Human Lung Mast Cells as a Possible Reservoir for Coronavirus: A Novel Unrecognized Mechanism for SARS-CoV-2 Immune-Mediated Pathology
Abstract
:1. Introduction
2. Results
2.1. Human Lung MCs as a Source of Renin
2.2. Upregulation of ACE2 and TMPRSS in MCs following FcεRI and IFN Challenges
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukai, K.; Tsai, M.; Saito, H.; Galli, S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 2018, 282, 121–150. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, A.L.; Zhou, Z.; Kepley, C.L. A steroid-mimicking nanomaterial that mediates inhibition of human lung mast cell responses. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Selvakumar, G.P.; Ahmed, M.E.; Raikwar, S.P.; Thangavel, R.; Khan, A.; Zaheer, S.A.; Iyer, S.S.; Burton, C.; James, D.; et al. COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neuroscientist 2020, 26, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Malone, R.W.; Tisdall, P.; Fremont-Smith, P.; Liu, Y.; Huang, X.-P.; White, K.M.; Miorin, L.; Moreno, E.; Alon, A.; Delaforge, E.; et al. COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. Front. Pharmacol. 2021, 12, 633680. [Google Scholar] [CrossRef] [PubMed]
- Mascitti, H.; Mascitti, H.; Bonsang, B.; Bonsang, B.; Dinh, A.; Dinh, A.; Assan, F.; Assan, F.; Perronne, V.; Perronne, V.; et al. Clinical Cutaneous Features of Patients Infected with SARS-CoV-2 Hospitalized for Pneumonia: A Cross-Sectional Study. Open Forum Infect. Dis. 2020, 7, ofaa394. [Google Scholar] [CrossRef] [PubMed]
- Junior, J.d.S.M.; Miggiolaro, A.F.R.d.S.; Nagashima, S.; de Paula, C.B.V.; Baena, C.P.; Scharfstein, J.; de Noronha, L. Mast Cells in Alveolar Septa of COVID-19 Patients: A Pathogenic Pathway That May Link Interstitial Edema to Immunothrombosis. Front. Immunol. 2020, 11, 574862. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.B.; Huff, T.F. Mast Cells. In The Lung: Scientific Foundations; Raven Press: New York, NY, USA, 1991; Volume 1, pp. 601–616. [Google Scholar]
- Silva-Aguiar, R.P.; Peruchetti, D.B.; Rocco, P.R.M.; Schmaier, A.H.; e Silva, P.M.R.; Martins, M.A.; Carvalho, V.F.; Pinheiro, A.A.S.; Caruso-Neves, C. Role of the renin-angiotensin system in the development of severe COVID-19 in hypertensive patients. Am. J. Physiol. Cell. Mol. Physiol. 2020, 319, L596–L602. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Sriram, K.; Loomba, R.; Insel, P.A. Targeting the renin−angiotensin signaling pathway in COVID-19: Unanswered questions, opportunities, and challenges. Proc. Natl. Acad. Sci. USA 2020, 117, 29274–29282. [Google Scholar] [CrossRef] [PubMed]
- Gul, R.; Kim, U.-H.; Alfadda, A.A. Renin-angiotensin system at the interface of COVID-19 infection. Eur. J. Pharmacol. 2021, 890, 173656. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, F.; Rutigliano, G.; Sestito, S.; Bandini, L.; Storti, B.; Bizzarri, R.; Zucchi, R. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Front. Mol. Biosci. 2020, 7, 588618. [Google Scholar] [CrossRef]
- Reid, A.C.; Silver, R.B.; Levi, R. Renin: At the heart of the mast cell. Immunol. Rev. 2007, 217, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Silver, R.B.; Reid, A.C.; Mackins, C.J.; Askwith, T.; Schaefer, U.; Herzlinger, D.; Levi, R. Mast Cells: A Unique Source of Renin. Proc. Natl. Acad. Sci. USA 2004, 101, 13607–13612. [Google Scholar] [CrossRef]
- Urata, H.; Kinoshita, A.; Misono, K.S.; Bumpus, F.M.; Husain, A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J. Biol. Chem. 1990, 265, 22348–22357. [Google Scholar] [CrossRef]
- Irani, A.-M.A.; Huang, C.; Xia, H.-Z.; Kepley, C.; Nafie, A.; Fouda, E.D.; Craig, S.; Zweiman, B.; Schwartz, L.B. Immunohistochemical detection of human basophils in late-phase skin reactions. J. Allergy Clin. Immunol. 1998, 101, 354–362. [Google Scholar] [CrossRef]
- Veerappan, A.; Reid, A.C.; Estephan, R.; O’Connor, N.; Thadani-Mulero, M.; Salazar-Rodriguez, M.; Levi, R.; Silver, R.B. Mast cell renin and a local renin–angiotensin system in the airway: Role in bronchoconstriction. Proc. Natl. Acad. Sci. USA 2008, 105, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Norton, S.K.; Dellinger, A.; Zhou, Z.; Lenk, R.; MacFarland, D.; Vonakis, B.; Conrad, D.; Kepley, C.L. A New Class of Human Mast Cell and Peripheral Blood Basophil Stabilizers that Differentially Control Allergic Mediator Release. Clin. Transl. Sci. 2010, 3, 158–169. [Google Scholar] [CrossRef]
- Lin, F.; Shen, K. Type I interferon: From innate response to treatment for COVID-19. Pediatr. Investig. 2020, 4, 275–280. [Google Scholar] [CrossRef]
- Yanagida, M.; Fukamachi, H.; Takei, M.; Hagiwara, T.; Uzumaki, H.; Tokiwa, T.; Saito, H.; Iikura, Y.; Nakahata, T. Interferon-γ promotes the survival and FcεRI-mediated histamine release in cultured human mast cells. Immunology 1996, 89, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, H.R.; Adhikari, S.; Pulgarin, C.; Troxel, A.B.; Iturrate, E.; Johnson, S.B.; Hausvater, A.; Newman, J.D.; Berger, J.S.; Bangalore, S.; et al. Renin–Angiotensin–Aldosterone System Inhibitors and Risk of Covid-19. N. Engl. J. Med. 2020, 382, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Eger, K.; Bel, E.H. Asthma and COVID-19: Do we finally have answers? Eur. Respir. J. 2021, 57, 2004451. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Enríquez, E.; Hallgren, J. Mast Cells and Their Progenitors in Allergic Asthma. Front. Immunol. 2019, 10, 821. [Google Scholar] [CrossRef]
- Zmora, P.; Hoffmann, M.; Kollmus, H.; Moldenhauer, A.-S.; Danov, O.; Braun, A.; Winkler, M.; Schughart, K.; Pöhlmann, S. TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1. J. Biol. Chem. 2018, 293, 13863–13873. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Suzuki, Y.; Takemasa, E.; Watanabe, R.; Mogi, M. Mast cells promote viral entry of SARS-CoV-2 via formation of chymase/spike protein complex. Eur. J. Pharmacol. 2022, 930, 175169. [Google Scholar] [CrossRef]
- Miyazaki, M.; Takai, S.; Jin, D.; Muramatsu, M. Pathological roles of angiotensin II produced by mast cell chymase and the effects of chymase inhibition in animal models. Pharmacol. Ther. 2006, 112, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Tsilioni, I.; Theoharides, T.C. Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of Chymase, Tryptase, and IL-1β from Human Mast Cells, Augmented by IL-33. Int. J. Mol. Sci. 2023, 24, 9487. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.Y.J.; Anderson, D.E.; Rathore, A.P.; O’neill, A.; Mantri, C.K.; Saron, W.A.; Lee, C.Q.; Cui, C.W.; Kang, A.E.; Foo, R.; et al. Mast cell activation in lungs during SARS-CoV-2 infection associated with lung pathology and severe COVID-19. J. Clin. Investig. 2023, 133, e149834. [Google Scholar] [CrossRef]
- Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med. 2008, 264, 224–236. [Google Scholar] [CrossRef]
- Li, M.; Liu, K.; Michalicek, J.; Angus, J.A.; Hunt, J.E.; Dell’italia, L.J.; Feneley, M.P.; Graham, R.M.; Husain, A. Involvement of chymase-mediated angiotensin II generation in blood pressure regulation. J. Clin. Investig. 2004, 114, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Kepley, C.L.; Cohen, N. Evidence for human mast cell nonreleaser phenotype. J. Allergy Clin. Immunol. 2003, 112, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, A.; Brooks, D.B.; Plunkett, B.; Vonakis, B.M.; Sandros, M.; Zhou, Z.; Kepley, C.L. Effects of Novel Nanomaterials on Allergic Mediator Release from Human Mast Cells and Basophils through Non-Ige Mediated Pathways. J. Nanomed. Nanotechnol. 2012, 3, 8. [Google Scholar] [CrossRef]
- Plotkin, J.D.; Elias, M.G.; Fereydouni, M.; Daniels-Wells, T.R.; Dellinger, A.L.; Penichet, M.L.; Kepley, C.L. Human Mast Cells From Adipose Tissue Target and Induce Apoptosis of Breast Cancer Cells. Front. Immunol. 2019, 10, 138. [Google Scholar] [CrossRef]
- Ryan, J.J.; Bateman, H.R.; Stover, A.; Gomez, G.; Norton, S.K.; Zhao, W.; Schwartz, L.B.; Lenk, R.; Kepley, C.L. Fullerene Nanomaterials Inhibit the Allergic Response. J. Immunol. 2007, 179, 665–672. [Google Scholar] [CrossRef]
ACE2 | PATIENT | RESTING | FcεRI XL | CHANGE | ||||
Relative gene expression | Avg | Relative gene expression | Avg | % Upregulated | ||||
Patient 1 | 521 | 634 | 533 | 876 | 987 | 933 | 75% | |
502 | 474 | 749 | 1121 | |||||
Patient 2 | 453 | 320 | 415 | 1268 | 1202 | 1326 | 220% | |
215 | 672 | 1302 | 1532 | |||||
TMPRSS | PATIENT | RESTING | FcεRI XL | CHANGE | ||||
Relative gene expression | Avg | Relative gene expression | Avg | % Upregulated | ||||
Patient 1 | 852 | 832 | 769 | 892 | 894 | 860 | 12% | |
734 | 659 | 854 | 798 | |||||
Patient 2 | 801 | 722 | 746 | 1001 | 1192 | 976 | 31% | |
721 | 739 | 953 | 759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Praetzel, R.; Kepley, C. Human Lung Mast Cells as a Possible Reservoir for Coronavirus: A Novel Unrecognized Mechanism for SARS-CoV-2 Immune-Mediated Pathology. Int. J. Mol. Sci. 2024, 25, 6511. https://doi.org/10.3390/ijms25126511
Praetzel R, Kepley C. Human Lung Mast Cells as a Possible Reservoir for Coronavirus: A Novel Unrecognized Mechanism for SARS-CoV-2 Immune-Mediated Pathology. International Journal of Molecular Sciences. 2024; 25(12):6511. https://doi.org/10.3390/ijms25126511
Chicago/Turabian StylePraetzel, Rebecca, and Chris Kepley. 2024. "Human Lung Mast Cells as a Possible Reservoir for Coronavirus: A Novel Unrecognized Mechanism for SARS-CoV-2 Immune-Mediated Pathology" International Journal of Molecular Sciences 25, no. 12: 6511. https://doi.org/10.3390/ijms25126511
APA StylePraetzel, R., & Kepley, C. (2024). Human Lung Mast Cells as a Possible Reservoir for Coronavirus: A Novel Unrecognized Mechanism for SARS-CoV-2 Immune-Mediated Pathology. International Journal of Molecular Sciences, 25(12), 6511. https://doi.org/10.3390/ijms25126511