Ocular Changes in Cystic Fibrosis: A Review
Abstract
:1. Introduction
2. Cystic Fibrosis
2.1. Molecular Background of Cystic Fibrosis
2.2. Clinical Findings in Cystic Fibrosis Patients
2.3. Nutritional Status of CF Patients
3. Ocular Surface
3.1. Conjunctiva
The Role of Pro-Inflammatory Antigens and Mediators
3.2. Tear Film and Lacrimal Glands
3.2.1. Reduced Tear Film Secretion
3.2.2. Changes in Tear Film Osmolarity
3.2.3. Role of Abnormal Mucin Expression
3.3. Cornea
4. Lens
4.1. Reduced Lens Transparency
4.2. Effect of CFTR Protein Modulators on Lens Transparency
5. Posterior Segment of the Eye
5.1. Retina
5.2. Optic and Oculomotor Nerve
5.3. Reduced Contrast Sensitivity and Abnormal Dark Adaptation
5.3.1. Reduced Contrast Sensitivity
5.3.2. Abnormal Dark Adaptation
6. Changes of the Retinal and Choroidal Vasculature
7. Management of CF-Related Ocular Complications
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nebbioso, M.; Quattrucci, S.; Leggieri, E.; Spadea, L.; Vingolo, E.M. Cystic fibrosis and new trends by ophthalmological evaluation: A pilot study. BioMed Res. Int. 2014, 2014, 580373. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Coolen, N.; Wu, Y.; Thévenot, G.; Touqui, L.; Prulière-Escabasse, V.; Papon, J.F.; Coste, A.; Escudier, E.; Dusser, D.J.; et al. CFTR dysfunction induces vascular endothelial growth factor synthesis in airway epithelium. Eur. Respir. J. 2013, 42, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, C.; Bicker, J.; Alves, G.; Falcão, A.; Fortuna, A. Cystic fibrosis: Physiopathology and the latest pharmacological treatments. Pharmacol. Res. 2020, 162, 105267. [Google Scholar] [CrossRef] [PubMed]
- McBennett, K.A.; Davis, P.B.; Konstan, M.W. Increasing life expectancy in cystic fibrosis: Advances and challenges. Pediatr. Pulmonol. 2022, 57 (Suppl. 1), 5–12. [Google Scholar] [CrossRef]
- Andersen, D.H. Cystic Fibrosis of the Pancreas and Its Relation to Celiac Disease: A Clinical and Pathologic Study. Am. J. Dis. Child. 1938, 56, 344–399. [Google Scholar] [CrossRef]
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef] [PubMed]
- Ansari, E.A.; Sahni, K.; Etherington, C.; Morton, A.; Conway, S.P.; Moya, E.; Littlewood, J.M. Ocular signs and symptoms and vitamin A status in patients with cystic fibrosis treated with daily vitamin A supplements. Br. J. Ophthalmol. 1999, 83, 688–691. [Google Scholar] [CrossRef]
- Riordan, J.R. CFTR function and prospects for therapy. Annu. Rev. Biochem. 2008, 77, 701–726. [Google Scholar] [CrossRef]
- Castagna, I.; Roszkowska, A.M.; Fama, F.; Sinicropi, S.; Ferreri, G. The eye in cystic fibrosis. Eur. J. Ophthalmol. 2001, 11, 9–14. [Google Scholar] [CrossRef]
- Mrugacz, M.; Zak, J.; Bakunowicz-Lazarczyk, A.; Wysocka, J.; Minarowska, A. Flow cytometric analysis of HLA-DR antigen in conjunctival epithelial cells of patients with cystic fibrosis. Eye 2007, 21, 1062–1066. [Google Scholar] [CrossRef]
- Fama, F.; Castagna, I.; Palamara, F.; Ferreri, G. Cystic fibrosis and lens opacity. Ophthalmologica 1998, 212, 1780179. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.; Flume, P.A. Pulmonary Complications of Cystic Fibrosis. Semin. Respir. Crit. Care Med. 2019, 40, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Dalcin Pde, T.; Piltcher, O.B.; Migliavacca Rde, O. Chronic rhinosinusitis and nasal polyposis in cystic fibrosis: Update on diagnosis and treatment. J. Bras. Pneumol. 2015, 41, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, S. Gastrointestinal Manifestations of Cystic Fibrosis. Gastroenterol. Hepatol. 2016, 12, 43–47. [Google Scholar]
- Kobelska-Dubiel, N.; Klincewicz, B.; Cichy, W. Liver disease in cystic fibrosis. Prz. Gastroenterol. 2014, 9, 136–141. [Google Scholar] [CrossRef]
- Slae, M.; Wilschanski, M. Cystic fibrosis and the gut. Frontline Gastroenterol. 2020, 12, 622–628. [Google Scholar] [CrossRef]
- Hughan, K.S.; Daley, T.; Rayas, M.S.; Kelly, A.; Roe, A. Female reproductive health in cystic fibrosis. J. Cyst. Fibros. 2019, 18, S95–S104. [Google Scholar] [CrossRef] [PubMed]
- Naz Khan, F.; Mason, K.; Roe, A.H.; Tangpricha, V. CF and male health: Sexual and reproductive health, hypogonadism, and fertility. J. Clin. Transl. Endocrinol. 2021, 27, 100288. [Google Scholar] [CrossRef]
- Smith, A.D.; Schwartzman, G.; Lyons, C.E.; Flowers, H.; Albon, D.; Greer, K.; Lonabaugh, K.; Zlotoff, B.J. Cutaneous manifestations of cystic fibrosis. J. Am. Acad. Dermatol. 2024. [Google Scholar] [CrossRef]
- Ullal, J.; Kutney, K.; Williams, K.M.; Weber, D.R. Treatment of cystic fibrosis related bone disease. J. Clin. Transl. Endocrinol. 2021, 27, 100291. [Google Scholar] [CrossRef]
- McColley, S.A.; Stellmach, V.; Boas, S.R.; Jain, M.; Crawford, S.E. Serum vascular endothelial growth factor is elevated in cystic fibrosis and decreases with treatment of acute pulmonary exacerbation. Am. J. Respir. Crit. Care Med. 2000, 161, 1877–1880. [Google Scholar] [CrossRef]
- Greaney, C.; Doyle, A.; Drummond, N.; King, S.; Hollander-Kraaijeveld, F.; Robinson, K.; Tierney, A. What do people with cystic fibrosis eat? Diet quality, macronutrient and micronutrient intakes (compared to recommended guidelines) in adults with cystic fibrosis-A systematic review. J. Cyst. Fibros. 2023, 22, 1036–1047. [Google Scholar] [CrossRef] [PubMed]
- Huet, F.; Semama, D.; Maingueneau, C.; Charavel, A.; Nivelon, J.L. Vitamin A deficiency and nocturnal vision in teenagers with cystic fibrosis. Eur. J. Pediatr. 1997, 156, 949–951. [Google Scholar] [CrossRef] [PubMed]
- Sommer, A. Vitamin A deficiency today: Conjunctival xerosis in cystic fibrosis. J. R. Soc. Med. 1989, 82, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Sealy, R.E.; Surman, S.L.; Vogel, P.; Hurwitz, J.L. Might Routine Vitamin A Monitoring in Cystic Fibrosis Patients Reduce Virus-Mediated Lung Pathology? Front. Immunol. 2021, 12, 704391. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, M.A.; Vernon, S.A.; Brimlow, G.; Tyrrell, J.C.; Hiller, E.J.; Marenah, C. Nyctalopia and conjunctival xerosis indicating vitamin A deficiency in cystic fibrosis. Eye 1989, 3, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Rayner, R.J.; Tyrrell, J.C.; Hiller, E.J.; Marenah, C.; Neugebauer, M.A.; Vernon, S.A.; Brimlow, G. Night blindness and conjunctival xerosis caused by vitamin A deficiency in patients with cystic fibrosis. Arch. Dis. Child. 1989, 64, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.A.; Petersen, V.S.; Robb, R.M. Vitamin A deficiency with xerophthalmia and night blindness in cystic fibrosis. Am. J. Dis. Child. 1968, 116, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.C.; Bernstein, A.; Candia, O.A. Presence of CFTR in the conjunctival epithelium. Curr. Eye Res. 2002, 24, 182–187. [Google Scholar] [CrossRef]
- Singh, S.; Donthineni, P.R.; Srivastav, S.; Jacobi, C.; Basu, S.; Paulsen, F. Lacrimal and meibomian gland evaluation in dry eye disease: A mini-review. Indian J. Ophthalmol. 2023, 71, 1090–1098. [Google Scholar] [CrossRef]
- Craig, J.P.; Nelson, J.D.; Azar, D.T.; Belmonte, C.; Bron, A.J.; Chauhan, S.K.; Sullivan, D.A. TFOS DEWS II report executive summary. Ocul. Surf. 2017, 15, 802–812. [Google Scholar] [CrossRef]
- Mrugacz, M.; Zelazowska, B.; Bakunowicz-Lazarczyk, A.; Kaczmarski, M.; Wysocka, J. Elevated tear fluid levels of MIP-1 alpha in patients with cystic fibrosis. J. Interferon Cytokine Res. 2007, 27, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Mrugacz, M.; Kaczmarski, M.; Bakunowicz-Lazarczyk, A.; Zelazowska, B.; Wysocka, J.; Minarowska, A. IL-8 and IFN-gamma in tear fluid of patients with cystic fibrosis. J. Interferon Cytokine Res. 2006, 26, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.D.; Orenstein, D.M.; Chao, C.C.; Butala, S.; Kowalski, R.P. The ocular surface in cystic fibrosis. Ophthalmology 1989, 96, 1624–1630. [Google Scholar] [CrossRef] [PubMed]
- Kayal, A. The physiology of tear film. In Dry Eye Syndrome—Modern Diagnostic Techniques and Advanced Treatments; IntechOpen: London, UK, 2022. [Google Scholar]
- Montés-Micó, R. Role of the tear film in the optical quality of the human eye. J. Cataract. Refract. Surg. 2007, 33, 1631–1635. [Google Scholar] [CrossRef] [PubMed]
- Jeon, D.; Jun, I.; Lee, H.K.; Park, J.; Kim, B.R.; Ryu, K.; Yoon, H.; Kim, T.I.; Namkung, W. Novel CFTR Activator Cact-3 Ameliorates Ocular Surface Dysfunctions in Scopolamine-Induced Dry Eye Mice. Int. J. Mol. Sci. 2022, 23, 5206. [Google Scholar] [CrossRef] [PubMed]
- Flores, A.M.; Casey, S.D.; Felix, C.M.; Phuan, P.W.; Verkman, A.S.; Levin, M.H. Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease. FASEB J. 2016, 30, 1789–1797. [Google Scholar]
- Lee, H.K.; Park, J.; Kim, B.-R.; Jun, I.; Kim, T.-I.; Namkung, W. Isorhamnetin Ameliorates Dry Eye Disease via CFTR Activation in Mice. Int. J. Mol. Sci. 2021, 22, 3954. [Google Scholar] [CrossRef] [PubMed]
- Morkeberg, J.C.; Edmund, C.; Prause, J.U.; Lanng, S.; Koch, C.; Michaelsen, K.F. Ocular findings in cystic fibrosis patients receiving vitamin A supplementation. Graefes Arch. Clin. Exp. Ophthalmol. 1995, 233, 709–713. [Google Scholar] [CrossRef]
- Giannakouras, P.; Kanakis, M.; Diamantea, F.; Tzetis, M.; Koutsandrea, C.; Papaconstantinou, D.; Georgalas, I. Ophthalmologic manifestations of adult patients with cystic fibrosis. Eur. J. Ophthalmol. 2022, 32, 976–983. [Google Scholar] [CrossRef]
- Briggs, S.T. Tear breakup time in normal Saudi population: Age and gender. Int. Contact Lens Clin. 1998, 25, 137–141. [Google Scholar] [CrossRef]
- Alghadyan, A.; Aljindan, M.; Alhumeidan, A.; Kazi, G.; McMhon, R. Lacrimal glands in cystic fibrosis. Saudi J. Ophthalmol. 2013, 27, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Mrugacz, M.; Bakunowicz-łazarczyk, A.; Minarowska, A.; Zywalewska, N. Ocena wydzielania łez u dzieci i młodziezy ze zwłóknieniem torbielowatym [Evaluation of the tears secretion in young patients with cystic fibrosis]. Klin. Oczna. 2005, 107, 90–92. [Google Scholar] [PubMed]
- Kalayci, D.; Kiper, N.; Ozcelik, U.; Gocmen, A.; Hasiripi, H. Clinical status, ocular surface changes and tear ferning in patients with cystic fibrosis. Acta Ophthalmol. Scand. 1996, 74, 563–565. [Google Scholar] [CrossRef] [PubMed]
- Rolando, M.; Baldi, F.; Calabria, G. Tear mucuscrystallization in children with cystic fibrosis. Ophthalmologica 1988, 197, 202–206. [Google Scholar] [CrossRef] [PubMed]
- McCannel, C.A.; Scanlon, P.D.; Thibodeau, S.; Brubaker, R.F. A study of aqueous humor formation in patients with cystic fibrosis. Invest. Ophthalmol. Vis. Sci. 1992, 33, 160–164. [Google Scholar] [PubMed]
- Ozdemir, M.; Temizdemir, H. Age- and gender-related tear function changes in normal population. Eye 2010, 24, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Di Sant’agnese, P.A.; Grossman, H.; Darling, R.C.; Denning, C.R. Saliva, tears and duodenal contents in cystic fibrosis of the pancreas. Pediatrics 1958, 22, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Bothello, S.Y.; Goldstein, A.M.; Rosenlund, M.L. Tear sodium, potassium, chloride, and calcium at various flow rates: Children with cystic fibrosis and unaffected siblings with and without corneal staining. J. Pediatr. 1973, 83, 601–606. [Google Scholar]
- Franco, L.G.M.; De Grande, V.; Stella, S.; Reibaldi, M.; Lionetti, E.; Franzonello, C.; Russo, A.; La Rosa, M. Tear Osmolarity in Pediatric Patients with Cystic Fibrosis. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4289. [Google Scholar]
- Zhang, J.; Yan, X.; Li, H. Analysis of the correlations of mucins, inflammatory markers, and clinical tests in dry eye. CORNEA 2013, 32, 928–932. [Google Scholar] [CrossRef] [PubMed]
- Henke, M.O.; Renner, A.; Huber, R.M.; Seeds, M.C.; Rubin, B.K. MUC5AC and MUC5B Mucins Are Decreased in Cystic Fibrosis Airway Secretions. Am. J. Respir. Cell Mol. Biol. 2004, 31, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.C.; Bonanno, J.A. Expression, localization, and functional evaluation of CFTR in bovine corneal endothelial cells. Am. J. Physiol. Cell Physiol. 2002, 282, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, T.S.; Lyczak, J.; Preston, M.; Pier, G.B. Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis. Infect. Immun. 1999, 67, 1481–1492. [Google Scholar] [CrossRef]
- Wamsley, S.; Patel, S.M.; Wood, M.G.; Villalobos, R.; Albert, D.M.; Mootha, V.V. Advanced keratomalacia with descemetocele in an infant with cystic fibrosis. Arch. Ophthalmol. 2005, 123, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Lakshmipathy, M.; Agarwal, M.; Agarwal, M.; Palanaiappan, N. Bilateral Pseudomonas aeruginosa keratitis as presenting feature in an infant of cystic fibrosis. Indian J. Ophthalmol. 2022, 70, 2641–2643. [Google Scholar] [CrossRef] [PubMed]
- Farahbakhsh, N.; Bagherian, N.; Shabanpourhaghighi, S.; Khalilzadeh, S.; Tabatabaii, S.A.; Khanbabaee, G. Corneal opacification, an atypical presentation of cystic fibrosis: A case report and review of the literature. J. Med. Case Rep. 2022, 1, 188. [Google Scholar] [CrossRef]
- Lindenmuth, K.A.; Del Monte, M.; Marino, L.R. Advanced xerophthalmia as a presenting sign in cystic fibrosis. Ann. Ophthalmol. 1989, 21, 189–191. [Google Scholar] [PubMed]
- Hall, D.S.; Goyal, S. Cystic fibrosis presenting with corneal perforation and crystalline lens extrusion. J. R. Soc. Med. 2010, 103 (Suppl. 1), 30–33. [Google Scholar] [CrossRef]
- Brooks, H.L.; Driebe, W.T.; Schemmer, G.G. Xerophthalmia and cystic fibrosis. Arch. Ophthalmol. 1990, 108, 354–357. [Google Scholar] [CrossRef]
- Augusteyn, R.C. On the growth and internal structure of the human lens. Exp. Eye Res. 2010, 90, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, D.; Reyes-Ortega, F.; Chinnery, H.R.; Schneider-Futschik, E.K. Ocular development after highly effective modulator treatment early in life. Front. Pharmacol. 2023, 14, 1265138. [Google Scholar] [CrossRef] [PubMed]
- Vertex Pharmaceuticals Incorporated. Kalydeco Physician Label. 2015. Available online: http://pi.vrtx.com/files/uspi_ivacaftor.pdf (accessed on 9 June 2024).
- EMA Report: Kalydeco: EPAR—Product Information. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/kalydeco (accessed on 9 June 2024).
- EMA Report: Kalydeco-EMEA/H/C/002494-R/0106. 2022.
- Jain, R.; Wolf, A.; Molad, M.; Taylor-Cousar, J.; Esther, C.R.; Shteinberg, M. Congenital bilateral cataracts in newborns exposed to elexacaftor-tezacaftor-ivacaftor in utero and while breast feeding. J. Cyst. Fibros. 2022, 21, 1074–1076. [Google Scholar] [CrossRef] [PubMed]
- Blaug, S.; Quinn, R.; Quong, J.; Jalickee, S.; Miller, S.S. Retinal pigment epithelial function: A role for CFTR? Doc. Ophthalmol. Adv. Ophthalmol. 2003, 106, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev. 2005, 85, 845–881. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, I.; Lutty, G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol. Asp. Med. 2012, 33, 295–317. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Marmorstein, A.D.; Peachey, N.S. Functional abnormalities in the retinal pigment epithelium of CFTR mutant mice. Exp. Eye Res. 2006, 83, 424–428. [Google Scholar] [CrossRef]
- Zeumer, C.; Hanitzsch, R.; Mättig, W.U. The c-wave of the electroretinogrampossesses a thirdcomponent from the proximalretina. Vision. Res. 1994, 34, 2673–2678. [Google Scholar] [CrossRef] [PubMed]
- Marmorstein, L.Y.; Wu, J.; McLaughlin, P.; Yocom, J.; Karl, M.O.; Neussert, R.; Wimmers, S.; Stanton, J.B.; Gregg, R.G.; Strauss, O.; et al. The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J. Gen. Physiol. 2006, 127, 577–589. [Google Scholar] [CrossRef]
- Creel, D.J. Electroretinograms. Handb. Clin. Neurol. 2019, 160, 481–493. [Google Scholar]
- Suttle, C.M.; Harding, G.F. The VEP and ERG in a young infant with cystic fibrosis. A case report. Doc. Ophthalmol. 1998, 95, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Schupp, C.; Olano-Martin, E.; Gerth, C.; Morrissey, B.M.; Cross, C.E.; Werner, J.S. Lutein, zeaxanthin, macular pigment, and visual function in adult cystic fibrosis patients. Am. J. Clin. Nutr. 2004, 79, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Bruce, G.M.; Denning, C.R.; Spalter, H.F. Ocular findings in cystic fibrosis of the pancreas: A preliminary report. Arch. Ophthalmol. 1960, 63, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Hiscox, R.J. The Retina in Cystic Fibrosis. Doctoral Dissertation, Cardiff University, Cardiff, UK, 2013. [Google Scholar]
- Mesentier-Louro, L.A.; Shariati, M.A.; Dalal, R.; Camargo, A.; Kumar, V.; Shamskhou, E.A.; de Jesus Perez, V.; Liao, Y.J. Systemic hypoxia led to little retinal neuronal loss and dramatic optic nerve glial response. Exp. Eye Res. 2020, 193, 107957. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Diamond, G.; D’Amico, R.A. Ocular findings in cystic fibrosis. Am. J. Ophthalmol. 1987, 103, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Leguire, L.E.; Pappa, K.S.; Kachmer, M.L.; Rogers, G.L.; Bremer, D.L. Loss of contrast sensitivity in cystic fibrosis. Am. J. Ophthalmol. 1991, 111, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.; Silva, F.; Acheson, J.; Plant, G. An old friend revisited: Chloramphenicol optic neuropathy. JRSM Short. Rep. 2013, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, J.N.; Ross-Cisneros, F.N.; Carelli, V.; Sadun, A.A. Chloramphenicol-Induced Optic Neuropathy in a Mouse Model: An Ultrastructural Study. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4362. [Google Scholar]
- Grzybowski, A.; Zülsdorff, M.; Wilhelm, H.; Tonagel, F. Toxic optic neuropathies: An updated review. Acta Ophthalmol. 2015, 93, 402–410. [Google Scholar] [CrossRef]
- Shah, P.H.; Lee, J.H.; Salvi, D.J.; Rabbani, R.; Gavini, D.R.; Hamid, P. Cardiovascular System Involvement in Cystic Fibrosis. Cureus 2021, 13, e16723. [Google Scholar] [CrossRef]
- MacNee, W. Premature vascular ageing in cystic fibrosis. Eur. Respir. J. 2009, 34, 1217–1218. [Google Scholar] [CrossRef] [PubMed]
- Buehler, T.; Steinmann, M.; Singer, F.; Regamey, N.; Casaulta, C.; Schoeni, M.H.; Simonetti, G.D. Increased arterial stiffness in children with cystic fibrosis. Eur. Respir. J. 2012, 39, 1536–1537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Ye, L.L.; Yuan, H.; Duan, D.D. CFTR plays an important role in the regulation of vascular resistance and high-fructose/salt-diet induced hypertension in mice. J. Cyst. Fibros. 2021, 20, 516–524. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Z.; Xue, H.; Cheng, S.; Ji, Q.; Liu, Y.; Yang, X. CFTR protects against vascular inflammation and atherogenesis in apolipoprotein E-deficient mice. Biosci. Rep. 2017, 37, BSR20170680. [Google Scholar] [CrossRef] [PubMed]
- Le Ribeuz, H.; To, L.; Ghigna, M.R.; Martin, C.; Nagaraj, C.; Dreano, E.; Rucker-Martin, C.; Girerd, B.; Bouligand, J.; Pechoux, C.; et al. Involvement of CFTR in the pathogenesis of pulmonary arterial hypertension. Eur. Respir. J. 2021, 58, 2000653. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.; Saxena, S.; Akduman, L.; Meyer, C.H.; Kruzliak, P.; Khanna, V.K. Serum vascular endothelial growth factor is a biomolecular biomarker of severity of diabetic retinopathy. Int. J. Retin. Vitreous. 2019, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.R.; Norby, S.M.; Scott, J.P.; Bakri, S.J. Acute retinal vein occlusion and cystic fibrosis. Int. J. Retin. Vitreous. 2018, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Hiscox, R.J.; Purslow, C.; North, R.V.; Ketchell, I.; Evans, K.S. Branch retinal vein occlusion in an asymptomatic adult with cystic fibrosis. Optom. Vis. Sci. 2014, 91 (Suppl. 1), 52–54. [Google Scholar] [CrossRef] [PubMed]
- Gelman, R.; DiMango, E.A.; Schiff, W.M. Sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia. Retin. Cases Brief. Rep. 2013, 7, 362–367. [Google Scholar] [CrossRef]
- Goren, J.F.; Shah, S.P.; Janzen, G.P.; Gross, N.E.; Duker, J.S. Diffuse retinal pigment epithelial disease in an adult with cystic fibrosis. Ophthalmic Surg. Lasers Imaging 2011, 9, 42. [Google Scholar] [CrossRef]
- Scotet, V.; Gutierrez, H.; Farrell, P.M. Newborn screening for CF across the globe—Where is it worthwhile? Int. J. Neonatal Screen. 2020, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Aragona, P.; Rania, L.; Micali, A.; Puzzolo, D. Nutrition and dry eye. Curr. Ophthalmol. Rep. 2013, 1, 58–64. [Google Scholar] [CrossRef]
- Farahani, M.; Patel, R.; Dwarakanathan, S. Infectious corneal ulcers. Dis. Mon. 2017, 63, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Benítez Martínez, M.; Baeza Moyano, D.; González-Lezcano, R.A. Phacoemulsification: Proposals for improvement in its application. Healthcare 2021, 11, 1603. [Google Scholar] [CrossRef] [PubMed]
Organ System | Affected Organ | Manifestation | References |
---|---|---|---|
Respiratory system | Lungs | Chronic infections (bacterial and fungal) and inflammation secondary to the accumulation of the thick, sticky mucus Hemoptysis Bronchiectasis Respiratory failure | [12] |
Paranasal sinuses | Chronic sinusitis Nasal polyps | [13] | |
Digestive system | Pancreas | Reduced secretion of pancreatic enzymes via duct obstruction resulting in nutrient malabsorption of micro- and macronutrients Pancreatitis Chronic pancreatic inflammation CF-related diabetes | [14] |
Liver | Neonatal jaundice CF-related liver disease (increased viscosity of biliary secretion and secondary cholestasis) Fatty liver Primary sclerosing cholangitis (PSC) Cirrhosis | [14,15] | |
Gut | Constipation Diarrhea Meconium ileus | [14,16] | |
Reproductive system | Genitals (female) | Reduced fertility | [17] |
Genitals (male) | Congenital bilateral absence of vas deferens Azoospermia Infertility | [18] | |
Skin and skin appendages | Sweat glands | Salty sweat Dehydration | [19] |
Skeletal | Bones | Osteopenia Osteoporosis | [20] |
Joints | CF-related arthropathy | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liberski, S.; Confalonieri, F.; Cofta, S.; Petrovski, G.; Kocięcki, J. Ocular Changes in Cystic Fibrosis: A Review. Int. J. Mol. Sci. 2024, 25, 6692. https://doi.org/10.3390/ijms25126692
Liberski S, Confalonieri F, Cofta S, Petrovski G, Kocięcki J. Ocular Changes in Cystic Fibrosis: A Review. International Journal of Molecular Sciences. 2024; 25(12):6692. https://doi.org/10.3390/ijms25126692
Chicago/Turabian StyleLiberski, Slawomir, Filippo Confalonieri, Szczepan Cofta, Goran Petrovski, and Jarosław Kocięcki. 2024. "Ocular Changes in Cystic Fibrosis: A Review" International Journal of Molecular Sciences 25, no. 12: 6692. https://doi.org/10.3390/ijms25126692
APA StyleLiberski, S., Confalonieri, F., Cofta, S., Petrovski, G., & Kocięcki, J. (2024). Ocular Changes in Cystic Fibrosis: A Review. International Journal of Molecular Sciences, 25(12), 6692. https://doi.org/10.3390/ijms25126692