Combined Strategies for Improving Aflatoxin B1 Degradation Ability and Yield of a Bacillus licheniformis CotA-Laccase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design, Expression, and Characterization of the Mutants
2.2. Aflatoxin B1 Degradation
2.3. Secretory Expression of CotA-Laccases in Pichia Pastoris GS115 with the Optimized Vector
3. Materials and Methods
3.1. Materials
3.2. Bioinformatics Analysis
3.3. Site-Directed Mutagenesis
3.4. Expression and Purification in Escherichia coli BL21
3.5. Enzyme Assay and Characterization
3.6. Aflatoxin B1 Oxidase Properties
3.7. Codon Optimization and Secretory Expression of CotA-Laccases in P. pastoris GS115
3.8. Catalytic Activity of P. pastoris GS115 Fermentation Supernatant to ABTS and Aflatoxin B1
3.9. Detection of Aflatoxin B1 by HPLC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gizachew, D.; Chang, C.H.; Szonyi, B.; De La Torre, S.; Ting, W.E. Aflatoxin B1 (AFB1) production by Aspergillus flavus and Aspergillus parasiticus on ground Nyjer seeds: The effect of water activity and temperature. Int. J. Food Microbiol. 2019, 296, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Lor, E.; Zuccato, E.; Hernandez, F.; Castiglioni, S. Wastewater-based epidemiology for tracking human exposure to mycotoxins. J. Hazard. Mater. 2020, 382, 121108. [Google Scholar] [CrossRef] [PubMed]
- Vijayanandraj, S.; Brinda, R.; Kannan, K.; Adhithya, R.; Vinothini, S.; Senthil, K.; Chinta, R.; Paranidharan, V.; Velazhahan, R. Detoxification of aflatoxin B1 by an aqueous extract from leaves of Adhatoda vasica Nees. Med. Extr. Microbiol. 2014, 169, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Adedara, I.A.; Atanda, O.E.; Monteiro, C.S.; Rosemberg, D.B.; Aschner, M.; Farombi, E.O.; Rocha, J.B.T.; Furian, A.F.; Emanuelli, T. Cellular and molecular mechanisms of aflatoxin B1-mediated neurotoxicity: The therapeutic role of natural bioactive compounds. Environ. Res. 2020, 237, 116869. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Fan, Y.; Zhao, L. Review on biological degradation of mycotoxins. Anim. Nutr. 2016, 2, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Alberts, J.F.; Gelderblom, W.C.A.; Botha, A.; van Zyl, W.H. Degradation of aflatoxin B1 by fungal laccase enzymes. Int. J. Food Microbiol. 2009, 135, 47–52. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Zucca, P.; Liuzzi, V.C.; Quintieri, L.; Cimmarusti, M.T.; Monaci, L.; Haidukowski, M.; Logrieco, A.F.; Sanjust, E.; et al. Aflatoxin B1 and M1 degradation by Lac2 from Pleurotus pulmonarius and redox mediators. Toxins 2016, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Qin, X.; Tang, Y.; Ma, Q.; Zhang, J.; Zhao, L. CotA laccase, a novel aflatoxin oxidase from Bacillus licheniformis, transforms aflatoxin B1 to aflatoxin Q1 and epi-aflatoxin Q1. Food Chem. 2020, 325, 126877. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, T.V.; Yang, B.L.; Tian, X.Y.; Yang, S.; Gao, Y.; Ma, J.N.; Wang, G.; Si, P.D.; Li, R.Y.; Xing, F.G. Simultaneous degradation of aflatoxin B1 and zearalenone by Porin and Peroxiredoxin enzymes cloned from Acinetobacter nosocomialis Y1. J. Hazard. Mater. 2023, 459, 132105. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Cimmarusti, M.T.; Mirabelli, V.; Haidukowski, M.; Logrieco, A.F.; Caliandro, R.; Mule, G. In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators. Food Control 2018, 90, 4401–4406. [Google Scholar] [CrossRef]
- Hsieh, D.P.H.; Salhab, A.S.; Wong, J.J.; Yang, S.L. Toxicity of aflatoxin Q1 as evaluated with chicken embryo and bacterial auxotrophs. Toxicol. Appl. Pharm. 1974, 30, 237–242. [Google Scholar] [CrossRef]
- Raney, K.D.; Shimada, T.; Kim, D.H.; Groopman, J.D.; Harris, T.M.; Guengerich, F.P. Oxidation of aflatoxins and sterigmatocystin by human liver-microsomes: Significance of aflatoxin Q1 as a detoxication product of aflatoxin B1. Chem. Res. Toxicol. 1992, 5, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, F.J.; Zhao, M. Enhanced catalytic efficiency of CotA-laccase by DNA shuffling. Bioengineered 2019, 10, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Tan, J.; Xu, Z.B.; Huang, J.; Tian, Y.; Chen, B.; Wu, Y.D.; Tong, Y.; Zhu, Y.S. Computational design of enhanced detoxification activity of a zearalenone lactonase from Clonostachys rosea in acidic medium. RSC Adv. 2019, 9, 31284–31295. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Niu, J.F.; Zhu, H.; Chi, H.B.; Lu, Z.X.; Lu, F.X.; Zhu, P. Engineering substrate specificity of quinone-dependent dehydrogenases for efficient oxidation of deoxynivalenol to 3-keto-deoxynivalenol. Int. J. Biol. Macromol. 2024, 264, 130484. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.R.; Guo, Y.P.; Liu, L.M.; Tang, Y.; Wang, Y.N.; Ma, Q.G.; Zhao, L.H. Improvement of aflatoxin B1 degradation ability by Bacillus licheniformis CotA-laccase Q441A mutant. Heliyon 2023, 9, e22388. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, Q.; Zhou, W.; Xie, Z.; Cai, Y.J.; Liao, X.R.; Guan, Z.B. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis. Appl. Microbiol. Biot. 2017, 101, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.Z.; Wang, H.R.; Wang, Y.J.; Xia, J.; Ma, H.; Cai, Y.J.; Liao, X.R.; Guan, Z.B. Enhancement in catalytic activity of CotA-laccase from Bacillus pumilus W3 via site-directed mutagenesis. J. Biosci. Bioeng. 2020, 129, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.D.; Wang, X.Y.; Zhang, W.L.; Wang, M.; Zhang, J.H.; Wang, T.Y. Construction of an expression vector mediated by the dual promoter for prokaryotic and mammalian cell expression system. Mol. Biol. Rep. 2020, 47, 5185–5190. [Google Scholar] [CrossRef]
- Karbalaei, M.; Rezaee, S.A.; Farsiani, H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 2020, 235, 5867–5881. [Google Scholar] [CrossRef]
- Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 2014, 98, 5301–5317. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Lei, L.; Feng, F.J. Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris. Electron. J. Biotechnol. 2017, 28, 7–13. [Google Scholar] [CrossRef]
- Xu, K.Z.; Ma, H.; Wang, Y.J.; Cai, Y.J.; Liao, X.R.; Guan, Z.B. Extracellular expression of mutant CotA-laccase SF in Escherichia coli and its degradation of malachite green. Ecotoxicol. Environ. Saf. 2020, 193, 110335. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Okuno, T.; Moriyama, S.; Muguruma, M.; Ohta, K. Acidophilic xylanase from Aureobasidium pullulans: Efficient expression and secretion in Pichia pastoris and mutational analysis. J. Biosci. Bioeng. 2004, 98, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Lin-Cereghino, G.P.; Stark, C.M.; Kim, D.; Chang, J.; Shaheen, N.; Poerwanto, H.; Agari, K.; Mous, P.; Low, L.K.; Tran, N.; et al. The effect of α-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris. Gene 2013, 519, 3311–3317. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, T.; Liu, Z.C.; Feng, H.; Wang, G.G. Activity enhancement of CotA laccase by hydrophilic engineering, histidine tag optimization and static culture. Protein Eng. Des. Sel. 2018, 31, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Koschorreck, K.; Schmid, R.D.; Urlacher, V.B. Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis. BMC Biotechnol. 2009, 9, 12. [Google Scholar] [CrossRef]
- Yan, N.; Ma, H.; Yang, C.X.; Liao, X.R.; Guan, Z.B. Improving the decolorization activity of Bacillus pumilus W3 CotA-laccase to Congo Red by rational modification. Enzyme Microb. Technol. 2022, 155, 109977. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Lee, F.S.; Farinas, E.T. Laboratory evolution of laccase for substrate specificity. J. Mol. Catal. B-Enzym. 2010, 62, 230–234. [Google Scholar] [CrossRef]
- Mollania, N.; Khajeh, K.; Ranjbar, B.; Hosseinkhani, S. Enhancement of a bacterial laccase thermostability through directed mutagenesis of a surface loop. Enzyme Microb. Technol. 2011, 49, 446–452. [Google Scholar] [CrossRef]
- Selle, P.H.; Liu, S.Y.; Cai, J.; Cowieson, A.J. Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly ground, sorghum-based broiler diets: Influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility. Anim. Prod. Sci. 2013, 53, 378–387. [Google Scholar] [CrossRef]
- Lundblad, K.K.; Hancock, J.D.; Behnke, K.C.; McKinney, L.J.; Alavi, S.; Prestlokken, E.; Sorensen, M. Ileal digestibility of crude protein, amino acids, dry matter and phosphorous in pigs fed diets steam conditioned at low and high temperature, expander conditioned or extruder processed. Anim. Feed Sci. Technol. 2012, 172, 237–241. [Google Scholar] [CrossRef]
- Sun, F.; Yu, D.Z.; Zhou, H.Y.; Lin, H.K.; Yan, Z.; Wu, A.B. CotA laccase from Bacillus licheniformis ZOM-1 effectively degrades zearalenone, aflatoxin B1 and alternariol. Food Control 2023, 145, 109472. [Google Scholar] [CrossRef]
- Hamidifard, M.; Khalaji, S.; Hedayati, M.; Sharifabadi, H.R. Use of condensed fermented corn extractives (liquid steep liquor) as a potential alternative for organic acids and probiotics in broiler ration. Ital. J. Anim. Sci. 2023, 22, 418–429. [Google Scholar] [CrossRef]
- Liu, Y.R.; Du, H.S.; Wu, Z.Z.; Wang, C.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L. Branched-chain volatile fatty acids and folic acid accelerated the growth of Holstein dairy calves by stimulating nutrient digestion and rumen metabolism. Animal 2020, 14, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Risley, C.R.; Kornegay, E.T.; Lindemann, M.D.; Wood, C.M.; Eigel, W.N. Effect of feeding organic acids on selected intestinal content measurements at varying times postweaning in pigs. J. Anim. Sci. 1992, 70, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; Wang, Y.A.; Guo, Y.P.; Qiao, Y.Y.; Ma, Q.G.; Ji, C.; Zhao, L.H. Degradation of zearalenone and aflatoxin B1 by Lac2 from Pleurotus pulmonarius in the presence of mediators. Toxicon 2021, 201, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.Z.; Lu, S.H.; Xiao, W.; Zheng, Z.; Jiang, S.W.; Jiang, S.T.; Jiang, S.Y.; Cheng, J.S.; Zhang, D.F. Activity enhancement of Trametes versicolor aflatoxin B1-degrading enzyme (TV-AFB1D) by molecular docking and site-directed mutagenesis techniques. Food Bioprod. Process 2021, 129, 168–175. [Google Scholar] [CrossRef]
- Kjeldsen, T.; Pettersson, A.F.; Hach, M. Secretory expression and characterization of insulin in Pichia pastoris. Biotechnol. Appl. Biochem. 1999, 29, 79–86. [Google Scholar] [CrossRef]
Mutants Constructed in This Study | Amino Acid Changes in the Reference | Source of CotA-Laccases | Improvements of Mutants in the Reference |
---|---|---|---|
E186A | E188A [30] | Bacillus sp. | kcat/Km increased from 5.0 to 5.1 s−1 µg−1 mL using SGZ 1 as the substrate; thermostability improved |
E186R | E188R [30] | Bacillus sp. | kcat/Km increased from 5.0 to 20.0 s−1 µg−1 mL using SGZ as the substrate; thermostability improved |
E186K | E188K [30] | Bacillus sp. | Thermostability improved |
F205Y | F207Y [26] | B. subtilis | kcat/Km increased from 0.26 to 0.29 s−1 µM−1 using ABTS 2 as the substrate |
R208G | S208G [18] | B. pumilus | kcat/Km increased from 167.05 to 223.60 s−1 mM−1 using ABTS as the substrate; dye decolorization rate increased |
K315N | K316N [27] | B. licheniformis | Dye decolorization rate increased; protein yield improved |
G322S | G323S [28] | B. pumilus | kcat/Km increased from 154.36 to 177.44 s−1 mM−1 using ABTS as the substrate; dye decolorization rate increased |
A376I | T377I [28] | B. pumilus | kcat/Km increased from 154.36 to 194.68 s−1 mM−1 using ABTS as the substrate; dye decolorization rate increased |
L385W | L386W [29] | B. subtilis | Specificity for ABTS increased; thermostability improved |
I417G | T418G [28] | B. pumilus | kcat/Km increased from 154.36 to 203.35 s−1 mM−1 using ABTS as the substrate; dye decolorization rate increased |
P454S | P455S [26] | B. subtilis | kcat/Km increased from 0.26 to 0.83 s−1 µM−1 using ABTS as the substrate |
D500G | D500G [27] | B. licheniformis | Dye decolorization rate increased; protein yield improved |
CotA-Laccase | Km (mM) | kcat (s−1) | kcat/Km (s−1 mM−1) |
---|---|---|---|
WT | 0.191 | 0.072 | 0.377 |
E186A | 0.109 | 0.073 | 0.670 |
E186R | 0.177 | 0.211 | 1.192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, L.; Huang, Z.; Guo, Y.; Tang, Y.; Wang, Y.; Ma, Q.; Zhao, L. Combined Strategies for Improving Aflatoxin B1 Degradation Ability and Yield of a Bacillus licheniformis CotA-Laccase. Int. J. Mol. Sci. 2024, 25, 6455. https://doi.org/10.3390/ijms25126455
Liu Y, Liu L, Huang Z, Guo Y, Tang Y, Wang Y, Ma Q, Zhao L. Combined Strategies for Improving Aflatoxin B1 Degradation Ability and Yield of a Bacillus licheniformis CotA-Laccase. International Journal of Molecular Sciences. 2024; 25(12):6455. https://doi.org/10.3390/ijms25126455
Chicago/Turabian StyleLiu, Yanrong, Limeng Liu, Zhenqian Huang, Yongpeng Guo, Yu Tang, Yanan Wang, Qiugang Ma, and Lihong Zhao. 2024. "Combined Strategies for Improving Aflatoxin B1 Degradation Ability and Yield of a Bacillus licheniformis CotA-Laccase" International Journal of Molecular Sciences 25, no. 12: 6455. https://doi.org/10.3390/ijms25126455
APA StyleLiu, Y., Liu, L., Huang, Z., Guo, Y., Tang, Y., Wang, Y., Ma, Q., & Zhao, L. (2024). Combined Strategies for Improving Aflatoxin B1 Degradation Ability and Yield of a Bacillus licheniformis CotA-Laccase. International Journal of Molecular Sciences, 25(12), 6455. https://doi.org/10.3390/ijms25126455