F.; et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat. Immunol. 2011, 12, 239–246. [Google Scholar] [CrossRef]
- Shafiee, M.; Aleyasin, S.A.; Mowla, S.J.; Vasei, M.; Yazdanparast, S.A. The Effect of MicroRNA-375 Overexpression, an Inhibitor of Helicobacter pylori-Induced Carcinogenesis, on lncRNA SOX2OT. Jundishapur J. Microbiol. 2016, 9, e23464. [Google Scholar] [CrossRef]
- Li, J.; Liu, W.; Anniwaer, A.; Li, B.; Chen, Y.; Yu, Z.; Yu, X. The Role of MicroRNAs in Predicting the Neurological Outcome of Patients with Subarachnoid Hemorrhage: A Meta-analysis. Cell Mol. Neurobiol. 2023, 43, 2883–2893. [Google Scholar] [CrossRef]
- Li, X.; Dai, A.; Tran, R.; Wang, J. Text mining-based identification of promising miRNA biomarkers for diabetes mellitus. Front. Endocrinol. 2023, 14, 1195145. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Chen, H.; Wang, R.; Zhang, J.; Jiang, L.; Zhang, S.; Jiang, C.; Huang, J.; Quan, X.; Liu, Y.; et al. Proposing new early detection indicators for pancreatic cancer: Combining machine learning and neural networks for serum miRNA-based diagnostic model. Front. Oncol. 2023, 13, 1244578. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhong, C. Prediction of miRNA-Disease Association Using Deep Collaborative Filtering. Biomed. Res. Int. 2021, 2021, 6652948. [Google Scholar] [CrossRef]
- Rivera, M.F.; Lee, J.Y.; Aneja, M.; Goswami, V.; Liu, L.; Velsko, I.M.; Chukkapalli, S.S.; Bhattacharyya, I.; Chen, H.; Lucas, A.R.; et al. Polymicrobial infection with major periodontal pathogens induced periodontal disease and aortic atherosclerosis in hyperlipidemic ApoE(null) mice. PLoS ONE 2013, 8, e57178. [Google Scholar] [CrossRef]
- Cioce, M.; Rutigliano, D.; Puglielli, A.; Fazio, V.M. Butein-instigated miR-186-5p-dependent modulation of TWIST1 affects resistance to cisplatin and bioenergetics of Malignant Pleural Mesothelioma cells. Cancer Drug Resist. 2022, 5, 814–828. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Lin, Y.C.; Cui, S.; Huang, Y.; Tang, Y.; Xu, J.; Bao, J.; Li, Y.; Wen, J.; Zuo, H.; et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2022, 50, D222–D230. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015; 43, W460–W466. [Google Scholar] [CrossRef]
- Cox, D.R. The Regression Analysis of Binary Sequences. J. R. Stat. Soc. Ser. B 1958, 20, 215–242. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Hoboken, NJ, USA, 1998. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Gillies S, o. Shapely: Manipulation and analysis of geometric objects. 2007. Available online: https://github.com/Toblerity/Shapely (accessed on 29 April 2024).
- Chukkapalli, S.S.; Velsko, I.M.; Rivera-Kweh, M.F.; Larjava, H.; Lucas, A.R.; Kesavalu, L. Global TLR2 and 4 deficiency in mice impacts bone resorption, inflammatory markers and atherosclerosis to polymicrobial infection. Mol. Oral. Microbiol. 2017, 32, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Siow, M.Y.; Ng, L.P.; Vincent-Chong, V.K.; Jamaludin, M.; Abraham, M.T.; Abdul Rahman, Z.A.; Kallarakkal, T.G.; Yang, Y.H.; Cheong, S.C.; Zain, R.B. Dysregulation of miR-31 and miR-375 expression is associated with clinical outcomes in oral carcinoma. Oral Dis. 2014, 20, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Mitani, Y.; Roberts, D.B.; Fatani, H.; Weber, R.S.; Kies, M.S.; Lippman, S.M.; El-Naggar, A.K. MicroRNA profiling of salivary adenoid cystic carcinoma: Association of miR-17-92 upregulation with poor outcome. PLoS ONE 2013, 8, e66778. [Google Scholar] [CrossRef]
- Kawasaki, H.; Amano, H. Anti-inflammatory role of microRNA-429 in human gingival epithelial cells-inhibition of IL-8 production through direct binding to IKKbeta mRNA. Mol. Med. Rep. 2021, 24, 12220. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, H.; Wang, H.; Wang, L.; Bai, B.; Ma, Y.; Tie, Y.; Xi, Z. MicroRNA (miR)-429 Promotes Inflammatory Injury by Targeting Kruppel-like Factor 4 (KLF4) in Neonatal Pneumonia. Curr. Neurovasc. Res. 2020, 17, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cao, H.; Zhuang, J.; Wan, J.; Guan, M.; Yu, B.; Li, X.; Zhang, W. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin. Chim. Acta 2011, 412, 66–70. [Google Scholar] [CrossRef]
- Krongbaramee, T.; Zhu, M.; Qian, Q.; Zhang, Z.; Eliason, S.; Shu, Y.; Qian, F.; Akkouch, A.; Su, D.; Amendt, B.A.; et al. Plasmid encoding microRNA-200c ameliorates periodontitis and systemic inflammation in obese mice. Mol. Ther. Nucleic Acids 2021, 23, 1204–1216. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Qu, M.; Li, Y.; Wang, L.; Zhang, L.; Wang, Y.; Tang, Y.; Tian, H.L.; Zhang, Z.; Yang, G.Y. MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion. Stroke 2020, 51, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Bostjancic, E.; Zidar, N.; Glavac, D. MicroRNA microarray expression profiling in human myocardial infarction. Dis. Markers 2009, 27, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Zhang, L.; Cheng, T.; Wang, J.; Zhou, J.; Zhao, L.; Hua, C.; Xia, Q. MiR-590-5p inhibits pathological hypertrophy mediated heart failure by targeting RTN4. J. Mol. Histol. 2021, 52, 955–964. [Google Scholar] [CrossRef]
- Lesizza, P.; Prosdocimo, G.; Martinelli, V.; Sinagra, G.; Zacchigna, S.; Giacca, M. Single-Dose Intracardiac Injection of Pro-Regenerative MicroRNAs Improves Cardiac Function After Myocardial Infarction. Circ. Res. 2017, 120, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Purohit, P.; Roy, D.; Dwivedi, S.; Nebhinani, N.; Sharma, P. Association of miR-155, miR-187 and Inflammatory Cytokines IL-6, IL-10 and TNF-alpha in Chronic Opium Abusers. Inflammation 2022, 45, 554–566. [Google Scholar] [CrossRef]
- Deng, J.; Xiao, J.; Ma, P.; Gao, B.; Gong, F.; Lv, L.; Zhang, Y.; Xu, J. Manipulation of Viral MicroRNAs as a Potential Antiviral Strategy for the Treatment of Cytomegalovirus Infection. Viruses 2017, 9, 118. [Google Scholar] [CrossRef]
- Xu, F.; Yao, F.; Ning, Y. MicroRNA-202-5p-dependent inhibition of Bcl-2 contributes to macrophage apoptosis and atherosclerotic plaque formation. Gene 2023, 867, 147366. [Google Scholar] [CrossRef]
- Yu, G.; Sun, W.; Wang, W.; Le, C.; Liang, D.; Shuai, L. Overexpression of microRNA-202-3p in bone marrow mesenchymal stem cells improves cerebral ischemia-reperfusion injury by promoting angiogenesis and inhibiting inflammation. Aging 2021, 13, 11877–11888. [Google Scholar] [CrossRef] [PubMed]
- Benakanakere, M.R.; Li, Q.; Eskan, M.A.; Singh, A.V.; Zhao, J.; Galicia, J.C.; Stathopoulou, P.; Knudsen, T.B.; Kinane, D.F. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J. Biol. Chem. 2009, 284, 23107–23115. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Choi, J.W.; Moon, H.; Lee, C.Y.; Park, J.H.; Lee, J.; Seo, H.H.; Han, G.; Lim, S.; Lee, S.; et al. Simultaneous Suppression of Multiple Programmed Cell Death Pathways by miRNA-105 in Cardiac Ischemic Injury. Mol. Ther. Nucleic Acids 2019, 14, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Ongoz Dede, F.; Gokmenoglu, C.; Turkmen, E.; Bozkurt Dogan, S.; Ayhan, B.S.; Yildirim, K. Six miRNA expressions in the saliva of smokers and non-smokers with periodontal disease. J. Periodontal Res. 2023, 58, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, E.; Tuddenham, L.; Macquin, C.; Alsaleh, G.; Schreiber-Becker, J.; Tanguy, M.; Bahram, S.; Pfeffer, S.; Georgel, P. Deregulation of type I IFN-dependent genes correlates with increased susceptibility to cytomegalovirus acute infection of dicer mutant mice. PLoS ONE 2012, 7, e43744. [Google Scholar] [CrossRef] [PubMed]
- Kaid, C.; Jordan, D.; Bueno, H.M.S.; Araujo, B.H.S.; Assoni, A.; Okamoto, O.K. miR-367 as a therapeutic target in stem-like cells from embryonal central nervous system tumors. Mol. Oncol. 2019, 13, 2574–2587. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Y.; Wang, T.; Zhou, N.; Kong, J.; Chen, L.; Snitow, M.; Morley, M.; Li, D.; Petrenko, N.; et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med. 2015, 7, 279ra238. [Google Scholar] [CrossRef]
- Yuan, Y.S.; Fei, M.; Yang, Y.X.; Cai, W.W. MiR-201-5p alleviates lipopolysaccharide-induced renal cell dysfunction by targeting NOTCH3. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5592–5603. [Google Scholar] [CrossRef]
- Moghaddam, A.S.; Afshari, J.T.; Esmaeili, S.A.; Saburi, E.; Joneidi, Z.; Momtazi-Borojeni, A.A. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019, 285, 1–9. [Google Scholar] [CrossRef]
- Ramirez, C.M.; Goedeke, L.; Rotllan, N.; Yoon, J.H.; Cirera-Salinas, D.; Mattison, J.A.; Suarez, Y.; de Cabo, R.; Gorospe, M.; Fernandez-Hernando, C. MicroRNA 33 regulates glucose metabolism. Mol. Cell. Biol. 2013, 33, 2891–2902. [Google Scholar] [CrossRef]
- Horie, T.; Nakao, T.; Miyasaka, Y.; Nishino, T.; Matsumura, S.; Nakazeki, F.; Ide, Y.; Kimura, M.; Tsuji, S.; Rodriguez, R.R.; et al. microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity. Nat. Commun. 2021, 12, 843. [Google Scholar] [CrossRef]
- Price, N.L.; Goedeke, L.; Suarez, Y.; Fernandez-Hernando, C. miR-33 in cardiometabolic diseases: Lessons learned from novel animal models and approaches. EMBO Mol. Med. 2021, 13, e12606. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Zhang, P.; Wen, L.; Jia, S.; Wu, Y.; Zhang, Z.; Guan, L.; Yu, Z.; Zhao, L. miR-22 promotes stem cell traits via activating Wnt/beta-catenin signaling in cutaneous squamous cell carcinoma. Oncogene 2021, 40, 5799–5813. [Google Scholar] [CrossRef]
- Lv, L.; Zheng, N.; Zhang, L.; Li, R.; Li, Y.; Yang, R.; Li, C.; Fang, R.; Shabanova, A.; Li, X.; et al. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice. Eur. J. Pharmacol. 2020, 881, 173131. [Google Scholar] [CrossRef]
- Grabmaier, U.; Clauss, S.; Gross, L.; Klier, I.; Franz, W.M.; Steinbeck, G.; Wakili, R.; Theiss, H.D.; Brenner, C. Diagnostic and prognostic value of miR-1 and miR-29b on adverse ventricular remodeling after acute myocardial infarction—The SITAGRAMI-miR analysis. Int. J. Cardiol. 2017, 244, 30–36. [Google Scholar] [CrossRef]
- Safa, A.; Bahroudi, Z.; Shoorei, H.; Majidpoor, J.; Abak, A.; Taheri, M.; Ghafouri-Fard, S. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed. Pharmacother. 2020, 132, 110903. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Jiang, P.; Wang, H.; Huang, L.; Wu, G.; Che, X.; Wang, C.; Li, P.; Duan, Q.; Guo, X.; et al. MiR-1 is a critical regulator of chondrocyte proliferation and hypertrophy by inhibiting Indian hedgehog pathway during postnatal endochondral ossification in miR-1 overexpression transgenic mice. Bone 2022, 165, 116566. [Google Scholar] [CrossRef]
- Gu, H.; Shi, S.; Xiao, F.; Huang, Z.; Xu, J.; Chen, G.; Zhou, K.; Lu, L.; Yin, X. MiR-1-3p regulates the differentiation of mesenchymal stem cells to prevent osteoporosis by targeting secreted frizzled-related protein 1. Bone 2020, 137, 115444. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.G.; Zhao, X.G.; Wang, X.L.; Liu, M.X.; Wan, W. Low expression of miR-1 promotes osteogenic repair of bone marrow mesenchymal stem cells by targeting TLR1. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3492–3500. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, K.; Zhi, T.; Xu, X. miR-720 is a key regulator of glioma migration and invasion by controlling TARSL2 expression. Hum. Cell 2021, 34, 1504–1516. [Google Scholar] [CrossRef]
Group/Bacteria/Weeks | Positive Gingival Plaque Samples (n = 10) | |||
---|---|---|---|---|
2 Weeks | 4 Weeks | 6 Weeks | 12 Weeks | |
Group I/S. gordonii DL1 [8 weeks] | 4/10a | 9/10 | NC | ---- |
Group II/S. gordonii DL1 [16 weeks] | 4/10 | 9/10 | NC | 10/10 |
Group III/Sham-infection [8 weeks] | 0/10 | NC | NC | ---- |
Group IV/Sham-infection [16 weeks] | 0/10 | NC | NC | 0/10 |
Weeks/Infection/Sex | Upregulated miRNAs (p < 0.05) | Downregulated miRNAs (p < 0.05) |
---|---|---|
8 Weeks—S. gordonii-infected vs. 8 Weeks—Sham infection (n = 10) | 191 (miR-375, miR-34b-5p, miR-142-5p, miR-135a). | 22 (miR-133a, miR-1224, miR-2135, miR-499) |
8 Weeks—S. gordonii-infected Female vs. Male (n = 5) | 4 | 4 |
16 Weeks—S. gordonii-infected vs. 16 Weeks—Sham infection (n = 10) | 10 (miR-1902, miR-203, miR-210, miR-876-3p) | 32 (miR-720, miR-1937c, miR-2135, miR-326) |
16 Weeks—S. gordonii-infected Female vs. Male (n = 5) | 12 | 11 |
8 Weeks—S. gordonii-infected vs. 16 Weeks—S. gordonii-infected | 19 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aravindraja, C.; Jeepipalli, S.; Duncan, W.D.; Vekariya, K.M.; Rahaman, S.O.; Chan, E.K.L.; Kesavalu, L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. Int. J. Mol. Sci. 2024, 25, 6217. https://doi.org/10.3390/ijms25116217
Aravindraja C, Jeepipalli S, Duncan WD, Vekariya KM, Rahaman SO, Chan EKL, Kesavalu L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. International Journal of Molecular Sciences. 2024; 25(11):6217. https://doi.org/10.3390/ijms25116217
Chicago/Turabian StyleAravindraja, Chairmandurai, Syam Jeepipalli, William D. Duncan, Krishna Mukesh Vekariya, Shaik O. Rahaman, Edward K. L. Chan, and Lakshmyya Kesavalu. 2024. "Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics" International Journal of Molecular Sciences 25, no. 11: 6217. https://doi.org/10.3390/ijms25116217
APA StyleAravindraja, C., Jeepipalli, S., Duncan, W. D., Vekariya, K. M., Rahaman, S. O., Chan, E. K. L., & Kesavalu, L. (2024). Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. International Journal of Molecular Sciences, 25(11), 6217. https://doi.org/10.3390/ijms25116217