Study of the Myosin Relay Helix Peptide by Molecular Dynamics Simulations, Pump-Probe and 2D Infrared Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. Experimental UV Circular Dichroism and Linear Amide I Spectra
2.2. Molecular Dynamics Simulations
2.2.1. Hydrogen Bonding
2.2.2. Principal Component Analysis
2.2.3. Metadynamics Simulations
2.2.4. Computed Linear Amide I Spectra
2.3. 2D-IR Spectra
2.3.1. Experimental 2D-IR Spectra
2.3.2. Computed 2D-IR Spectra
2.4. Pump-Probe Transient Absorption Spectra
3. Discussion
4. Materials and Methods
4.1. Standard Molecular Dynamics Simulations
4.2. Metadynamics
4.3. Principal Component Analysis
4.4. Experimental Spectra
4.5. Computed Spectra
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freedman, H.; Cruzeiro, L. Dynamic quantum-mechanical effects of vibrational excitations on protein conformation. Curr. Phys. Chem. 2012, 2, 23–32. [Google Scholar] [CrossRef]
- Llinas, P.; Isabet, T.; Song, L.; Ropars, V.; Zong, B.; Benisty, H.; Sirigu, S.; Morris, C.; Kikuti, C.; Safer, D.; et al. How actin initiates the motor activity of Myosin. Dev. Cell 2015, 33, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Syamaladevi, D.P.; Spudich, J.A.; Sowdhamini, R. Structural and functional insights on the Myosin superfamily. Bioinform. Biol. Insights 2012, 6, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Malnasi-Csizmadia, A.; Kovacs, M. Emerging complex pathways of the actomyosin powerstroke. Trends Biochem. Sci. 2010, 35, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Kiani, F.A.; Fischer, S. ATP-dependent interplay between local and global conformational changes in the myosin motor. Cytoskeleton 2016, 73, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Kintses, B.; Gyimesi, M.; Pearson, D.S.; Geeves, M.A.; Zeng, W.; Bagshaw, C.R.; Malnasi-Csizmadia, A. Reversible movement of switch 1 loop of myosin determines actin interaction. EMBO J. 2007, 26, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Mentes, A.; Huehn, A.; Liu, X.; Zwolak, A.; Dominguez, R.; Shuman, H.; Ostap, E.M.; Sindelar, C.V. High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proc. Natl. Acad. Sci. USA 2018, 115, 1292–1297. [Google Scholar] [CrossRef]
- Agafonov, R.V.; Negrashov, I.V.; Tkachev, Y.V.; Blakely, S.E.; Titus, M.A.; Thomas, D.D.; Nesmelov, Y.E. Structural dynamics of the myosin relay helix by time-resolved EPR and FRET. Proc. Natl. Acad. Sci. USA 2009, 106, 21625–21630. [Google Scholar] [CrossRef] [PubMed]
- Muretta, J.M.; Petersen, K.J.; Thomas, D.D. Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain. Proc. Natl. Acad. Sci. USA 2013, 110, 7211–7216. [Google Scholar] [CrossRef]
- Houdusse, A.; Sweeney, H.L. How Myosin Generates Force on Actin Filaments. Trends Biochem. Sci. 2016, 41, 989–997. [Google Scholar]
- Stryer, L. Biochemistry, 4th ed.; W. H. Freeman and Co.: New York, NY, USA, 1995. [Google Scholar]
- Hwang, W.; Karplus, M. Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc. Natl. Acad. Sci. USA 2019, 116, 19777–19785. [Google Scholar] [CrossRef] [PubMed]
- McClare, C.W. Resonance in bioenergetics. Ann. New York Acad. Sci. 1974, 227, 74–97. [Google Scholar] [CrossRef] [PubMed]
- Davydov, A.S. Solitons, bioenergetics, and the mechanism of muscle contraction. Int. J. Quantum Chem. 1979, 16, 5–17. [Google Scholar] [CrossRef]
- Davydov, A.S. Solitons in Molecular Systems; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Davydov, A.S. The theory of contraction of proteins under their excitation. J. Theor. Biol. 1973, 38, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Austin, R.H.; Xie, A.; Fu, D.; Warren, W.W.; Redlich, B.; van der Meer, L. Tilting after Dutch windmills: Probably no long-lived Davydov solitons in proteins. J. Biol. Phys. 2009, 35, 91–101. [Google Scholar] [CrossRef]
- Edler, J.; Hamm, P. Self-trapping of the amide I band in a peptide model crystal. J. Chem. Phys. 2002, 117, 2415–2423. [Google Scholar] [CrossRef]
- Hamm, P. Femtosecond IR pump-probe spectroscopy of nonlinear energy localization in protein models and model proteins. J. Biol. Phys. 2009, 35, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Goj, A.; Bittner, E.R. Mixed quantum classical simulations of excitons in peptide helices. J. Chem. Phys. 2011, 134, 205103. [Google Scholar] [CrossRef]
- Cruzeiro, L. Why are proteins with glutamine- and asparagine-rich regions associated with protein misfolding diseases? J. Phys. Condens. Matter 2005, 17, 7833–7844. [Google Scholar] [CrossRef]
- Cruzeiro-Hansson, L.; Takeno, S. Davydov model: The quantum, mixed quantum-classical, and full classical systems. Phys. Rev. E 1997, 56, 894–906. [Google Scholar] [CrossRef]
- Cruzeiro-Hansson, L.; Kenkre, V.M. Localized versus delocalized ground states of the semiclassical Holstein Hamiltonian. Phys. Lett. A 1994, 190, 59–64. [Google Scholar] [CrossRef]
- Cruzeiro-Hansson, L. Dynamics of a mixed quantum-classical system at finite temperature. Europhys. Lett. 1996, 33, 655–659. [Google Scholar] [CrossRef]
- Freedman, H.; Martel, P.; Cruzeiro, L. Mixed quantum-classical dynamics of an amide I vibrational excitation in a protein α-helix. Phys. Rev. B 2010, 82, 174308, Erratum in Phys. Rev. B 2011, 84, 139902. [Google Scholar] [CrossRef]
- Freedman, H.; Hanna, G. Mixed quantum–classical Liouville simulation of vibrational energy transfer in a model α-helix at 300 K. Chem. Phys. 2016, 477, 74–87. [Google Scholar] [CrossRef]
- Freedman, H.; Laino, T.; Curioni, A. Reaction Dynamics of ATP Hydrolysis in Actin Determined by ab Initio Molecular Dynamics Simulations. J. Chem. Theory Comput. 2012, 8, 3373–3383. [Google Scholar] [CrossRef] [PubMed]
- Khrenova, M.G.; Mulashkina, T.I.; Stepanyuk, R.A.; Nemukhin, A.V. Modeling of enzyme-catalyzed P–O bond cleavage in the adenosine triphosphate molecule. Mendeleev Commun. 2024, 34, 1–7. [Google Scholar] [CrossRef]
- Schrödinger LLC, The PyMOL Molecular Graphics System Version 2.4.0; Schrödinger LLC: New York, NY, USA, 2020.
- Khalil, M.; Demirdoven, N.; Tokmakoff, A. Coherent 2D IR Spectroscopy: Molecular Structure and Dynamics in Solution. J. Phys. Chem. A 2003, 107, 5258–5279. [Google Scholar] [CrossRef]
- Ghosh, A.; Ostrander, J.S.; Zanni, M.T. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem. Rev. 2017, 117, 10726–10759. [Google Scholar] [CrossRef]
- Rohl, C.A.; Baldwin, R.L. Comparison of NH exchange and circular dichroism as techniques for measuring the parameters of the helix-coil transition in peptides. Biochemistry 1997, 36, 8435–8442. [Google Scholar] [CrossRef]
- Luo, P.; Baldwin, R.L. Mechanism of helix induction by trifluoroethanol: A framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 1997, 36, 8413–8421. [Google Scholar] [CrossRef]
- Whitmore, L.; Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 2004, 32, W668–W673. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Sreerama, N.; Venyaminov, S.Y.; Woody, R.W. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci. A Publ. Protein Soc. 1999, 8, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Sreerama, N.; Woody, R.W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem. 1993, 209, 32–44. [Google Scholar]
- Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Sreerama, N.; Venyaminov, S.Y.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Inclusion of denatured proteins with native proteins in the analysis. Anal. Biochem. 2000, 287, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, K.; Nishikawa, K.; Goto, Y. Trifluoroethanol-induced stabilization of the alpha-helical structure of beta-lactoglobulin: Implication for non-hierarchical protein folding. J. Mol. Biol. 1995, 245, 180–194. [Google Scholar]
- Roccatano, D.; Colombo, G.; Fioroni, M.; Mark, A.E. Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: A molecular dynamics study. Proc. Natl. Acad. Sci. USA 2002, 99, 12179–12184. [Google Scholar] [CrossRef] [PubMed]
- Buck, M. Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys. 1998, 31, 297–355. [Google Scholar] [CrossRef]
- Vymětal, J.; Bednárová, L.; Vondrášek, J. Effect of TFE on the Helical Content of AK17 and HAL-1 Peptides: Theoretical Insights into the Mechanism of Helix Stabilization. J. Phys. Chem. B 2016, 120, 1048–1059. [Google Scholar] [CrossRef]
- Pereira, A.F.; Piccoli, V.; Martínez, L. Trifluoroethanol direct interactions with protein backbones destabilize α-helices. J. Mol. Liq. 2022, 365, 120209. [Google Scholar] [CrossRef]
- Usoltsev, D.; Sitnikova, V.; Kajava, A.; Uspenskaya, M. Systematic FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin under Various Denaturation Conditions. Biomolecules 2019, 9, 359. [Google Scholar] [CrossRef]
- Barth, A.; Zscherp, C. What vibrations tell us about proteins. Q. Rev. Biophys. 2002, 35, 369–430. [Google Scholar] [CrossRef]
- Ling, Y.L.; Strasfeld, D.B.; Shim, S.H.; Raleigh, D.P.; Zanni, M.T. Two-dimensional infrared spectroscopy provides evidence of an intermediate in the membrane-catalyzed assembly of diabetic amyloid. J. Phys. Chem. B 2009, 113, 2498–2505. [Google Scholar] [CrossRef] [PubMed]
- Goormaghtigh, E.; Cabiaux, V. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Sub-Cell. Biochem. 1994, 23, 405–450. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lantz, R.; Du, D. Vibrational Approach to the Dynamics and Structure of Protein Amyloids. Molecules 2019, 24, 186. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, M.R.; Schwaighofer, A.; Goicoechea, H.; Lendl, B. EC-QCL mid-IR transmission spectroscopy for monitoring dynamic changes of protein secondary structure in aqueous solution on the example of beta-aggregation in alcohol-denaturated alpha-chymotrypsin. Anal. Bioanal. Chem. 2016, 408, 3933–3941. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.B.; Holden, H.M.; Thoden, J.B.; Smith, R.; Rayment, I. X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J. Biol. Chem. 2000, 275, 38494–38499. [Google Scholar] [CrossRef]
- Smith, C.A.; Rayment, I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry 1996, 35, 5404–5417. [Google Scholar] [CrossRef]
- Demirdoven, N.; Cheatum, C.M.; Chung, H.S.; Khalil, M.; Knoester, J.; Tokmakoff, A. Two-dimensional infrared spectroscopy of antiparallel beta-sheet secondary structure. J. Am. Chem. Soc. 2004, 126, 7981–7990. [Google Scholar] [CrossRef]
- Selig, O.; Cunha, A.V.; van Eldijk, M.B.; van Hest, J.C.M.; Jansen, T.L.C.; Bakker, H.J.; Rezus, Y.L.A. Temperature-Induced Collapse of Elastin-like Peptides Studied by 2DIR Spectroscopy. J. Phys. Chem. B 2018, 122, 8243–8254. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, L. Development of Vibrational Frequency Maps for Nucleobases. J. Phys. Chem. B 2019, 123, 5791–5804. [Google Scholar] [CrossRef] [PubMed]
- Cruzeiro, L.; Freedman, H. The temperature dependent amide I band of crystalline acetanilide. Phys. Lett. A 2013, 377, 1593–1596. [Google Scholar] [CrossRef]
- Kapral, R.; Ciccotti, G. Mixed quantum-classical dynamics. J. Chem. Phys. 1999, 110, 8919–8929. [Google Scholar] [CrossRef]
- Sataric, M.V.; Matsson, L.; Tuszynski, J.A. Complex movements of motor protein relay helices during the power stroke. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2006, 74, 051902. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.R.; White, A.M.; Yu, F.; King, J.T.; Pecoraro, V.L.; Kubarych, K.J. Histidine Orientation Modulates the Structure and Dynamics of a de Novo Metalloenzyme Active Site. J. Am. Chem. Soc. 2015, 137, 10164–10176. [Google Scholar] [CrossRef]
- Galinato, M.G.; Kleingardner, J.G.; Bowman, S.E.; Alp, E.E.; Zhao, J.; Bren, K.L.; Lehnert, N. Heme-protein vibrational couplings in cytochrome c provide a dynamic link that connects the heme-iron and the protein surface. Proc. Natl. Acad. Sci. USA 2012, 109, 8896–8900. [Google Scholar] [CrossRef]
- Debold, E.P. Recent insights into the relative timing of myosin’s powerstroke and release of phosphate. Cytoskelet. (Hoboken) 2021, 78, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Månsson, A.; Ušaj, M.; Moretto, L.; Matusovsky, O.; Velayuthan, L.P.; Friedman, R.; Rassier, D.E. New paradigms in actomyosin energy transduction: Critical evaluation of non-traditional models for orthophosphate release. Bioessays 2023, 45, e2300040. [Google Scholar] [CrossRef]
- Muretta, J.M.; Rohde, J.A.; Johnsrud, D.O.; Cornea, S.; Thomas, D.D. Direct real-time detection of the structural and biochemical events in the myosin power stroke. Proc. Natl. Acad. Sci. USA 2015, 112, 14272–14277. [Google Scholar] [CrossRef]
- Scott, B.; Marang, C.; Woodward, M.; Debold, E.P. Myosin’s powerstroke occurs prior to the release of phosphate from the active site. Cytoskelet. (Hoboken) 2021, 78, 185–198. [Google Scholar] [CrossRef]
- Moretto, L.; Ušaj, M.; Matusovsky, O.; Rassier, D.E.; Friedman, R.; Månsson, A. Multistep orthophosphate release tunes actomyosin energy transduction. Nat. Commun. 2022, 13, 4575. [Google Scholar] [CrossRef]
- Ma, W.; You, S.; Regnier, M.; McCammon, J.A. Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation. Proc. Natl. Acad. Sci. USA 2023, 120, e2215836120. [Google Scholar] [CrossRef]
- Kanematsu, Y.; Narita, A.; Oda, T.; Koike, R.; Ota, M.; Takano, Y.; Moritsugu, K.; Fujiwara, I.; Tanaka, K.; Komatsu, H.; et al. Structures and mechanisms of actin ATP hydrolysis. Proc. Natl. Acad. Sci. USA 2022, 119, e2122641119. [Google Scholar] [CrossRef]
- Durer, Z.A.; Kudryashov, D.S.; Sawaya, M.R.; Altenbach, C.; Hubbell, W.; Reisler, E. Structural states and dynamics of the D-loop in actin. Biophys. J. 2012, 103, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Betz, R.M.; Cerutti, D.S.; Cheatham Iii, T.E.; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Homeyer, N. AMBER 2016; University of California: San Francisco, CA, USA, 2016; p. 810. [Google Scholar]
- Dupradeau, F.Y.; Cezard, C.; Lelong, R.; Stanislawiak, E.; Pecher, J.; Delepine, J.C.; Cieplak, P.R.E.D.B. A database for RESP and ESP atomic charges, and force field libraries. Nucleic Acids Res. 2008, 36, D360–D367. [Google Scholar] [CrossRef] [PubMed]
- Dupradeau, F.Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P. The R.E.D. tools: Advances in RESP and ESP charge derivation and force field library building. Phys. Chem. Chem. Phys. 2010, 12, 7821–7839. [Google Scholar] [CrossRef]
- Martinez, L.; Andrade, R.; Birgin, E.G.; Martinez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, version 6.0; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613. [Google Scholar] [CrossRef]
- Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566. [Google Scholar] [CrossRef]
- Barducci, A.; Bussi, G.; Parrinello, M. Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Phys. Rev. Lett. 2008, 100, 020603. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, P.; Parrinello, M. A Time-Independent Free Energy Estimator for Metadynamics. J. Phys. Chem. B 2014, 119, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Roe, D.R.; Cheatham, T.E., 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Murillo, R.; Roe, D.R.; Cheatham, T.E. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta 2015, 1850, 1041–1058. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Murillo, R.; Roe, D.R.; Cheatham, T.E. On the absence of intrahelical DNA dynamics on the μs to ms timescale. Nat. Commun. 2014, 5, 5152. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, L.; Hache, F. Nanosecond T-jump experiment in poly(glutamic acid): A circular dichroism study. Int. J. Mol. Sci. 2012, 13, 2239–2248. [Google Scholar] [CrossRef] [PubMed]
- Kwak, K.; Zheng, J.; Cang, H.; Fayer, M.D. Ultrafast two-dimensional infrared vibrational echo chemical exchange experiments and theory. J. Phys. Chem..B 2006, 110, 19998–20013. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.-S.; Piletic, I.R.; Fayer, M.D. Polarization selective spectroscopy experiments: Methodology and pitfalls. JOSA B 2005, 22, 2009–2017. [Google Scholar] [CrossRef]
- Reppert, M.; Roy, A.R.; Tokmakoff, A. Isotope-enriched protein standards for computational amide I spectroscopy. J. Chem. Phys. 2015, 142, 125104. [Google Scholar] [CrossRef]
- Reppert, M.; Tokmakoff, A. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics. Annu. Rev. Phys. Chem. 2016, 67, 359–386. [Google Scholar] [CrossRef] [PubMed]
- la Cour Jansen, T.; Dijkstra, A.G.; Watson, T.M.; Hirst, J.D.; Knoester, J. Modeling the amide I bands of small peptides. J. Chem. Phys. 2006, 125, 44312. [Google Scholar] [CrossRef] [PubMed]
- la Cour Jansen, T.; Knoester, J. A transferable electrostatic map for solvation effects on amide I vibrations and its application to linear and two-dimensional spectroscopy. J. Chem. Phys. 2006, 124, 044502. [Google Scholar] [CrossRef] [PubMed]
- Reppert, M.; Tokmakoff, A. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy. J. Chem. Phys. 2015, 143, 061102. [Google Scholar] [CrossRef] [PubMed]
- Reppert, M. g_amide. Volume 1.0.0. 2017. Available online: https://github.com/mreppert/g_amide (accessed on 27 February 2019).
- Reppert, M.; Feng, C.J. g_spec. Volume 1.0.0. 2017. Available online: https://github.com/mreppert/g_spec (accessed on 11 February 2019).
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- Gullingsrud, J. CatDCD-Concatenate DCD Files; Theor Comput Biophys Group, University Illinois Urbana: Champaign, IL, USA, 2009. [Google Scholar]
- Choi, J.H.; Ham, S.; Cho, M. Local Amide I Mode Frequencies and Coupling Constants in Polypeptides. J. Phys. Chem. B 2003, 107, 9132–9138. [Google Scholar] [CrossRef]
- Hahn, S.; Ham, S.; Cho, M. Simulation studies of amide I IR absorption and two-dimensional IR spectra of beta hairpins in liquid water. J. Phys. Chem.B 2005, 109, 11789–11801. [Google Scholar] [CrossRef]
- Torii, H. Effects of intermolecular vibrational coupling and liquid dynamics on the polarized Raman and two-dimensional infrared spectral profiles of liquid N,N-dimethylformamide analyzed with a time-domain computational method. J. Phys. Chem. A 2006, 110, 4822–4832. [Google Scholar] [CrossRef]
Title 1 | Tw | 1660 cm−1 Diagonal | 1680 cm−1 Diagonal | 1660 cm−1/1680 cm−1 Cross-Peak | 1680 cm−1/1660 cm−1 Cross-Peak | Residual |
---|---|---|---|---|---|---|
cross-peaks | 0.2 | 17,049 | 3024 | 6095 | 2648 | 3133 |
no cross-peaks | 0.2 | 24,535 | 9657 | 3661 | ||
cross-peaks | 0.5 | 8324 | 4420 | 321 | 2645 | 1133 |
no cross-peaks | 0.5 | 8395 | 3299 | 1449 | ||
cross-peaks | 0.7 | 6010 | 3582 | 274 | 2094 | 693 |
no cross-peaks | 0.7 | 6674 | 2654 | 915 | ||
cross-peaks | 1 | 4532 | 2427 | 186 | 1443 | 355 |
no cross-peaks | 1 | 5049 | 1804 | 463 | ||
cross-peaks | 2 | 1489 | 666 | 30 | 736 | 69 |
no cross-peaks | 2 | 1662 | 850 | 87 | ||
cross-peaks | 3 | 712 | 373 | 0 | 0 | 25 |
no cross-peaks | 3 | 676 | 371 | 25 | ||
cross-peaks | 4 | 616 | 110 | 5 | 113 | 9 |
no cross-peaks | 4 | 1329 | 80 | 10 | ||
cross-peaks | 5 | 549 | 17 | 0 | 0 | 5 |
no cross-peaks | 5 | 987 | 9 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freedman, H.; Tuszynski, J.A. Study of the Myosin Relay Helix Peptide by Molecular Dynamics Simulations, Pump-Probe and 2D Infrared Spectroscopy. Int. J. Mol. Sci. 2024, 25, 6406. https://doi.org/10.3390/ijms25126406
Freedman H, Tuszynski JA. Study of the Myosin Relay Helix Peptide by Molecular Dynamics Simulations, Pump-Probe and 2D Infrared Spectroscopy. International Journal of Molecular Sciences. 2024; 25(12):6406. https://doi.org/10.3390/ijms25126406
Chicago/Turabian StyleFreedman, Holly, and Jack A. Tuszynski. 2024. "Study of the Myosin Relay Helix Peptide by Molecular Dynamics Simulations, Pump-Probe and 2D Infrared Spectroscopy" International Journal of Molecular Sciences 25, no. 12: 6406. https://doi.org/10.3390/ijms25126406
APA StyleFreedman, H., & Tuszynski, J. A. (2024). Study of the Myosin Relay Helix Peptide by Molecular Dynamics Simulations, Pump-Probe and 2D Infrared Spectroscopy. International Journal of Molecular Sciences, 25(12), 6406. https://doi.org/10.3390/ijms25126406