The Identification and Gene Mapping of Spotted Leaf Mutant spl43 in Rice
Abstract
:1. Introduction
2. Results
2.1. The Mutation of OsRPT5A Leads to the Spotted Leaf Phenotype
2.2. OsRPT5A Is a Constitutively Expressed Gene
2.3. ROS Is Accumulated in spl43
2.4. The Resistance of spl43 Is Enhanced
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. The Construction of Vectors and the Acquisition of Transgenic Lines
4.3. Measurement of Photosynthetic Pigments
4.4. Agronomic Trait Evaluation
4.5. Measurement of Physiological Indexes
4.6. Subcellular Localization
4.7. Gene Mapping
4.8. qRT-PCR Analysis
4.9. Inoculation with the Bacterial Blight Pathogen
4.10. Chloroplast Structure Observation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.D.; Liu, J.L.; Triplett, L.; Leach, J.E.; Wang, G.L. Novel Insights into Rice Innate Immunity Against Bacterial and Fungal Pathogens. Annu. Rev. Phytopathol. 2014, 52, 213–241. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.; Kato, N.; Lawton, M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 2001, 411, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.H.; Lee, J.H.; Agrawal, G.K.; Rakwal, R.; Kim, J.A.; Shim, J.K.; Lee, S.K.; Jeon, J.S.; Koh, H.J.; Lee, Y.H.; et al. The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol. Biochem. 2005, 43, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Zhang, L.X.; Wang, L.Y.; Zhang, L.H.; Zhu, C.N.; He, Z.H.; Jin, Q.S.; Fan, H.H.; Yu, X. Response to Illumination Induction and Effect of Temperature on Lesion formation of lrd (Lesion Resembling Disease) in Rice. Sci. Agric. Sin. 2010, 43, 2039–2044. [Google Scholar]
- Zeng, L.R.; Qu, S.H.; Bordeos, A.; Yang, C.W.; Baraoidan, M.; Yan, H.Y.; Xie, Q.; Nahm, B.H.; Leung, H.; Wang, G.L. Spotted leaf11, a Negative Regulator of Plant Cell Death and Defense, Encodes a U-Box/Armadillo Repeat Protein Endowed with E3 Ubiquitin Ligase Activity. Plant Cell 2004, 16, 2795–2808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Jin, X.Y.; Lei, H.; Hong, Y.B.; Zhang, Y.F.; Ouyang, Z.G.; Li, X.H.; Song, F.M.; Li, D.Y. Molecular characterization of rice sphingosine-1-phosphate lyase gene OsSPL1 and functional analysis of its role in disease resistance response. Plant Cell Rep. 2014, 33, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- Undan, J.R.; Tamiru, M.; Abe, A.; Yoshida, K.; Kosugi, S.; Takagi, H.; Yoshida, K.; Kanzaki, H.; Saitoh, H.; Fekih, R.; et al. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.). Genes Genet. Syst. 2012, 87, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Liu, H.; Yuan, B.; Li, X.; Xu, C.; Wang, S. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ. 2011, 34, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Ballini, E.; Morel, J.B.; Droc, G.; Price, A.; Courtois, B.; Notteghem, J.L.; Tharreau, D. A Genome-Wide Meta-Analysis of Rice Blast Resistance Genes and Quantitative Trait Loci Provides New Insights into Partial and Complete Resistance. MPMI 2008, 21, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Frick, M.; Huel, R.; Nykiforuk, C.L.; Wang, X.M.; Gaudet, D.A.; Eudes, F.; Conner, R.L.; Kuzyk, A.; Chen, Q.; et al. Stripe Rust Resistance Gene Yr10 Encodes an Evolutionary-conserved and Unique CC-NBS-LRR Sequence in Wheat. Mol. Plant 2014, 7, 1740–1755. [Google Scholar] [CrossRef] [PubMed]
- Sotta, N.; Sakamoto, T.; Matsunaga, S.; Fujiwara, T. Abnormal leaf development of rpt5a mutant under zinc deficiency reveals important role of DNA damage alleviation for normal leaf development. Sci. Rep. 2019, 9, 9369. [Google Scholar] [CrossRef] [PubMed]
- Sotta, N.; Sakamoto, T.; Kamiya, T.; Tabata, R.; Yamaguchi, K.; Shigenobu, S.; Yamada, M.; Hasebe, M.; Sawa, S.; Fujiwara, T. NAC103 mutation alleviates DNA damage in an Arabidopsis thaliana mutant sensitive to excess boron. Front. Plant Sci. 2023, 14, 1099816. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Kamiya, T.; Sako, K.; Yamaguchi, J.; Yamagami, M.; Fujiwara, T. Arabidopsis thaliana 26S Proteasome Subunits RPT2a and RPT5a Are Crucial for Zinc Deficiency-Tolerance. Biosci. Biotechnol. Biochem. 2011, 75, 561–567. [Google Scholar] [CrossRef]
- Gallois, J.L.; Guyon-Debast, A.; Lécureuil, A.; Vezon, D.; Carpentier, V.; Bonhomme, S.; Guerche, P. The Arabidopsis proteasome RPT5 subunits are essential for gametophyte development and show accession-dependent redundancy. Plant Cell 2009, 21, 442–459. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.O.; Bendich, A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 1985, 5, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.J.; Bordeos, A.; Madamba, M.R.S.; Baraoidan, M.; Ramos, M.; Wang, G.L.; Leach, J.E.; Leung, H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol. Genet. Genom. 2008, 279, 605–619. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liu, W.-J.; Liao, X.-W.; Xu, X.; Yang, S.; Zhang, X.-B.; Zhou, H.; Zhuang, C.; Gong, J.; Wu, J.-L. The Identification and Gene Mapping of Spotted Leaf Mutant spl43 in Rice. Int. J. Mol. Sci. 2024, 25, 6637. https://doi.org/10.3390/ijms25126637
Wang C, Liu W-J, Liao X-W, Xu X, Yang S, Zhang X-B, Zhou H, Zhuang C, Gong J, Wu J-L. The Identification and Gene Mapping of Spotted Leaf Mutant spl43 in Rice. International Journal of Molecular Sciences. 2024; 25(12):6637. https://doi.org/10.3390/ijms25126637
Chicago/Turabian StyleWang, Chen, Wen-Jun Liu, Xin-Wei Liao, Xia Xu, Shihua Yang, Xiao-Bo Zhang, Hai Zhou, Chuxiong Zhuang, Junyi Gong, and Jian-Li Wu. 2024. "The Identification and Gene Mapping of Spotted Leaf Mutant spl43 in Rice" International Journal of Molecular Sciences 25, no. 12: 6637. https://doi.org/10.3390/ijms25126637
APA StyleWang, C., Liu, W. -J., Liao, X. -W., Xu, X., Yang, S., Zhang, X. -B., Zhou, H., Zhuang, C., Gong, J., & Wu, J. -L. (2024). The Identification and Gene Mapping of Spotted Leaf Mutant spl43 in Rice. International Journal of Molecular Sciences, 25(12), 6637. https://doi.org/10.3390/ijms25126637