Evaluation of Anticholinesterase Activity of the Fungicides Mefentrifluconazole and Pyraclostrobin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibition of Cholinesterases by Fungicides
2.2. Molecular Modeling of Fungicide Complexes with AChE and BChE
2.3. Triazoles as Potential Cholinesterase Inhibitors
2.4. In Silico Evaluation of CNS Activity
3. General Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Enzymes
4.3. Inhibition Measurements
4.4. In Silico Evaluation of Blood–Brain Barrier Permeability
4.5. Computational Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steinberg, G.; Gurr, S.J. Fungi, Fungicide Discovery and Global Food Security. Fungal Genet. Biol. 2020, 144, 103476. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Wang, S.; Cai, Q.; Chen, J. Research Progress of Triazole Derivatives in the Discovery of Agricultural Chemicals. J. Heterocycl. Chem. 2024, 61, 365–386. [Google Scholar] [CrossRef]
- Jeffreys, L.N.; Poddar, H.; Golovanova, M.; Levy, C.W.; Girvan, H.M.; McLean, K.J.; Voice, M.W.; Leys, D.; Munro, A.W. Novel Insights into P450 BM3 Interactions with FDA-Approved Antifungal Azole Drugs. Sci. Rep. 2019, 9, 1577. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.B.; Kauffman, C.A. Voriconazole: A New Triazole Antifungal Agent. Clin. Infect. Dis. 2003, 36, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U.; Ihle, F.; Derendorf, H. Pharmacokinetic/Pharmacodynamic Profile of Voriconazole. Clin. Pharmacokinet. 2006, 45, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Becher, R.; Wirsel, S.G.R. Fungal Cytochrome P450 Sterol 14α-Demethylase (CYP51) and Azole Resistance in Plant and Human Pathogens. Appl. Microbiol. Biotechnol. 2012, 95, 825–840. [Google Scholar] [CrossRef] [PubMed]
- Tesh, S.A.; Tesh, J.M.; Fegert, I.; Buesen, R.; Schneider, S.; Mentzel, T.; van Ravenzwaay, B.; Stinchcombe, S. Innovative Selection Approach for a New Antifungal Agent Mefentrifluconazole (Revysol®) and the Impact upon Its Toxicity Profile. Regul. Toxicol. Pharmacol. 2019, 106, 152–168. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, H.; Ren, B.; Zhao, T.; Chen, H.; Zhao, Y.; Liang, H. Enantioselective Toxic Effects of Mefentrifluconazole in the Liver of Adult Zebrafish (Danio rerio) Based on Transcription Level and Metabolomic Profile. Toxicology 2022, 467, 153095. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.S. The Discovery and Mechanism of Action of Letrozole. Breast Cancer Res. Treat. 2007, 105, 7–17. [Google Scholar] [CrossRef]
- Trösken, E.R.; Scholz, K.; Lutz, R.W.; Völkel, W.; Zarn, J.A.; Lutz, W.K. Comparative Assessment of the Inhibition of Recombinant Human CYP19 (Aromatase) by Azoles Used in Agriculture and as Drugs for Humans. Endocr. Res. 2004, 30, 387–394. [Google Scholar] [CrossRef]
- Miziak, B.; Błaszczyk, B.; Czuczwar, S.J. Some Candidate Drugs for Pharmacotherapy of Alzheimer’s Disease. Pharmaceuticals 2021, 14, 458. [Google Scholar] [CrossRef] [PubMed]
- Maraković, N.; Knežević, A.; Rončević, I.; Brazzolotto, X.; Kovarik, Z.; Šinko, G. Enantioseparation, In Vitro Testing, and Structural Characterization of Triple-Binding Reactivators of Organophosphate-Inhibited Cholinesterases. Biochem. J. 2020, 477, 2771–2790. [Google Scholar] [CrossRef] [PubMed]
- Matošević, A.; Knežević, A.; Zandona, A.; Maraković, N.; Kovarik, Z.; Bosak, A. Design, Synthesis and Biological Evaluation of Biscarbamates as Potential Selective Butyrylcholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Pharmaceuticals 2022, 15, 1220. [Google Scholar] [CrossRef] [PubMed]
- Žunec, S.; Vadlja, D.; Ramić, A.; Zandona, A.; Maraković, N.; Brekalo, I.; Primožič, I.; Katalinić, M. Profiling Novel Quinuclidine-Based Derivatives as Potential Anticholinesterase Drugs: Enzyme Inhibition and Effects on Cell Viability. Int. J. Mol. Sci. 2023, 25, 155. [Google Scholar] [CrossRef] [PubMed]
- Høilund-Carlsen, P.F.; Alavi, A.; Castellani, R.J.; Neve, R.L.; Perry, G.; Revheim, M.-E.; Barrio, J.R. Alzheimer’s Amyloid Hypothesis and Antibody Therapy: Melting Glaciers? Int. J. Mol. Sci. 2024, 25, 3892. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Kang, S.; Zhao, Z.; Jin, L.; Cui, X.; Chen, L.; Schachner, M.; Li, S.; Guo, Y.; Zhao, J. Chicoric Acid Ameliorated Beta-Amyloid Pathology and Enhanced Expression of Synaptic-Function-Related Markers via L1CAM in Alzheimer’s Disease Models. Int. J. Mol. Sci. 2024, 25, 3408. [Google Scholar] [CrossRef]
- Lewis, W.G.; Green, L.G.; Grynszpan, F.; Radić, Z.; Carlier, P.R.; Taylor, P.; Finn, M.G.; Sharpless, K.B. Click Chemistry In Situ: Acetylcholinesterase as a Reaction Vessel for the Selective Assembly of a Femtomolar Inhibitor from an Array of Building Blocks. Angew. Chem. Int. Ed. 2002, 41, 1053–1057. [Google Scholar] [CrossRef]
- Šinko, G.; Maraković, N. The Lock Is the Key: Development of Novel Drugs through Receptor Based Combinatorial Chemistry. Acta Chim. Slov. 2017, 64, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Knežević, A.; Vinković, V.; Maraković, N.; Šinko, G. Enzyme-Catalyzed Cascade Synthesis of Hydroxyiminoacetamides. Tetrahedron Lett. 2014, 55, 4338–4341. [Google Scholar] [CrossRef]
- Maraković, N.; Knežević, A.; Vinković, V.; Kovarik, Z.; Šinko, G. Design and Synthesis of N-Substituted-2-Hydroxyiminoacetamides and Interactions with Cholinesterases. Chem. Biol. Interact. 2016, 259, 122–132. [Google Scholar] [CrossRef]
- Maček Hrvat, N.; Kalisiak, J.; Šinko, G.; Radić, Z.; Sharpless, K.B.; Taylor, P.; Kovarik, Z. Evaluation of High-Affinity Phenyltetrahydroisoquinoline Aldoximes, Linked through Anti-Triazoles, as Reactivators of Phosphylated Cholinesterases. Toxicol. Lett. 2020, 321, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Kolesárová, V.; Šinko, G.; Šiviková, K.; Dianovský, J. In Vitro Inhibition of Blood Cholinesterase Activities from Cattle by Triazole Fungicides. Caryologia 2013, 66, 346–350. [Google Scholar] [CrossRef]
- Bosak, A.; Gazić Smilović, I.; Šinko, G.; Vinković, V.; Kovarik, Z. Metaproterenol, Isoproterenol, and Their Bisdimethylcarbamate Derivatives as Human Cholinesterase Inhibitors. J. Med. Chem. 2012, 55, 6716–6723. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, Z.; Bosak, A.; Šinko, G.; Latas, T. Exploring the Active Sites of Cholinesterases by Inhibition with Bambuterol and Haloxon. Croat. Chem. Acta 2003, 76, 63–67. [Google Scholar]
- Herkert, N.M.; Thiermann, H.; Worek, F. In Vitro Kinetic Interactions of Pyridostigmine, Physostigmine and Soman with Erythrocyte and Muscle Acetylcholinesterase from Different Species. Toxicol. Lett. 2011, 206, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Pehar, V.; Kolić, D.; Zandona, A.; Šinko, G.; Katalinić, M.; Stepanić, V.; Kovarik, Z. Selected Herbicides Screened for Toxicity and Analysed as Inhibitors of Both Cholinesterases. Chem. Biol. Interact. 2023, 379, 110506. [Google Scholar] [CrossRef] [PubMed]
- Čadež, T.; Kolić, D.; Šinko, G.; Kovarik, Z. Assessment of Four Organophosphorus Pesticides as Inhibitors of Human Acetylcholinesterase and Butyrylcholinesterase. Sci. Rep. 2021, 11, 21486. [Google Scholar] [CrossRef] [PubMed]
- Šinko, G. Modeling of a Near-Attack Conformation of Oxime in Phosphorylated Acetylcholinesterase via a Reactivation Product, a Phosphorylated Oxime. Chem. Biol. Interact. 2023, 383, 110656. [Google Scholar] [CrossRef]
- Dym, O.; Unger, T.; Toker, L.; Silman, I.; Sussman, J.L.; Israel Structural Proteomics Center (ISPC). Crystal Structure of Human Acetylcholinesterase. 2015. Available online: https://doi.org/10.2210/pdb4PQE/pdb (accessed on 4 February 2022).
- Ngamelue, M.N.; Homma, K.; Lockridge, O.; Asojo, O.A. Crystallization and X-ray Structure of Full-Length Recombinant Human Butyrylcholinesterase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2007, 63, 723–727. [Google Scholar] [CrossRef]
- Colletier, J.-P.; Fournier, D.; Greenblatt, H.M.; Stojan, J.; Sussman, J.L.; Zaccai, G.; Silman, I.; Weik, M. Structural Insights into Substrate Traffic and Inhibition in Acetylcholinesterase. EMBO J. 2006, 25, 2746–2756. [Google Scholar] [CrossRef]
- Bourne, Y.; Kolb, H.C.; Radic, Z.; Sharpless, K.B.; Taylor, P.; Marchot, P. Freeze-Frame Inhibitor Captures Acetylcholinesterase in a Unique Conformation. Proc. Natl. Acad. Sci. USA 2004, 101, 1449–1454. [Google Scholar] [CrossRef]
- Dvir, H.; Wong, D.M.; Harel, M.; Barril, X.; Orozco, M.; Luque, F.J.; Muñoz-Torrero, D.; Camps, P.; Rosenberry, T.L.; Silman, I.; et al. 3D Structure of Torpedo californica Acetylcholinesterase Complexed with Huprine X at 2.1 Å Resolution: Kinetic and Molecular Dynamic Correlates. Biochemistry 2002, 41, 2970–2981. [Google Scholar] [CrossRef] [PubMed]
- Berg, L.; Mishra, B.K.; Andersson, C.D.; Ekström, F.; Linusson, A. The Nature of Activated Non-classical Hydrogen Bonds: A Case Study on Acetylcholinesterase–Ligand Complexes. Chem.–Eur. J. 2016, 22, 2672–2681. [Google Scholar] [CrossRef]
- Wandhammer, M.; de Koning, M.; van Grol, M.; Loiodice, M.; Saurel, L.; Noort, D.; Goeldner, M.; Nachon, F. A Step toward the Reactivation of Aged Cholinesterases—Crystal Structure of Ligands Binding to Aged Human Butyrylcholinesterase. Chem. Biol. Interact. 2013, 203, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Chalupova, K.; Korabecny, J.; Bartolini, M.; Monti, B.; Lamba, D.; Caliandro, R.; Pesaresi, A.; Brazzolotto, X.; Gastellier, A.-J.; Nachon, F.; et al. Novel Tacrine-Tryptophan Hybrids: Multi-Target Directed Ligands as Potential Treatment for Alzheimer’s Disease. Eur. J. Med. Chem. 2019, 168, 491–514. [Google Scholar] [CrossRef] [PubMed]
- Viayna, E.; Coquelle, N.; Cieslikiewicz-Bouet, M.; Cisternas, P.; Oliva, C.A.; Sánchez-López, E.; Ettcheto, M.; Bartolini, M.; De Simone, A.; Ricchini, M.; et al. Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity That Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. J. Med. Chem. 2021, 64, 812–839. [Google Scholar] [CrossRef]
- Wu, G.; Robertson, D.H.; Brooks, C.L.; Vieth, M. Detailed Analysis of Grid-Based Molecular Docking: A Case Study of CDOCKER?A CHARMm-Based MD Docking Algorithm. J. Comput. Chem. 2003, 24, 1549–1562. [Google Scholar] [CrossRef]
- Miličević, A.; Šinko, G. Evaluation of the Key Structural Features of Various Butyrylcholinesterase Inhibitors Using Simple Molecular Descriptors. Molecules 2022, 27, 6894. [Google Scholar] [CrossRef]
- Bharate, S.S.; Mignani, S.; Vishwakarma, R.A. Why Are the Majority of Active Compounds in the CNS Domain Natural Products? A Critical Analysis. J. Med. Chem. 2018, 61, 10345–10374. [Google Scholar] [CrossRef]
- Egan, W.J.; Lauri, G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 2002, 54, 273–289. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Lenz, G.R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. NeuroRX 2005, 2, 541–553. [Google Scholar] [CrossRef]
- Gerlits, O.; Ho, K.Y.; Cheng, X.; Blumenthal, D.; Taylor, P.; Kovalevsky, A.; Radic, Z. A New Crystal Form of Human Acetylcholinesterase for Exploratory Room-temperature Crystallography Studies. Chem. Biol. Interact. 2019, 309, 108698. [Google Scholar] [CrossRef]
- Miličević, A.; Šinko, G. Use of Connectivity Index and Simple Topological Parameters for Estimating the Inhibition Potency of Acetylcholinesterase. Saudi Pharm. J. 2022, 30, 369–376. [Google Scholar] [CrossRef]
- Richard Morphy, J. The Challenges of Multi-Target Lead Optimization. In Designing Multi-Target Drugs; The Royal Society of Chemistry: London, UK, 2012; pp. 141–154. [Google Scholar]
- Łażewska, D.; Zaręba, P.; Godyń, J.; Doroz-Płonka, A.; Frank, A.; Reiner-Link, D.; Bajda, M.; Stary, D.; Mogilski, S.; Olejarz-Maciej, A.; et al. Biphenylalkoxyamine Derivatives–Histamine H3 Receptor Ligands with Butyrylcholinesterase Inhibitory Activity. Molecules 2021, 26, 3580. [Google Scholar] [CrossRef]
- Bosak, A.; Gazić, I.; Vinković, V.; Kovarik, Z. Stereoselective Inhibition of Human, Mouse, and Horse Cholinesterases by Bambuterol Enantiomers. Chem. Biol. Interact. 2008, 175, 192–195. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Eyer, P.; Worek, F.; Kiderlen, D.; Sinko, G.; Stuglin, A.; Simeon-Rudolf, V.; Reiner, E. Molar Absorption Coefficients for the Reduced Ellman Reagent: Reassessment. Anal. Biochem. 2003, 312, 224–227. [Google Scholar] [CrossRef]
- Reiner, E.; Sinko, G.; Skrinjarić-Spoljar, M.; Simeon-Rudolf, V. Comparison of Protocols for Measuring Activities of Human Blood Cholinesterases by the Ellman Method. Arh. Hig. Rada Toksikol. 2000, 51, 13–18. Available online: https://hrcak.srce.hr/file/1664 (accessed on 4 June 2024).
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comp. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Momany, F.A.; Rone, R. Validation of the General Purpose QUANTA 3.2/CHARMm Force Field. J. Comp. Chem. 1992, 13, 888–900. [Google Scholar] [CrossRef]
- Šinko, G. Assessment of Scoring Functions and in Silico Parameters for AChE-Ligand Interactions as a Tool for Predicting Inhibition Potency. Chem. Biol. Interact. 2019, 308, 216–223. [Google Scholar] [CrossRef]
Fungicide | Ki (μM) | ki (M−1 min−1) |
---|---|---|
AChE | ||
Mefentrifluconazole | 101 ± 19 | / |
Pyraclostrobin | / | 6496 ± 822 * |
BChE | ||
Mefentrifluconazole | 653 ± 158 | / |
Pyraclostrobin | / | 9242 ± 1343 * |
Compound | AChE | BChE | ||||
---|---|---|---|---|---|---|
H-Bond | π-Orbitals | Other | H-Bond | π-Orbitals | Other | |
Mefentrifluconazole | Tyr124, Ser125, Tyr337, His447 | Trp86, Tyr124, Trp286, Tyr337, Tyr341 | Gly121 (Halogen acceptor) | Thr120, Ser198 | Trp82, Gly116, Pro285, Tyr332, His438 | Asp70 (Electrostatic) |
Difenoconazole | Tyr124, Ser125, Tyr337, His447 | Trp86, Tyr124, Trp286, Tyr337, Tyr341 | / | Trp82, Ser198, Tyr332 | Trp82, Trp231, Phe329, Trp430 | Leu286, Val288, Met437 (Alkyl) |
Epoxyconazole | Tyr124, Ser125, Tyr133, Ser203, Tyr337 | Trp86, Tyr337 | Glu202 (Halogen acceptor) | Glu197, Ser198, His438 | Trp82, Trp231, Ala328, Phe329 | Gly115, Gly116 (Amide π-stacked) |
Fluconazole | Asp74, Tyr124, Ser125, Tyr133, Ser203, Tyr337, Tyr341 | Trp86, Tyr337 | Glu202 (Halogen acceptor) | Gly115, Gly117, Thr120, Ser198, His438 | Trp82, Trp231 | Gly116 (Halogen acceptor), Glu197 (Electrostatic) |
Metconazole | Tyr124, Tyr337, His447 | Trp86, Tyr124, Tyr337, Tyr341, His447 | / | Asn83, Gly116, Thr120, Ser198 | Trp231, Phe329, His438 | / |
Propiconazole | Tyr124, Tyr337, His447 | Trp86, Tyr124, Phe297, Tyr337, Phe338, Tyr341 | Pro88 (Alkyl) | His438 | Trp82, Trp231, Ala328, Phe329 | Leu286 (Alkyl) |
Tebuconazole | Asp74, Tyr124, Ser203, Tyr337, His447 | Tyr72, Trp86, Tyr124, Phe295, His447 | / | / | Trp82, Trp231, Phe329, Tyr332, His438 | Leu286, Val288, Ala328 (Alkyl) |
Voriconazole | Asn87, Tyr124, Ser125, Ser203, Tyr337, His447 | Trp86, Tyr124, Tyr337 | Tyr72, Asn87 (Halogen acceptor) | Asp70, Asn83, Glu197, Ser198, His438 | Trp82, Phe329, Tyr332, His438 | Gly115 (Halogen acceptor), Glu197 (Electrostatic) |
Pyraclostrobin | Asp74, Tyr124, Glu202, Ser203, Tyr337, Tyr341 | Trp86, Tyr124, Trp286, Val294, Phe297, Phe338, His447 | / | Gly116, Gly117, Glu197, Ser198 | Trp82, Trp231, Ala328, Phe329, Trp430, Tyr440 | Met437 (Alkyl) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolić, D.; Šinko, G. Evaluation of Anticholinesterase Activity of the Fungicides Mefentrifluconazole and Pyraclostrobin. Int. J. Mol. Sci. 2024, 25, 6310. https://doi.org/10.3390/ijms25126310
Kolić D, Šinko G. Evaluation of Anticholinesterase Activity of the Fungicides Mefentrifluconazole and Pyraclostrobin. International Journal of Molecular Sciences. 2024; 25(12):6310. https://doi.org/10.3390/ijms25126310
Chicago/Turabian StyleKolić, Dora, and Goran Šinko. 2024. "Evaluation of Anticholinesterase Activity of the Fungicides Mefentrifluconazole and Pyraclostrobin" International Journal of Molecular Sciences 25, no. 12: 6310. https://doi.org/10.3390/ijms25126310
APA StyleKolić, D., & Šinko, G. (2024). Evaluation of Anticholinesterase Activity of the Fungicides Mefentrifluconazole and Pyraclostrobin. International Journal of Molecular Sciences, 25(12), 6310. https://doi.org/10.3390/ijms25126310