A Systematic Review of Genetics- and Molecular-Pathway-Based Machine Learning Models for Neurological Disorder Diagnosis
Abstract
:1. Introduction
- The significance of genetics- and molecular-dataset-based ML approaches for neurological and speech disorder detection.
- Presenting the features and limitations of genetics and molecular datasets.
- Challenges and opportunities in developing the neurological and speech disorder detection models.
2. Methodology
2.1. Research Questions
2.2. Search Strategies
2.3. Study Selection
3. Results
3.1. AD Detection Models
3.2. PD Detection Models
3.3. ASD Detection Models
3.4. Scz Detection Models
3.5. Other Neurological Disorders
3.6. Datasets
4. Discussions
Challenges and Opportunities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Zhao, Y.; Liao, X.; Shi, W.; Li, K.; Zou, Q.; Peng, S. Deep learning in omics: A survey and guideline. Brief. Funct. Genom. 2019, 18, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Patel, U.K.; Anwar, A.; Saleem, S.; Malik, P.; Rasul, B.; Patel, K.; Yao, R.; Seshadri, A.; Yousufuddin, M.; Arumaithurai, K. Artificial intelligence as an emerging technology in the current care of neurological disorders. J. Neurol. 2021, 268, 1623–1642. [Google Scholar] [CrossRef] [PubMed]
- Öznacar, B.; Alas, D.K. Deep learning and machine learning methods for patients with language and speech disorders. In Computational Intelligence and Deep Learning Methods for Neuro-Rehabilitation Applications; Academic Press: Cambridge, MA, USA, 2024; pp. 149–164. [Google Scholar]
- Yu, X.; Zhou, S.; Zou, H.; Wang, Q.; Liu, C.; Zang, M.; Liu, T. Survey of deep learning techniques for disease prediction based on omics data. Hum. Gene 2023, 35, 201140. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, G. Machine learning based toxicity prediction: From chemical structural description to transcriptome analysis. Int. J. Mol. Sci. 2018, 19, 2358. [Google Scholar] [CrossRef] [PubMed]
- Leung, M.K.K.; Delong, A.; Alipanahi, B.; Frey, B.J. Machine learning in genomic medicine: A review of computational problems and data sets. Proc. IEEE 2015, 104, 176–197. [Google Scholar] [CrossRef]
- Vatansever, S.; Schlessinger, A.; Wacker, D.; Kaniskan, H.Ü.; Jin, J.; Zhou, M.M.; Zhang, B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med. Res. Rev. 2021, 41, 1427–1473. [Google Scholar] [CrossRef] [PubMed]
- Chenausky, K.V.; Tager-Flusberg, H. The importance of deep speech phenotyping for neurodevelopmental and genetic disorders: A conceptual review. J. Neurodev. Disord. 2022, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Arif, M.; Song, X.; Uhlén, M.; Mardinoglu, A. Machine learning analysis reveals biomarkers for the detection of neurological diseases. Front. Mol. Neurosci. 2022, 15, 889728. [Google Scholar] [CrossRef] [PubMed]
- Kautzky, A.; Vanicek, T.; Philippe, C.; Kranz, G.S.; Wadsak, W.; Mitterhauser, M.; Hartmann, A.; Hahn, A.; Hacker, M.; Rujescu, D.; et al. Machine learning classification of ADHD and HC by multimodal serotonergic data. Transl. Psychiatry 2020, 10, 104. [Google Scholar] [CrossRef]
- Rowe, T.W.; Katzourou, I.K.; Stevenson-Hoare, J.O.; Bracher-Smith, M.R.; Ivanov, D.K.; Escott-Price, V. Machine learning for the life-time risk prediction of Alzheimer’s disease: A systematic review. Brain Commun. 2021, 3, fcab246. [Google Scholar] [CrossRef]
- Gaiteri, C.; Ding, Y.; French, B.; Tseng, G.C.; Sibille, E. Beyond modules and hubs: The potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav. 2014, 13, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, D.; Han, H. Manifold learning analysis for allele-skewed DNA modification SNPs for psychiatric disorders. IEEE Access 2020, 8, 33023–33038. [Google Scholar] [CrossRef]
- Bilal, M.; Raza, S.E.A.; Azam, A.; Graham, S.; Ilyas, M.; Cree, I.A.; Snead, D.; Minhas, F.; Rajpoot, N.M. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: A retrospective study. Lancet Digit. Health 2021, 3, e763–e772. [Google Scholar] [CrossRef] [PubMed]
- Maia, T.V.; Frank, M.J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 2011, 14, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Gupta, C.; Chandrashekar, P.; Jin, T.; He, C.; Khullar, S.; Chang, Q.; Wang, D. Bringing machine learning to research on intellectual and developmental disabilities: Taking inspiration from neurological diseases. J. Neurodev. Disord. 2022, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhang, B.; Wei, D.; Zhang, Z. Identification of methylated gene biomarkers in patients with Alzheimer’s disease based on machine learning. BioMed Res. Int. 2020, 2020, 8348147. [Google Scholar] [CrossRef]
- Perakakis, N.; Yazdani, A.; Karniadakis, G.E.; Mantzoros, C. Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. Metabolism 2018, 87, A1–A9. [Google Scholar] [CrossRef]
- Rauschert, S.; Raubenheimer, K.; Melton, P.E.; Huang, R.C. Machine learning and clinical epigenetics: A review of challenges for diagnosis and classification. Clin. Epigenet. 2020, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Joshi, I.; Bhrdwaj, A.; Khandelwal, R.; Pande, A.; Agarwal, A.; Srija, C.D.; Suresh, R.A.; Mohan, M.; Hazarika, L.; Thakur, G.; et al. Artificial intelligence, big data and machine learning approaches in genome-wide SNP-based prediction for precision medicine and drug discovery. In Big Data Analytics in Chemoinformatics and Bioinformatics; Elsevier: Amsterdam, The Netherlands, 2023; pp. 333–357. [Google Scholar]
- Wekesa, J.S.; Kimwele, M. A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment. Front. Genet. 2023, 14, 1199087. [Google Scholar] [CrossRef]
- Bracher-Smith, M.; Crawford, K.; Escott-Price, V. Machine learning for genetic prediction of psychiatric disorders: A systematic review. Mol. Psychiatry 2021, 26, 70–79. [Google Scholar] [CrossRef]
- Ahmed, H.; Alarabi, L.; El-Sappagh, S.; Soliman, H.; Elmogy, M. Genetic variations analysis for complex brain disease diagnosis using machine learning techniques: Opportunities and hurdles. PeerJ Comput. Sci. 2021, 7, e697. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sun, X.; Jiang, H.; Yu, S.; Robins, C.; Armstrong, M.J.; Li, R.; Mei, Z.; Shi, X.; Gerasimov, E.S.; et al. A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease. Nat. Commun. 2021, 12, 4472. [Google Scholar] [CrossRef] [PubMed]
- Mirabnahrazam, G.; Ma, D.; Lee, S.; Popuri, K.; Lee, H.; Cao, J.; Wang, L.; Galvin, J.E.; Beg, M.F.; Alzheimer’s Disease Neuroimaging Initiative. Machine learning based multimodal neuroimaging genomics dementia score for predicting future conversion to alzheimer’s disease. J. Alzheimer’s Dis. 2022, 87, 1345–1365. [Google Scholar] [CrossRef] [PubMed]
- Alatrany, A.; Hussain, A.; Mustafina, J.; Al-Jumeily, D. A novel hybrid machine learning approach using deep learning for the prediction of alzheimer disease using genome data. In Intelligent Computing Theories and Application: 17th International Conference, ICIC 2021, Shenzhen, China, August 12–15, 2021, Proceedings, Part III 17; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 253–266. [Google Scholar]
- Monk, B.; Rajkovic, A.; Petrus, S.; Rajkovic, A.; Gaasterland, T.; Malinow, R. A machine learning method to identify genetic variants potentially associated with Alzheimer’s disease. Front. Genet. 2021, 12, 647436. [Google Scholar] [CrossRef]
- Bi, X.A.; Hu, X.; Xie, Y.; Wu, H. A novel CERNNE approach for predicting Parkinson’s Disease-associated genes and brain regions based on multimodal imaging genetics data. Med. Image Anal. 2021, 67, 101830. [Google Scholar] [CrossRef]
- Pantaleo, E.; Monaco, A.; Amoroso, N.; Lombardi, A.; Bellantuono, L.; Urso, D.; Lo Giudice, C.; Picardi, E.; Tafuri, B.; Nigro, S.; et al. A machine learning approach to Parkinson’s disease blood transcriptomics. Genes 2022, 13, 727. [Google Scholar] [CrossRef]
- Dadu, A.; Satone, V.; Kaur, R.; Hashemi, S.H.; Leonard, H.; Iwaki, H.; Makarious, M.B.; Billingsley, K.J.; Bandres-Ciga, S.; Sargent, L.J.; et al. Identification and prediction of Parkinson’s disease subtypes and progression using machine learning in two cohorts. NPJ Park. Dis. 2022, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Mouches, P.; Yoon, E.; Rajashekar, D.; Ruskey, J.A.; Leveille, E.; Martens, K.; Kibreab, M.; Hammer, T.; Kathol, I.; et al. Investigating the relationship between the SNCA gene and cognitive abilities in idiopathic Parkinson’s disease using machine learning. Sci. Rep. 2021, 11, 4917. [Google Scholar] [CrossRef]
- Makarious, M.B.; Leonard, H.L.; Vitale, D.; Iwaki, H.; Sargent, L.; Dadu, A.; Violich, I.; Hutchins, E.; Saffo, D.; Bandres-Ciga, S.; et al. Multi-modality machine learning predicting Parkinson’s disease. NPJ Park. Dis. 2022, 8, 35. [Google Scholar] [CrossRef]
- Zhan, Y.; Wei, J.; Liang, J.; Xu, X.; He, R.; Robbins, T.W.; Wang, Z. Diagnostic classification for human autism and obsessive-compulsive disorder based on machine learning from a primate genetic model. Am. J. Psychiatry 2021, 178, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Taheri, M.; Omrani, M.D.; Daaee, A.; Mohammad-Rahimi, H.; Kazazi, H. Application of single-nucleotide polymorphisms in the diagnosis of autism spectrum disorders: A preliminary study with artificial neural networks. J. Mol. Neurosci. 2019, 68, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Engchuan, W.; Dhindsa, K.; Lionel, A.C.; Scherer, S.W.; Chan, J.H.; Merico, D. Performance of case-control rare copy number variation annotation in classification of autism. BMC Med. Genom. 2015, 8, S7. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Pulido, V.; Seoane, J.A.; Rabuñal, J.R.; Dorado, J.; Pazos, A.; Munteanu, C.R. Machine learning techniques for single nucleotide polymorphism—Disease classification models in schizophrenia. Molecules 2010, 15, 4875–4889. [Google Scholar] [CrossRef]
- Aguiar-Pulido, V.; Gestal, M.; Fernandez-Lozano, C.; Rivero, D.; Munteanu, C.R. Applied computational techniques on Schizophrenia using genetic mutations. Curr. Top. Med. Chem. 2013, 13, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, J.; Sui, J.; Pearlson, G.; Calhoun, V.D. A hybrid machine learning method for fusing fMRI and genetic data: Combining both improves classification of Schizophrenia. Front. Hum. Neurosci. 2010, 4, 192. [Google Scholar] [CrossRef]
- Vivian-Griffiths, T.; Baker, E.; Schmidt, K.M.; Bracher-Smith, M.; Walters, J.; Artemiou, A.; Holmans, P.; O’Donovan, M.C.; Owen, M.J.; Pocklington, A.; et al. Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2019, 180, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Trakadis, Y.J.; Sardaar, S.; Chen, A.; Fulginiti, V.; Krishnan, A. Machine learning in schizophrenia genomics, a case-control study using 5090 exomes. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2019, 180, 103–112. [Google Scholar] [CrossRef]
- Pirooznia, M.; Seifuddin, F.; Judy, J.; Mahon, P.B.; Potash, J.B.; Zandi, P.P.; Bipolar Genome Study (BiGS) Consortium. Data mining approaches for genome-wide association of mood disorders. Psychiatr. Genet. 2012, 22, 55–61. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, Z.; Keating, B.J.; Genetic Consortium for Anorexia Nervosa; Wellcome Trust Case Control Consortium 3; Price Foundation Collaborative Group; Hakonarson, H. Machine learning derived risk prediction of anorexia nervosa. BMC Med. Genom. 2016, 9, 4. [Google Scholar] [CrossRef]
- Sardaar, S.; Qi, B.; Dionne-Laporte, A.; Rouleau, G.A.; Rabbany, R.; Trakadis, Y.J. Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia. BMC Psychiatry 2020, 20, 92. [Google Scholar] [CrossRef] [PubMed]
- Acikel, C.; Son, Y.A.; Celik, C.; Gul, H. Evaluation of potential novel variations and their interactions related to bipolar disorders: Analysis of genome-wide association study data. Neuropsychiatr. Dis. Treat. 2016, 12, 2997–3004. [Google Scholar] [CrossRef] [PubMed]
- Bahado-Singh, R.O.; Vishweswaraiah, S.; Aydas, B.; Mishra, N.K.; Guda, C.; Radhakrishna, U. Deep learning/artificial intelligence and blood-based DNA epigenomic prediction of cerebral palsy. Int. J. Mol. Sci. 2019, 20, 2075. [Google Scholar] [CrossRef] [PubMed]
- Singh, R. A Gene-Based Algorithm for Identifying Factors That May Affect a Speaker’s Voice. Entropy 2023, 25, 897. [Google Scholar] [CrossRef]
- Magen, I.; Yacovzada, N.S.; Warren, J.D.; Heller, C.; Swift, I.; Bobeva, Y. miRNA biomarkers for diagnosis of ALS and FTD, developed by a nonlinear machine learning approach. medRxiv 2021. [Google Scholar] [CrossRef]
Sources | Terms |
---|---|
Scopus | Neurological disorder |
IEEE Xplore | Speech disorder |
PubMed | Molecular data |
ACM digital library | Genetics |
Genome data | |
Machine learning | |
Neurodegenerative disease | |
(Neurological disorder) AND (Genetics OR Molecular OR Genome data) AND (Speech disorder) AND (Machine Learning) AND (LIMIT-To (Language, “English”)) AND (LIMIT-To (SUBJECT AREA, “computer science”)) |
Inclusion | Exclusion |
---|---|
|
|
Authors | Methods | Data Type | Sample Size (Number of Individuals) | Extracted Features | Performance | Merits | Demerits |
---|---|---|---|---|---|---|---|
Huang et al. [25] | SVM and RF | DNA | 717 | 334,465 autosamal CPG | AUROC = 0.962 AUPRC = 0.858 | Feature ranking and adaptive hyperparameter search. | Findings may not be generalized to other neocortical regions. |
Mirabnahrazam et al. [26] | Feature selection and ensemble learning | MRI and genetic | 757 | 521,014 SNPs | Accuracy = 0.857 | Sub-bagging approach-based training to overcome class imbalances. | Small sample size. |
Alatrany et al. [27] | RF classifier | DNA | 787 | 412,128 SNPs | AUROC = 0.90 using CNN and 0.93 using multi-layer perceptron | Multi-modality approach and feature variance reduction. | Trained in small dataset. Reducing feature set may lead loss of key data. |
Monk et al. [28] | NN model | DNA | 11,000 | 612,536 SNPs | Accuracy = 82.6% | Feature matrix transformation. | High computation cost. |
Authors | Methods | Data Type | Sample Size (Number of Individuals) | Extracted Features | Performance | Merits | Demerits |
---|---|---|---|---|---|---|---|
Bi et al. [29] | Ensemble learning | MRI and DNA | 90 | 23,595 SNPs | Accuracy = 88.57% | Multi-modality approach, feature fusion, and multi-task analysis. | Lack of generalization. The model may overfit the specific dataset. |
Pantaleo et al. [30] | RF and XGBoost | Blood transcriptome | 550 | 493 candidate genes | AUROC = 72% | Differential expression analysis-based biomarker extraction. | Specialized equipment and expertise are required for transcriptomic data analysis. |
Dadu et al. [31] | Supervised and unsupervised learning | OMICS | 440 | 64 PD bio-markers | AUROC = 0.92 CI = 95% | Biomarker-based prediction and multi-modality data analysis. | Lack of model interpretability. |
Ramezai et al. [32] | SVM | MRI and blood transcriptome | 101 | 11 PD bio-markers | Regression (R2) = 0.54 | Multi-modality approach and hybrid feature selection technique. | Limited dataset and poor generalization. |
Markarious et al. [33] | Genome-based data analysis model | Genetics | 750 | 100 PD bio-markers | AUROC = 89.72 | Low-cost model and ExtraTrees-based feature selection. | Lack of diversity in sample series. |
Authors | Methods | Data Type | Sample Size (Number of Individuals) | Extracted Features | Performance | Merits | Demerits |
---|---|---|---|---|---|---|---|
Zhan et al. [34] | Logistic regression | Blood transcriptome and MRI | 336 | 94 ASD region of interest | Accuracy = 89.14% CI = 95% | LASSO-based feature selection and biomarker extraction based on core regions associated with ASD | The stepwise linear regression may not capture the non-linear relationships in neuroimaging data. |
Ghafouri-Fard et al. [35] | ANN | DNA | 942 | 15 SNPs | Accuracy = 93.67% AUROC = 80.59 | Model interpretability using local interpretable model-agnostic explanations. | Risk of model overfitting in novel data and lack of longitudinal data. |
Engchuan et al. [36] | Conditional Inference Forest | Genetics | 4234 | 18,203 Copy number variation | AUROC = 0.533 | Curated neurally relevant annotations-based predictive model and focus on rare CNVs. | Lack of generalizability and model performance is limited to CNVs detection technology. |
Authors | Methods | Data Type | Sample Size (Number of Individuals) | Extracted Features | Performance | Merits | Demerits |
---|---|---|---|---|---|---|---|
Aguiar-Pulido et al. [37] | SVM, NB, and Adaboost | DNA | 614 | 48 SNPs | Accuracy: SVM = 94.2% NB = 90.4% Adaboost = 92.9% | Gene-specific analysis and linear NN-based classification. | Absence of external validation using independent datasets. |
Aguiar-Pulido et al. [38] | SVM and NB | DNA | 712 | 79 SNPs | Accuracy: SVM = 94.8% NB = 93.2% | Quantiative genotype and disease-relationship-based Scz classification. | Lack of model interpretability. |
Yang et al. [39] | SVM | MRI and genetics | 40 | 26 Scz bio-markers | Accuracy = 0.87 | Multi-modality approach and feature fusion technique. | High computation costs and lack of generalization. |
Vivian-Griffiths et al. [40] | SVM with non-linear and linear kernels | Genetics | 11,853 | 4998 SNPs | AUROC = 0.662 | Detection of non-linear genetic effects and interactions. | Non-linear SVM-based outcomes are complex and less interpretable. |
Trakadi et al. [41] | Extreme gradient boosting with regularization | DNA | 5090 | 112 SNPs | Accuracy = 85.7% AUROC = 0.95 | Hybrid feature selection approach. | Limited scope of genetic variants. |
Authors | Methods | Data Type | Sample Size (Number of Individuals) | Extracted Features | Performance | Merits | Demerits |
---|---|---|---|---|---|---|---|
Pirooznia et al. [42] | SVM, RF, RBF, and logistic regression | DNA | 3625 | 1186 SNPs | AUROC: SVM = 0.515 RF = 0.521 RBF = 0.545 | Polygenic score approach and extraction of potential genetic mechanisms. | The complexities of genetic effects may not be fully captured. |
Guo et al. [43] | Logistic regression and SVM | Genetics | 13,206 | 317,481 SNPs | AUROC = 0.693 | LASSO-regualized logistic-regression-based classification. | The sensitiveness of LASSO regularization may lead to instability in the selected features. |
Sardar et al. [44] | ML algorithm | Genetics | 598 | 90 bio-markers | Accuracy = 86–88% | Focussing on rare variants and regularized-gradient-boosting-method-based disease classificaiton. | Limited dataset and absence of feature interpretation. |
Acikel et al. [45] | RF, NB, and K-NN | Genetics | 1767 | 1214 SNPs | Accuracy: RF = 0.734 NB = 0.702 K-NN = 0.733 | Multi-factor dimensionality reduction and non-parametric model for SNP analysis. | Absence of model interpretability and high computational costs. |
Bahado Singh et al. [46] | AI techniques | Blood transcriptome | 44 | 230 differently-methylated CPG | AUROC ≥ 0.75 Sensitivity = 95.00% Specificity = 94.4% | Bio-informative and statistical anlaysis. | High computational costs and requirement of extenstive training. |
Rita Singh [47] | Breadth-first-based path-finding algorithm | Genetics | 4319 | 26 genes | Chainlink genes: Mean = 47.3 Median = 34.5 Chainlink connectivity: Mean = 704.3 Median = 514.7 | Biomarker-extraction-based genomic data | The study outcomes are limited to a specific gene variant. |
Magen et al. [48] | ML approaches | OMICS | 219 | 132 miRNA predictors | ALS diagnosis: AUROC = 0.85 FTD diagnosis: AUROC = 0.70 | miRNA biomarker extraction using a non-linear prediction model. | Lack of model interpretation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljarallah, N.A.; Dutta, A.K.; Sait, A.R.W. A Systematic Review of Genetics- and Molecular-Pathway-Based Machine Learning Models for Neurological Disorder Diagnosis. Int. J. Mol. Sci. 2024, 25, 6422. https://doi.org/10.3390/ijms25126422
Aljarallah NA, Dutta AK, Sait ARW. A Systematic Review of Genetics- and Molecular-Pathway-Based Machine Learning Models for Neurological Disorder Diagnosis. International Journal of Molecular Sciences. 2024; 25(12):6422. https://doi.org/10.3390/ijms25126422
Chicago/Turabian StyleAljarallah, Nasser Ali, Ashit Kumar Dutta, and Abdul Rahaman Wahab Sait. 2024. "A Systematic Review of Genetics- and Molecular-Pathway-Based Machine Learning Models for Neurological Disorder Diagnosis" International Journal of Molecular Sciences 25, no. 12: 6422. https://doi.org/10.3390/ijms25126422
APA StyleAljarallah, N. A., Dutta, A. K., & Sait, A. R. W. (2024). A Systematic Review of Genetics- and Molecular-Pathway-Based Machine Learning Models for Neurological Disorder Diagnosis. International Journal of Molecular Sciences, 25(12), 6422. https://doi.org/10.3390/ijms25126422