The Formation of D-Allulose 3-Epimerase Hybrid Nanoflowers and Co-Immobilization on Resins for Improved Enzyme Activity, Stability, and Processability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterizations of NF-DAEs
2.2. The Encapsulate Yields and Catalytic Activities of NF-DAEs
2.3. Thermal Stabilities of NF-DAEs
2.4. Co-Immobilization of NF-DAEs on Resins
2.4.1. Preparation and Characterizations of Resin-NF-DAE Composites
2.4.2. Characterization of ReA-NF-DAEs
2.4.3. Stabilities of ReA-NF-DAEs
2.4.4. Processing Performances of ReA-NF-DAEs
3. Materials and Methods
3.1. Reagents and Materials
3.2. Expression and Purification
3.3. Activity Assays of DAE
3.4. Preparation of the Organic–Inorganic Hybrid Nanoflowers
3.5. Assay of Encapsulation Yield
- EY: the encapsulate yield;
- C0: the total DAE mass;
- C1: the supernatant DAE mass.
3.6. Characterization of the NF-DAEs and Re-NF-DAEs
3.7. Synthesis of Resin-Immobilized NF-DAE Composites
3.8. Thermal Stability of the free DAE, NF-DAEs and Re-NF-DAEs
3.9. Storage Stability of the Re-NF-DAEs
3.10. Operational Stabilities of the Re-NF-DAEs
- A0: the amount of enzyme in the initial immobilized enzyme;
- A1: the accumulated amount of enzyme in the supernatant after the reaction.
3.11. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahmood, S.; Iqbal, M.W.; Tang, X.; Zabed, H.M.; Chen, Z.; Zhang, C.; Ravikumar, Y.; Zhao, M.; Qi, X. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. Int. J. Biol. Macromol. 2024, 254 Pt 2, 127859. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Yamaguchi, F.; Matsuo, T.; Tsukamoto, I.; Toyoda, Y.; Ogawa, M.; Nagata, Y.; Tokuda, M. Rare sugar D-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol. Ther. 2015, 155, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, D.; Chen, J.; Xu, W.; Chen, Q.; Wu, H.; Guang, C.; Mu, W. D-allulose, a versatile rare sugar: Recent biotechnological advances and challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 5661–5679. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.R.; Shin, S.K.; Han, Y.; Yoo, J.H.; Kim, S.; Young, H.A.; Kwon, E.Y. D-Allulose Ameliorates Dysregulated Macrophage Function and Mitochondrial NADH Homeostasis, Mitigating Obesity-Induced Insulin Resistance. Nutrients 2023, 15, 4218. [Google Scholar] [CrossRef]
- Rakhat, Y.; Kaneko, K.; Wang, L.; Han, W.; Seino, Y.; Yabe, D.; Yada, T. D-Allulose Inhibits Ghrelin-Responsive, Glucose-Sensitive and Neuropeptide Y Neurons in the Arcuate Nucleus and Central Injection Suppresses Appetite-Associated Food Intake in Mice. Nutrients 2022, 14, 3117. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Sun, F.; Liu, Z.; Zhang, K.; Wu, J. Highly efficient production of Clostridium cellulolyticum H10 D-psicose 3-epimerase in Bacillus subtilis and use of these cells to produce D-psicose. Microb. Cell Fact. 2018, 17, 188. [Google Scholar] [CrossRef] [PubMed]
- Dedania, S.R.; Patel, M.J.; Patel, D.M.; Akhani, R.C.; Patel, D.H. Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of D-psicose 3-epimerase for rare sugar production. Enzym. Microb. Technol. 2017, 107, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wei, C.; Qi, H.; Li, C.; Lu, F.; Qin, H.M. Directional immobilization of D-allulose 3-epimerase using SpyTag/SpyCatcher strategy as a robust biocatalyst for synthesizing D-allulose. Food Chem. 2023, 401, 134199. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Jiang, B.; Mu, W.; Zhang, T. Production of D-allulose with D-psicose 3-epimerase expressed and displayed on the surface of Bacillus subtilis spores. J. Agric. Food Chem. 2016, 64, 7201–7207. [Google Scholar] [CrossRef]
- Xue, K.; Liu, C.L.; Yang, Y.; Liu, X.; Zhan, J.; Bai, Z. Immobilization of D-allulose 3-epimerase into magnetic metal-organic framework nanoparticles for efficient biocatalysis. World J. Microbiol. Biotechnol. 2022, 38, 144. [Google Scholar] [CrossRef]
- Gong, C.; Wang, D.; Zhao, H. Biomimetic Metal-Pyrimidine Nanoflowers: Enzyme Immobilization Platforms with Boosted Activity. Small 2023, 19, 2304077. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.D.; Kelkar, R.K.; Patil, N.P.; Pise, P.V.; Patil, S.P.; Patil, A.S.; Kulkarni, N.S.; Tiwari, M.S.; Phirke, A.N.; Nadar, S.S. Magnetic nanoflowers: A hybrid platform for enzyme immobilization. Crit. Rev. Biotechnol. 2023, 16, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Appiah, B.; Zhang, B.; Yang, Z.; Quan, C. Recent advances in enzyme immobilization based on nanoflowers. J. Catal. 2023, 418, 31–39. [Google Scholar] [CrossRef]
- Al-Maqdi Khadega, A.; Elmerhi, N.; Alzamly, A.; Shah, I.; Ashraf, S. Laccase–copper phosphate hybrid nanoflower as potent thiazole remediation agent. J. Water Process 2023, 51, 103438. [Google Scholar] [CrossRef]
- Mostafavi, M.; Mahmoodzadeh, K.; Habibi, Z.; Yousefi, M.; Brask, J.; Mohammadi, M. Immobilization of Bacillus amyloliquefaciens protease "Neutrase" as hybrid enzyme inorganic nanoflower particles: A new biocatalyst for aldol-type and multicomponent reactions. Int. J. Biol. Macromol. 2023, 230, 123140. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Lei, J.; Zare, R.N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. [Google Scholar] [CrossRef]
- Mostafavi, M.; Poor, M.B.; Habibi, Z.; Mohammadi, M.; Yousefi, M. Hyperactivation of lipases by immobilization on superhydrophobic graphene quantum dots inorganic hybrid nanoflower. Int. J. Biol. Macromol. 2024, 254, 127817. [Google Scholar] [CrossRef] [PubMed]
- Kiani, M.; Mojtabavi, S.; Jafari-Nodoushan, H.; Tabib, S.-R.; Hassannejad, N.; Faramarzi Mohammad, A. Fast anisotropic growth of the biomineralized zinc phosphate nanocrystals for a facile and instant construction of laccase@ Zn3(PO4)2 hybrid nanoflowers. Int. J. Biol. Macromol. 2022, 204, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Yao, Y.; Ma, J.; Zhang, Z.; Wang, G.; Wei, W. Nanoflower-like NiCo2O4 Composite Graphene Oxide as a Bifunctional Catalyst for Zinc–Air Battery Cathode. Langmuir 2024, 40, 6990–7000. [Google Scholar] [CrossRef]
- Tu, X.; Sun, Q.; Zhu, S.; Sun, C.; Qu, J.; Zhu, Z.; Zhang, D.; Zheng, H. Nanoflower Fe-base complex for efficient CO2 fixation under atmospheric pressure. J. Environ. 2024, 12, 112544. [Google Scholar] [CrossRef]
- Moya, C.; Escoda-Torroella, M.; Rodríguez-Álvarez, J.; Figueroa, A.; García, Í.; FerrerVidal Inés, B.; GalloCordova, A.; Puerto Morales, M.; Aballe, L.; Fraile Rodríguez, A.; et al. Unveiling the crystal and magnetic texture of iron oxide nanoflowers. Nanoscale 2024, 16, 1942–1995. [Google Scholar] [CrossRef] [PubMed]
- Ocsoy, I.; Dogru, E.; Usta, S. A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity. Enzyme Microb. Technol. 2015, 75, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Fang, S.; Ma, X.; Wang, T.; Li, C.; Lu, F.; Qin, H. Customized self-assembled bimetallic hybrid nanoflowers promoting the robustness of D-allulose 3-epimerase. Chem. Eng. J. 2024, 484, 149453. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Choi, H.; Lee, J.K. Multimetal-based inorganic–protein hybrid system for enzyme immobilization. Acs Sustain. Chem. Eng. 2019, 7, 13633–13638. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Karuppanan, K.K.; Padhi, D.K.; Ranganathan, S.; Paramanantham, P.; Lee, J.K. Trametes versicolor Laccase-Based Magnetic Inorganic-Protein Hybrid Nanobiocatalyst for Efficient Decolorization of Dyes in the Presence of Inhibitors. Materials 2024, 17, 1790. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Xiong, Y.; Zhang, Q.; Lei, H.; Liu, K.; Wang, S. Ionic liquids modified Cu3(PO4)2 hybrid nanoflower for dehydrogenase immobilization by biomimetic mineralization. Process Biochem. 2022, 121, 584–589. [Google Scholar] [CrossRef]
- Hartmann, M.; Kostrov, X. Immobilization of enzymes on porous silicas–benefits and challenges. Chem. Soc. Rev. 2013, 42, 6277–6289. [Google Scholar] [CrossRef]
- Cheng, S.; Guo, Z.; Liang, C.; Shi, Y.; Geng, P.; Xin, Y.; Gu, Z.; Zhang, L. Immobilization of Phospholipase A1 Using a Protein-Inorganic Hybrid System. Polymers 2021, 13, 2865. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liang, H. Chitosan-regulated biomimetic hybrid nanoflower for efficiently immobilizing enzymes to enhance stability and by-product tolerance. Int. J. Biol. Macromol. 2022, 220, 124–134. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Z.; Long, J.; Zhao, Y.; Du, X. Immobilization of Penicillin Acylase on Macroporous Adsorption Resin CLX 1180 Carrier. Adv. Polym. Tech. 2018, 37, 753–760. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Lan, M.; Yang, S.; Xie, Q.; Xiao, J.; Xiao, F.; Wang, S. Cation modulation of cobalt sulfide supported by mesopore-rich hydrangea-like carbon nanoflower for oxygen electrocatalysis. ACS Appl. Mater. 2021, 13, 18683–18692. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, J.; Zhang, Y.; Goh, K.L.; Wan, C.; Zheng, D.; Zheng, M. Preparation and investigation of novel endopeptidase-exopeptidase co-immobilized nanoflowers with improved cascade hydrolysis. Int. J. Biol. Macromol. 2023, 246, 125622. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, L.; Liu, G.; Chen, H.; Zhao, H.; Wang, L.; Gao, J.; Liu, Y.; Zheng, X.; Jiang, Y. Enhanced electroenzymatic CO2 reduction by a multifunctional ZIF-8 layer on silica nanoflower with immobilized enzyme. Chem. Eng. J. 2023, 466, 143198. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Z.; Han, J.; Zhou, Y.; Lin, F.; Li, C.; Wang, L.; Wang, Y. Fabrication of immobilized bromelain using cobalt phosphate material prepared in deep eutectic solvent as carrier. Colloids Surf. B Biointerfaces 2022, 210, 112251. [Google Scholar] [CrossRef]
- Badoei-Dalfard, A.; Monemi, F.; Hassanshahian, M. One-pot synthesis and biochemical characterization of a magnetic collagenase nanoflower and evaluation of its biotechnological applications. Colloids Surf. B Biointerfaces 2022, 211, 112302. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, Y.; Liu, R.; Zhong, C.; Jia, S. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci. Rep. 2016, 6, 27928. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, P.; Fang, Z.; Jiang, H. Trypsin/Zn3(PO4)2 Hybrid Nanoflowers: Controlled Synthesis and Excellent Performance as an Immobilized Enzyme. Int. J. Mol. Sci. 2022, 23, 11853. [Google Scholar] [CrossRef]
- Wang, D.; Hu, L.; Xu, R.; Zhang, W.; Xiong, H.; Wang, Y.; Du, G.; Kang, Z. Production of different molecular weight glycosaminoglycans with microbial cell factories. Enzym. Microb. Technol. 2023, 171, 110324. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Tian, L.; Li, X.; Li, B.; Zhang, Q. A versatile strategy for enzyme immobilization: Fabricating lipase/inorganic hybrid nanostructures on macroporous resins with enhanced catalytic properties. Biochem. Eng. J. 2018, 139, 101–108. [Google Scholar] [CrossRef]
- Xie, X.; Tian, Y.; Ban, X.; Li, C.; Yang, H.; Li, Z. Crystal structure of a novel homodimeric D-allulose 3-epimerase from a Clostridia bacterium. Acta Crystallogr. D 2022, 78, 1180–1191. [Google Scholar] [CrossRef]
- Qi, H.; Wang, T.; Li, H.; Li, C.; Guan, L.; Liu, W.; Wang, J.; Lu, F.; Mao, S.; Qin, H.M. Sequence- and Structure-Based Mining of Thermostable D-Allulose 3-Epimerase and Computer-Guided Protein Engineering To Improve Enzyme Activity. J. Agric. Food Chem. 2023, 71, 18431–18442. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.N.; Kaushal, G.; Singh, S.P. A Novel d-Allulose 3-Epimerase Gene from the Metagenome of a Thermal Aquatic Habitat and d-Allulose Production by Bacillus subtilis Whole-Cell Catalysis. Appl. Environ. Microbiol. 2020, 86, e02605-19. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, W.; Liu, C.; Huang, C.; Zhang, X.; Chi, X.; Wang, T.; Guo, Q.; Wang, C. The Formation of D-Allulose 3-Epimerase Hybrid Nanoflowers and Co-Immobilization on Resins for Improved Enzyme Activity, Stability, and Processability. Int. J. Mol. Sci. 2024, 25, 6361. https://doi.org/10.3390/ijms25126361
Ding W, Liu C, Huang C, Zhang X, Chi X, Wang T, Guo Q, Wang C. The Formation of D-Allulose 3-Epimerase Hybrid Nanoflowers and Co-Immobilization on Resins for Improved Enzyme Activity, Stability, and Processability. International Journal of Molecular Sciences. 2024; 25(12):6361. https://doi.org/10.3390/ijms25126361
Chicago/Turabian StyleDing, Wentao, Chensa Liu, Chi Huang, Xin Zhang, Xinyi Chi, Tong Wang, Qingbin Guo, and Changlu Wang. 2024. "The Formation of D-Allulose 3-Epimerase Hybrid Nanoflowers and Co-Immobilization on Resins for Improved Enzyme Activity, Stability, and Processability" International Journal of Molecular Sciences 25, no. 12: 6361. https://doi.org/10.3390/ijms25126361
APA StyleDing, W., Liu, C., Huang, C., Zhang, X., Chi, X., Wang, T., Guo, Q., & Wang, C. (2024). The Formation of D-Allulose 3-Epimerase Hybrid Nanoflowers and Co-Immobilization on Resins for Improved Enzyme Activity, Stability, and Processability. International Journal of Molecular Sciences, 25(12), 6361. https://doi.org/10.3390/ijms25126361