Being Stung Once or Twice by Bees (Apis mellifera L.) Slightly Disturbed the Serum Metabolome of SD Rats to a Similar Extent
Abstract
:1. Introduction
2. Results
2.1. Analysis of Serum Metabolites in SD Rats Stung by Bees
2.2. Effect of Bee Sting Frequency on Serum Metabolites in SD Rats
2.3. Qualitative Analysis of Differentially Abundant Metabolites
2.4. Quantitative Analysis of Differentially Abundant Metabolites
2.5. Analysis of the Affected Metabolic Pathways
3. Discussion
3.1. Changes in the Serum Metabolites of SD Rats Stung by Bees
3.2. The Impact of Slight Bee Stings on the Body
3.3. Effect of Bee Stings on Metabolic Pathways in the Body
4. Materials and Methods
4.1. Animal Experiments, Sample Collection, and Preparation
4.2. 1H NMR Spectroscopy Analysis
4.3. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurtovic, T.; Balija, M.L.; Brvar, M.; Borak, M.D.; Lukacevic, S.M.; Halassy, B. Comparison of Preclinical Properties of Several Available Antivenoms in the Search for Effective Treatment of and Envenoming. Toxins 2021, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Knerr, J.M.; Argemi, L.; Bordon, K.C.F.; Pucca, M.B.; Cerni, F.A.; Arantes, E.C.; Caliskan, F.; Laustsen, A.H. Scorpion Venom: Detriments and Benefits. Biomedicines 2020, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Lee, S.H.; Gutiérrez, J.M.; Shea, K.J. Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis. PLoS Neglected Trop. Dis. 2018, 12, e0006736. [Google Scholar]
- Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.M.; Fajloun, Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef] [PubMed]
- Komi, D.E.A.; Shafaghat, F.; Zwiener, R.D. Immunology of Bee Venom. Clin. Rev. Allergy Immunol. 2018, 54, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Kim, K.H. Clinical Effectiveness and Adverse Events of Bee Venom Therapy: A Systematic Review of Randomized Controlled Trials. Toxins 2020, 12, 558. [Google Scholar] [CrossRef]
- Blank, S.; Etzold, S.; Darsow, U.; Schiener, M.; Eberlein, B.; Russkamp, D.; Wolf, S.; Graessel, A.; Biedermann, T.; Ollert, M.; et al. Component-resolved evaluation of the content of major allergens in therapeutic extracts for specific immunotherapy of honeybee venom allergy. Hum. Vaccines Immunother. 2017, 13, 2482–2489. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Gu, H.; Gwon, M.G.; An, H.J.; Han, S.M.; Lee, S.J.; Leem, J.; Park, K.K. Therapeutic Effect of Bee Venom and Melittin on Skin Infection Caused by Streptococcus pyogenes. Toxins 2022, 14, 663. [Google Scholar] [CrossRef] [PubMed]
- Sunagar, K.; Khochare, S.; Jaglan, A.; Senthil, S.; Suranse, V. Stings on wings: Proteotranscriptomic and biochemical profiling of the lesser banded hornet (Vespa affinis) venom. Front. Mol. Biosci. 2022, 9, 1066793. [Google Scholar] [CrossRef]
- Teixeira-Cruz, J.M.; Martins-Ferreira, J.; Monteiro-Machado, M.; Strauch, M.A.; de Moraes, J.A.; Amaral, L.S.; Valente, R.C.; Melo, P.A.; Quintas, L.E.M. Heparin prevents the cytotoxic activity of and venoms in renal cells. Toxicon 2023, 223, 107011. [Google Scholar] [CrossRef]
- Klupczynska, A.; Plewa, S.; Derezinski, P.; Garrett, T.J.; Rubio, V.Y.; Kokot, Z.J.; Matysiak, J. Identification and quantification of honeybee venom constituents by multiplatform metabolomics. Sci. Rep. 2020, 10, 21654. [Google Scholar] [CrossRef]
- Matysiak, J.; Derezinski, P.; Klupczynska, A.; Matysiak, J.; Kaczmarek, E.; Kokot, Z.J. Effects of a Honeybee Sting on the Serum Free Amino Acid Profile in Humans. PLoS ONE 2014, 9, e103533. [Google Scholar] [CrossRef]
- Alonezi, S.; Tusiimire, J.; Wallace, J.; Dufton, M.J.; Parkinson, J.A.; Young, L.C.; Clements, C.J.; Park, J.K.; Jeon, J.W.; Ferro, V.A.; et al. Metabolomic Profiling of the Synergistic Effects of Melittin in Combination with Cisplatin on Ovarian Cancer Cells. Metabolites 2017, 7, 14. [Google Scholar] [CrossRef]
- Arjmand, M.; Akbari, Z.; Taghizadeh, N.; Shahbazzadeh, D.; Zamani, Z. NMR-based metabonomics survey in rats envenomed by venom. Toxicon 2015, 94, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Bae, H. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects. Molecules 2016, 21, 616. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, G.; Balfour, N.J.; Shackleton, K.; Goulson, D.; Ratnieks, F.L.W. Stinging risk and sting pain of the ivy bee, Colletes hederae. J. Apicult Res. 2020, 59, 223–231. [Google Scholar] [CrossRef]
- Burzynska, M.; Piasecka-Kwiatkowska, D. A Review of Honeybee Venom Allergens and Allergenicity. Int. J. Mol. Sci. 2021, 22, 8371. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.J.; Kukley, M. Glutamate receptors and glutamatergic signalling in the peripheral nerves. Neural Regen. Res. 2020, 15, 438–447. [Google Scholar]
- Lee, S.E.; Lee, Y.; Lee, G.H. The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch. Pharmacal Res. 2019, 42, 1031–1039. [Google Scholar] [CrossRef]
- Gasmi, A.; Peana, M.; Arshad, M.; Butnariu, M.; Menzel, A.; Bjorklund, G. Krebs cycle: Activators, inhibitors and their roles in the modulation of carcinogenesis. Arch. Toxicol. 2021, 95, 1161–1178. [Google Scholar] [CrossRef]
- Lee, S.M.; Yang, E.J.; Choi, S.M.; Kim, S.H.; Baek, M.G.; Jiang, J.H. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells. Evid.-Based Complement. Altern. Med. 2012, 2012, 368196. [Google Scholar] [CrossRef] [PubMed]
- Natesan, V.; Mani, R.; Arumugam, R. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia. Biomed. Pharmacother. 2016, 81, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.E.; Charoensiddhi, S.; Xue, X.F.; Sun, B.Q.; Liu, Y.; El-Seedi, H.R.; Wang, K. A review on the gastrointestinal protective effects of tropical fruit polyphenols. Crit. Rev. Food Sci. Nutr. 2023, 63, 7197–7223. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wan, Z.R.; Ou, A.Q.; Liang, X.W.; Guo, X.X.; Zhang, Z.Y.; Wu, L.M.; Xue, X.F. Monofloral honey from a medical plant, protected against dextran sulfate sodium-induced ulcerative colitis modulating gut microbial populations in rats. Food Funct. 2019, 10, 3828–3838. [Google Scholar] [CrossRef] [PubMed]
- Shakerdi, L.A.; Gillman, B.; Corcoran, E.; McNulty, J.; Treacy, E.P. Organic Aciduria Disorders in Pregnancy: An Overview of Metabolic Considerations. Metabolites 2023, 13, 518. [Google Scholar] [CrossRef] [PubMed]
- Syama, P.S.; Kumar, C.V.S. Evidence of diet supplementation with vitamin C protecting honeybees from Imidacloprid induced peroxidative damage: A study with. Sociobiology 2022, 69, e7763. [Google Scholar] [CrossRef]
- Zafrani, L.; Ergin, B.; Kapucu, A.; Ince, C. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats. Crit. Care 2016, 20, 406. [Google Scholar] [CrossRef] [PubMed]
- Roumes, H.; Dumont, U.; Sanchez, S.; Mazuel, L.; Blanc, J.; Raffard, G.; Chateil, J.F.; Pellerin, L.; Bouzier-Sore, A.K. Neuroprotective role of lactate in rat neonatal hypoxia-ischemia. J. Cereb. Blood Flow Metab. 2021, 41, 342–358. [Google Scholar] [CrossRef] [PubMed]
- Meligi, N.M.; Ismail, S.A.; Tawfik, N.S. Protective effects of honey and bee venom against lipopolysaccharide and carbon tetrachloride-induced hepatoxicity and lipid peroxidation in rats. Toxicol. Res. 2020, 9, 693–705. [Google Scholar] [CrossRef]
- Uthawarapong, P.; Benbow, M.E.; Suwannapong, G. First study on the effect of Asiatic honey bee (Apis cerana) venom on cutaneous, hepatic and renal rat tissues. J. Apic. Res. 2019, 58, 764–771. [Google Scholar] [CrossRef]
- Cherniack, E.P.; Govorushko, S. To bee or not to bee: The potential efficacy and safety of bee venom acupuncture in humans. Toxicon 2018, 154, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Brand-Miller, J.; Buyken, A.E. The Relationship between Glycemic Index and Health. Nutrients 2020, 12, 536. [Google Scholar] [CrossRef] [PubMed]
- Alhakamy, N.A.; Caruso, G.; Eid, B.G.; Fahmy, U.A.; Ahmed, O.A.A.; Abdel-Naim, A.B.; Alamoudi, A.J.; Alghamdi, S.A.; Al Sadoun, H.; Eldakhakhny, B.M.; et al. Ceftriaxone and Melittin Synergistically Promote Wound Healing in Diabetic Rats. Pharmaceutics 2021, 13, 1622. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.S.; Gan, S.H.; Khalil, M.I. Melittin, a Potential Natural Toxin of Crude Bee Venom: Probable Future Arsenal in the Treatment of Diabetes Mellitus. J. Chem. 2017, 2017. [Google Scholar] [CrossRef]
- Villarruel-López, A.; López-de la Mora, D.A.; Vázquez-Paulino, O.D.; Puebla-Mora, A.G.; Torres-Vitela, M.R.; Guerrero-Quiroz, L.A.; Nuño, K. Effect of consumption on diabetic rats. BMC Complement. Altern. Med. 2018, 18, 32. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, R.; Suryakanth, V.B.; Bakthavatchalam, P.; Kalthur, G.; Nayak, M.D.; Prabhu, M.M.; Hadapad, B.S.; Shenoy, R.P. Acute and sub-chronic toxicity of Liberin, an anti-diabetic polyherbal formulation in rats. J. Ayurveda Integr. Med. 2023, 14, 100804. [Google Scholar] [CrossRef] [PubMed]
- Amatya, R.; Park, T.; Hwang, S.; Yang, J.W.; Lee, Y.; Cheong, H.S.; Moon, C.; Kwak, H.D.; Min, K.A.; Shin, M.C. Drug Delivery Strategies for Enhancing the Therapeutic Efficacy of Toxin-Derived Anti-Diabetic Peptides. Toxins 2020, 12, 313. [Google Scholar] [CrossRef] [PubMed]
- Eniafe, J.; Jiang, S. The functional roles of TCA cycle metabolites in cancer. Oncogene 2021, 40, 3351–3363. [Google Scholar] [CrossRef] [PubMed]
- Song, J.X.; Tang, Y. Effect of extrusion temperature on characteristic amino acids, fatty acids, organic acids, and phenolics of white quinoa based on metabolomics. Food Res. Int. 2023, 169, 112761. [Google Scholar] [CrossRef]
- Nesterov, S.V.; Yaguzhinsky, L.S.; Podoprigora, G.I.; Nartsissov, Y.R. Amino Acids as Regulators of Cell Metabolism. Biochemistry 2020, 85, 393–408. [Google Scholar] [CrossRef]
- Pan, Y.Y.; Wan, X.Z.; Zeng, F.; Zhong, R.T.; Guo, W.L.; Lv, X.C.; Zhao, C.; Liu, B. Regulatory effect of extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats. Int. J. Biol. Macromol. 2020, 155, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, X.; Wang, Q.Y.; Liu, M.Y.; Peng, W.J.; Zhao, Y.Z. Severe pathological changes in the blood and organs of SD rats stung by honeybees. Toxicon 2023, 231, 107196. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Z.; Zhang, J.M.; Chen, Y.P.; Li, Z.G.; Nie, H.Y.; Peng, W.J.; Su, S.K. Altered Serum Metabolite Profiling and Relevant Pathway Analysis in Rats Stimulated by Honeybee Venom: New Insight into Allergy to Honeybee Venom. J. Agric. Food Chem. 2018, 66, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, Y.G.; Fotso, M.; Chang, C.H.; Rindt, H.; Reinero, C.R.; Van Doren, S.R. Noninvasive Recognition and Biomarkers of Early Allergic Asthma in Cats Using Multivariate Statistical Analysis of NMR Spectra of Exhaled Breath Condensate. PLoS ONE 2016, 11, e0164394. [Google Scholar] [CrossRef]
- Weljie, A.M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C.M. Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 2006, 78, 4430–4442. [Google Scholar] [CrossRef]
Compound Labels of NMR Spectra | HMDB Accession Number | Amino Acids | Treatment Groups (n = 8) | ||
---|---|---|---|---|---|
NC | SO | ST | |||
13 | HMDB00161 | L-Alanine | 0.496 ± 0.094 a | 0.541 ± 0.095 a | 0.517 ± 0.079 a |
14 | HMDB00517 | L-Arginine | 0.160 ± 0.038 a | 0.153 ± 0.029 a | 0.162 ± 0.021 a |
16 | HMDB00191 | L-Aspartic acid | 0.024 ± 0.005 a | 0.048 ± 0.007 b | 0.047 ± 0.008 b |
17 | HMDB00043 | Betaine | 0.135 ± 0.026 a | 0.138 ± 0.022 a | 0.127 ± 0.024 a |
18 | HMDB00062 | L-Carnitine | 0.051 ± 0.014 a | 0.068 ± 0.022 a | 0.063 ± 0.014 a |
31 | HMDB00641 | L-Glutamine | 0.454 ± 0.050 b | 0.315 ± 0.051 a | 0.316 ± 0.017 a |
32 | HMDB00123 | Glycine | 0.235 ± 0.071 a | 0.245 ± 0.063 a | 0.242 ± 0.042 a |
36 | HMDB00172 | L-Isoleucine | 0.075 ± 0.010 a | 0.072 ± 0.008 a | 0.066 ± 0.012 a |
38 | HMDB00687 | L-Leucine | 0.075 ± 0.022 a | 0.072 ± 0.013 a | 0.067 ± 0.020 a |
39 | HMDB00182 | L-Lysine | 0.264 ± 0.031 a | 0.239 ± 0.047 a | 0.276 ± 0.039 a |
44 | HMDB00696 | L-Methionine | 0.047 ± 0.007 a | 0.051 ± 0.006 a | 0.049 ± 0.005 a |
45 | HMDB00201 | L-Acetylcarnitine | 0.016 ± 0.003 a | 0.021 ± 0.009 a | 0.019 ± 0.005 a |
47 | HMDB00159 | L-Phenylalanine | 0.042 ± 0.005 a | 0.049 ± 0.011 a | 0.048 ± 0.005 a |
48 | HMDB00162 | L-Proline | 0.229 ± 0.040 a | 0.223 ± 0.027 a | 0.207 ± 0.041 a |
51 | HMDB00271 | Sarcosine | 0.004 ± 0.001 a | 0.003 ± 0.000 a | 0.003 ± 0.001 a |
53 | HMDB00251 | Taurine | 0.033 ± 0.048 a | 0.080 ± 0.153 a | 0.012 ± 0.034 a |
54 | HMDB00167 | L-Threonine | 0.230 ± 0.054 a | 0.236 ± 0.057 a | 0.216 ± 0.051 a |
57 | HMDB00158 | L-Tyrosine | 0.083 ± 0.016 a | 0.084 ± 0.012 a | 0.072 ± 0.012 a |
60 | HMDB00883 | L-Valine | 0.167 ± 0.022 b | 0.139 ± 0.016 ab | 0.120 ± 0.015 a |
63 | HMDB00725 | 4-Hydroxyproline | 0.057 ± 0.014 a | 0.055 ± 0.013 a | 0.057 ± 0.013 a |
Compound Labels of NMR Spectra | HMDB Accession Number | Organic Acids | Treatment Groups (n = 8) | ||
---|---|---|---|---|---|
NC | SO | ST | |||
2 | HMDB00008 | 2-Hydroxybutyric acid | 0.007 ± 0.002 a | 0.006 ± 0.002 a | 0.006 ± 0.004 a |
3 | HMDB00729 | Alpha-Hydroxyisobutyric acid | 0.003 ± 0.001 a | 0.004 ± 0.002 a | 0.005 ± 0.001 a |
4 | HMDB00005 | 2-Ketobutyric acid | 0.003 ± 0.002 a | 0.002 ± 0.001 a | 0.005 ± 0.005 a |
5 | HMDB00208 | Oxoglutaric acid | 0.031 ± 0.007 a | 0.039 ± 0.009 a | 0.033 ± 0.008 a |
6 | HMDB00695 | Ketoleucine | 0.006 ± 0.002 a | 0.005 ± 0.002 a | 0.005 ± 0.002 a |
7 | HMDB00357 | 3-Hydroxybutyric acid | 0.067 ± 0.018 a | 0.063 ± 0.017 a | 0.064 ± 0.030 a |
8 | HMDB00491 | 3-Methyl-2-oxovaleric acid | 0.005 ± 0.002 a | 0.004 ± 0.001 a | 0.004 ± 0.001 a |
10 | HMDB00042 | Acetic acid | 0.071 ± 0.017 a | 0.056 ± 0.013 a | 0.067 ± 0.029 a |
11 | HMDB00060 | Acetoacetic acid | 0.021 ± 0.008 a | 0.018 ± 0.009 a | 0.023 ± 0.010 a |
15 | HMDB00044 | Ascorbic acid | 0.038 ± 0.010 a | 0.075 ± 0.012 b | 0.077 ± 0.008 b |
20 | HMDB00094 | Citric acid | 0.131 ± 0.033 a | 0.137 ± 0.023 a | 0.134 ± 0.027 a |
27 | HMDB00142 | Formic acid | 0.032 ± 0.006 a | 0.034 ± 0.005 a | 0.030 ± 0.003 a |
28 | HMDB00134 | Fumaric acid | 0.004 ± 0.002 a | 0.006 ± 0.007 a | 0.005 ± 0.003 a |
33 | HMDB00115 | Glycolic acid | 0.026 ± 0.014 a | 0.038 ± 0.014 a | 0.037 ± 0.012 a |
35 | HMDB01873 | Isobutyric acid | 0.008 ± 0.002 a | 0.006 ± 0.001 a | 0.006 ± 0.001 a |
37 | HMDB00190 | L-Lactic acid | 5.698 ± 1.044 a | 9.251 ± 1.332 b | 10.345 ± 2.147 b |
41 | HMDB00691 | Malonic acid/Malonate | 0.008 ± 0.002 a | 0.022 ± 0.004 b | 0.020 ± 0.004 b |
50 | HMDB00243 | Pyruvic acid/Pyruvate | 0.221 ± 0.028 a | 0.340 ± 0.052 b | 0.371 ± 0.067 b |
52 | HMDB00254 | Succinic acid/Succinate | 0.022 ± 0.010 a | 0.030 ± 0.017 a | 0.039 ± 0.040 a |
Groups | Quantity of SD Rats | Treatments at 0 h | Blood Collection Time (h) |
---|---|---|---|
NC | 8 | Negative control | 3 |
SO | 8 | Sting one time | 3 |
ST | 8 | Sting two times | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zheng, X.; Wang, X.; Ji, Q.; Peng, W.; Liu, Z.; Zhao, Y. Being Stung Once or Twice by Bees (Apis mellifera L.) Slightly Disturbed the Serum Metabolome of SD Rats to a Similar Extent. Int. J. Mol. Sci. 2024, 25, 6365. https://doi.org/10.3390/ijms25126365
Wang X, Zheng X, Wang X, Ji Q, Peng W, Liu Z, Zhao Y. Being Stung Once or Twice by Bees (Apis mellifera L.) Slightly Disturbed the Serum Metabolome of SD Rats to a Similar Extent. International Journal of Molecular Sciences. 2024; 25(12):6365. https://doi.org/10.3390/ijms25126365
Chicago/Turabian StyleWang, Xinyu, Xing Zheng, Xue Wang, Quanzhi Ji, Wenjun Peng, Zhenxing Liu, and Yazhou Zhao. 2024. "Being Stung Once or Twice by Bees (Apis mellifera L.) Slightly Disturbed the Serum Metabolome of SD Rats to a Similar Extent" International Journal of Molecular Sciences 25, no. 12: 6365. https://doi.org/10.3390/ijms25126365
APA StyleWang, X., Zheng, X., Wang, X., Ji, Q., Peng, W., Liu, Z., & Zhao, Y. (2024). Being Stung Once or Twice by Bees (Apis mellifera L.) Slightly Disturbed the Serum Metabolome of SD Rats to a Similar Extent. International Journal of Molecular Sciences, 25(12), 6365. https://doi.org/10.3390/ijms25126365