Early Postnatal Exposure to Midazolam Causes Lasting Histological and Neurobehavioral Deficits via Activation of the mTOR Pathway
Abstract
:1. Introduction
2. Results
2.1. mTOR Pathway Activity
2.2. Neurobehavioral Outcomes
2.3. Dendrite Development
2.4. Synapse Development
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Animal Treatment and Handling
4.2.1. Animals
4.2.2. Midazolam Treatment and Physiological Monitoring of Sentinel Animals
4.2.3. Measuring Sedation Scores
4.2.4. Rapamycin Treatment
4.2.5. Production and Stereotaxic Injection of Engineered Retroviruses
4.2.6. Behavior Tests
4.3. Immunohistochemistry
4.4. Imaging and Analysis
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- United States Food and Drug Administration. FDA Drug Safety Communication: FDA Approves Label Changes for Use of General Anesthetic and Sedation Drugs in Young Children | FDA [Internet]. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-approves-label-changes-use-general-anesthetic-and-sedation-drugs (accessed on 27 August 2019).
- United States Food and Drug Administration. FDA Drug Safety Communication: FDA Review Results in New Warnings about Using General Anesthetics and Sedation Drugs in Young Children and Pregnant Women | FDA [Internet]. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-review-results-new-warnings-about-using-general-anesthetics-and (accessed on 27 August 2019).
- Ing, C.; Brambrink, A.M. Mayo Anesthesia Safety in Kids continued: Two new studies and a potential redirection of the field. Br. J. Anaesth. 2019, 122, 716–719. [Google Scholar] [CrossRef]
- Andropoulos, D.B. Effect of Anesthesia on the Developing Brain: Infant and Fetus. Fetal Diagn. Ther. 2018, 43, 1–11. [Google Scholar] [CrossRef]
- Vutskits, L.; Xie, Z. Lasting impact of general anaesthesia on the brain: Mechanisms and relevance. Nat. Rev. Neurosci. 2016, 17, 705–717. [Google Scholar] [CrossRef]
- Walkden, G.J.; Pickering, A.E.; Gill, H. Assessing Long-term Neurodevelopmental Outcome Following General Anesthesia in Early Childhood. Anesth. Analg. 2019, 128, 681–694. [Google Scholar] [CrossRef]
- Jackson, W.M.; Gray, C.D.; Jiang, D.B.; Schaefer, M.L.; Connor, C.; Mintz, C.D. Molecular Mechanisms of Anesthetic Neurotoxicity. J. Neurosurg. Anesthesiol. 2016, 28, 361–372. [Google Scholar] [CrossRef]
- Johnson, S.C.; Pan, A.; Li, L.; Sedensky, M.; Morgan, P. Neurotoxicity of anesthetics: Mechanisms and meaning from mouse intervention studies. Neurotoxicol. Teratol. 2019, 71, 22–31. [Google Scholar] [CrossRef]
- Disma, N.; O’Leary, J.D.; Loepke, A.W.; Brambrink, A.M.; Becke, K.; Clausen, N.G.; De Graaff, J.C.; Liu, F.; Hansen, T.G.; McCann, M.E.; et al. Anesthesia and the developing brain: A way forward for laboratory and clinical research. Pediatr. Anesth. 2018, 28, 758–763. [Google Scholar] [CrossRef]
- Lee, K.-E.M.; Diacovo, T.G.; Calderon, J.; Byrne, M.W.; Ing, C. Outcomes Research in Vulnerable Pediatric Populations. J. Neurosurg. Anesthesiol. 2019, 31, 140–143. [Google Scholar] [CrossRef]
- Zanghi, C.N.; Jevtovic-Todorovic, V. A holistic approach to anesthesia-induced neurotoxicity and its implications for future mechanistic studies. Neurotoxicol. Teratol. 2017, 60, 24–32. [Google Scholar] [CrossRef]
- Sun, L.S.; Li, G.; Miller, T.L.K.; Salorio, C.; Byrne, M.W.; Bellinger, D.C.; Ing, C.; Park, R.; Radcliffe, J.; Hays, S.R.; et al. Association Between a Single General Anesthesia Exposure Before Age 36 Months and Neurocognitive Outcomes in Later Childhood. JAMA 2016, 315, 2312–2320. [Google Scholar] [CrossRef]
- Twite, M.D.; Rashid, A.; Zuk, J.; Friesen, R.H. Sedation, analgesia, and neuromuscular blockade in the pediatric intensive care unit: Survey of fellowship training programs. Pediatr. Crit. Care Med. 2004, 5, 521–532. [Google Scholar] [CrossRef]
- Rhoney, D.H.; Murry, K.R. National survey on the use of sedatives and neuromuscular blocking agents in the pediatric intensive care unit. Pediatr. Crit. Care Med. 2002, 3, 129–133. [Google Scholar] [CrossRef]
- Caprarola, S.D.; Kudchadkar, S.R.; Bembea, M.M. Neurologic Outcomes Following Care in the Pediatric Intensive Care Unit. Curr. Treat. Options Pediatr. 2017, 3, 193–207. [Google Scholar] [CrossRef]
- Loepke, A.W. Developmental neurotoxicity of sedatives and anesthetics: A concern for neonatal and pediatric critical care medicine? Pediatr. Crit. Care Med. 2010, 11, 217–226. [Google Scholar] [CrossRef]
- Kamat, P.P.; Kudchadkar, S.R.; Simon, H.K. Sedative and Anesthetic Neurotoxicity in Infants and Young Children: Not Just an Operating Room Concern. J. Pediatr. 2019, 204, 285–290. [Google Scholar] [CrossRef]
- Curley, M.A.Q.; Watson, R.S.; Cassidy, A.M.; Burns, C.; Delinger, R.L.; Angus, D.C.; Asaro, L.A.; Wypij, D.; Beers, S.R. Design and rationale of the “Sedation strategy and cognitive outcome after critical illness in early childhood” study. Contemp. Clin. Trials 2018, 72, 8–15. [Google Scholar] [CrossRef]
- Garcia, P.S.; Kolesky, S.E.; Jenkins, A. General anesthetic actions on GABA(A) receptors. Curr. Neuropharmacol. 2010, 8, 2–9. [Google Scholar] [CrossRef]
- Jevtovic-Todorovic, V.; Hartman, R.E.; Izumi, Y.; Benshoff, N.D.; Dikranian, K.; Zorumski, C.F.; Olney, J.W.; Wozniak, D.F. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci. 2003, 23, 876–882. [Google Scholar] [CrossRef]
- Rosenbaum, A.; Kain, Z.N.; Larsson, P.; Lönnqvist, P.; Wolf, A.R. The place of premedication in pediatric practice. Pediatr. Anesth. 2009, 19, 817–828. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q.; Yin, Y. Intracranial electroencephalography features of young and old mice under midazolam administration. NeuroReport 2021, 32, 1192–1197. [Google Scholar] [CrossRef]
- Press, S.H.; Condouris, G.; Houpt, M. The effect of age on the behavioral responses of mice following diazepam and midazolam sedation in combination with nitrous oxide. Anesth. Prog. 1995, 42, 131–134. [Google Scholar]
- Xu, J.; Mathena, R.P.; Singh, S.; Kim, J.; Long, J.J.; Li, Q.; Junn, S.; Blaize, E.; Mintz, C.D. Early Developmental Exposure to Repetitive Long Duration of Midazolam Sedation Causes Behavioral and Synaptic Alterations in a Rodent Model of Neurodevelopment. J. Neurosurg. Anesthesiol. 2019, 31, 151–162. [Google Scholar] [CrossRef]
- Doi, H.; Matsuda, T.; Sakai, A.; Matsubara, S.; Hoka, S.; Yamaura, K.; Nakashima, K. Early-life midazolam exposure persistently changes chromatin accessibility to impair adult hippocampal neurogenesis and cognition. Proc. Natl. Acad. Sci. USA 2021, 118, e2107596118. [Google Scholar] [CrossRef]
- Iqbal O’Meara, A.M.; Miller Ferguson, N.; Zven, S.E.; Karam, O.L.; Meyer, L.C.; Bigbee, J.W.; Sato-Bigbee, C. Potential Neurodevelopmental Effects of Pediatric Intensive Care Sedation and Analgesia: Repetitive Benzodiazepine and Opioid Exposure Alters Expression of Glial and Synaptic Proteins in Juvenile Rats. Crit. Care Explor. 2020, 2, e0105. [Google Scholar] [CrossRef]
- Sabatini, D.M. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc. Natl. Acad. Sci. USA 2017, 114, 11818–11825. [Google Scholar] [CrossRef]
- Lee, D.Y. Roles of mTOR Signaling in Brain Development. Exp. Neurobiol. 2015, 24, 177–185. [Google Scholar] [CrossRef]
- Costa-Mattioli, M.; Monteggia, L.M. mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat. Neurosci. 2013, 16, 1537–1543. [Google Scholar] [CrossRef]
- Borrie, S.C.; Brems, H.; Legius, E.; Bagni, C. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways. Annu. Rev. Genom. Hum. Genet. 2017, 18, 115–142. [Google Scholar] [CrossRef]
- Takei, N.; Nawa, H. mTOR signaling and its roles in normal and abnormal brain development. Front. Mol. Neurosci. 2014, 7, 28. [Google Scholar] [CrossRef]
- Kang, E.; Jiang, D.; Ryu, Y.K.; Lim, S.; Kwak, M.; Gray, C.D.; Xu, M.; Choi, J.H.; Junn, S.; Kim, J.; et al. Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway. PLoS Biol. 2017, 15, e2001246. [Google Scholar] [CrossRef]
- Xu, J.; Mathena, R.P.; Xu, M.; Wang, Y.; Chang, C.; Fang, Y.; Zhang, P.; Mintz, C.D. Early Developmental Exposure to General Anesthetic Agents in Primary Neuron Culture Disrupts Synapse Formation via Actions on the mTOR Pathway. Int. J. Mol. Sci. 2018, 19, 2183. [Google Scholar] [CrossRef]
- Li, Q.; Mathena, R.P.; Xu, J.; Eregha, O.N.; Wen, J.; Mintz, C.D. Early Postnatal Exposure to Isoflurane Disrupts Oligodendrocyte Development and Myelin Formation in the Mouse Hippocampus. Anesthesiology 2019, 131, 1077–1091. [Google Scholar] [CrossRef]
- Zhou, M.; Li, W.; Huang, S.; Song, J.; Kim, J.Y.; Tian, X.; Kang, E.; Sano, Y.; Liu, C.; Balaji, J.; et al. mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron 2013, 77, 647–654. [Google Scholar] [CrossRef]
- Ge, S.; Goh, E.L.; Sailor, K.A.; Kitabatake, Y.; Ming, G.L.; Song, H. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 2006, 439, 589–593. [Google Scholar] [CrossRef]
- Greenough, W.T.; Larson, J.R.; Withers, G.S. Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behav. Neural. Biol. 1985, 44, 301–314. [Google Scholar] [CrossRef]
- Mut-Arbona, P.; Huang, L.; Baranyi, M.; Tod, P.; Iring, A.; Calzaferri, F.; Ríos, C.d.L.; Sperlágh, B. Dual Role of the P2X7 Receptor in Dendritic Outgrowth during Physiological and Pathological Brain Development. J. Neurosci. 2023, 43, 1125–1142. [Google Scholar] [CrossRef]
- Yarmohammadi-Samani, P.; Taghipourbibalan, H.; Vatanparast, J. Long-lasting Postnatal Sensory Deprivation Alters Dendritic Morphology of Pyramidal Neurons in the Rat Hippocampus: Behavioral Correlates. Neuroscience 2022, 480, 79–96. [Google Scholar] [CrossRef]
- Pchitskaya, E.; Bezprozvanny, I. Dendritic Spines Shape Analysis-Classification or Clusterization? Perspective. Front. Synaptic. Neurosci. 2020, 12, 31. [Google Scholar] [CrossRef]
- Hsieh, M.Y.; Tuan, L.H.; Chang, H.C.; Tuan, L.-H.; Chang, H.-C.; Wang, Y.-C.; Chen, C.-H.; Shy, H.-T.; Lee, L.-J.; Gau, S.S.-F.; et al. Altered synaptic protein expression, aberrant spine morphology, and impaired spatial memory in Dlgap2 mutant mice, a genetic model of autism spectrum disorder. Cereb. Cortex 2023, 33, 4779–4793. [Google Scholar] [CrossRef]
- Coatl-Cuaya, H.; Tendilla-Beltrán, H.; de Jesús-Vásquez, L.M.; Garcés-Ramírez, L.; Gómez-Villalobos, M.J.; Flores, G. Losartan enhances cognitive and structural neuroplasticity impairments in spontaneously hypertensive rats. J. Chem. Neuroanat. 2022, 120, 102061. [Google Scholar] [CrossRef]
- Al-Amin, M.M.; Sullivan, R.K.P.; Alexander, S.; Carter, D.A.; Bradford, D.; Burne, T.H.J. Impaired spatial memory in adult vitamin D deficient BALB/c mice is associated with reductions in spine density, nitric oxide, and neural nitric oxide synthase in the hippocampus. AIMS Neurosci. 2022, 9, 31–56. [Google Scholar] [CrossRef]
- Chiu, C.Q.; Barberis, A.; Higley, M.J. Preserving the balance: Diverse forms of long-term GABAergic synaptic plasticity. Nat. Rev. Neurosci. 2019, 20, 272–281. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research: Drug Safety and Availability. FDA Drug Safety Communication: FDA Review Results in New Warnings about Using General Anesthetics and Sedation Drugs in Young Children and Pregnant Women. U.S. Food and Drug Administration. Available online: https://www.fda.gov/Drugs/DrugSafety/ucm532356.htm (accessed on 19 July 2019).
- Clausen, N.G.; Hansen, T.G.; Disma, N. Anesthesia Neurotoxicity in the Developing Brain: Basic Studies Relevant for Neonatal or Perinatal Medicine. Clin. Perinatol. 2019, 46, 647–656. [Google Scholar] [CrossRef]
- Useinovic, N.; Jevtovic-Todorovic, V. Controversies in anesthesia-induced developmental neurotoxicity. Best Pract. Res. Clin. Anaesthesiol. 2023, 37, 28–29. [Google Scholar] [CrossRef]
- Neudecker, V.; Xu, J.; Thomas, M.A.; Penberthy, K.K.; Kang, E.; Berg, D.A.; O’Meara, A.M.I.; Brambrink, A.M.; Mintz, C.D. An Update on Preclinical Research in Anesthetic-Induced Developmental Neurotoxicity in Nonhuman Primate and Rodent Models. J. Neurosurg. Anesthesiol. 2023, 35, 104–113. [Google Scholar] [CrossRef]
- Wagner, M.; Ryu, Y.K.; Smith, S.C.; Mintz, C.D. Review: Effects of anesthetics on brain circuit formation. J. Neurosurg. Anesthesiol. 2014, 26, 358–362. [Google Scholar] [CrossRef]
- Borzage, M.T.; Peterson, B.S. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth. Analg. 2024. [Google Scholar] [CrossRef]
- Bleeser, T.; Brenders, A.; Hubble, T.R.; Van de Velde, M.; Deprest, J.; Rex, S.; Devroe, S. Preclinical evidence for anaesthesia-induced neurotoxicity. Best Pract. Res. Clin. Anaesthesiol. 2023, 37, 16–27. [Google Scholar] [CrossRef]
- Jevtovic-Todorovic, V. General Anesthetics and Neurotoxicity: How Much Do We Know? Anesthesiol. Clin. 2016, 34, 439–451. [Google Scholar] [CrossRef]
- Kochanek, P.M.; Tasker, R.C.; Bell, M.J.; Adelson, P.D.; Carney, N.; Vavilala, M.S.; Selden, N.R.; Bratton, S.L.; Grant, G.A.; Kissoon, N.; et al. Management of Pediatric Severe Traumatic Brain Injury: 2019 Consensus and Guidelines-Based Algorithm for First and Second Tier Therapies. Pediatr. Crit. Care Med. 2019, 20, 269–279. [Google Scholar] [CrossRef]
- Kochanek, P.M.; Tasker, R.C.; Carney, N.; Totten, A.M.; Adelson, P.D.; Selden, N.R.; Davis-O’Reilly, C.; Hart, E.L.; Bell, M.J.; Bratton, S.L.; et al. Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition. Pediatr. Crit. Care Med. 2019, 20, S1–S82. [Google Scholar] [CrossRef]
- Schiller, R.M.; Allegaert, K.; Hunfeld, M.; van den Bosch, G.E.; van den Anker, J.; Tibboel, D. Analgesics and Sedatives in Critically Ill Newborns and Infants: The Impact on Long-Term Neurodevelopment. J. Clin. Pharmacol. 2018, 58, S140–S150. [Google Scholar] [CrossRef]
- Nguyen, N.M.; Vellichirammal, N.N.; Guda, C.; Pendyala, G. Decoding the Synaptic Proteome with Long-Term Exposure to Midazolam during Early Development. Int. J. Mol. Sci. 2022, 23, 4137. [Google Scholar] [CrossRef]
- Xu, D.; Wang, B.; Xu, B.; Yin, C.; Ning, L.; Li, X.; Du, J.; Wang, Y. Midazolam Exposure Impedes Oligodendrocyte Development via the Translocator Protein and Impairs Myelination in Larval Zebrafish. Mol. Neurobiol. 2022, 59, 93–106. [Google Scholar] [CrossRef]
- Cabrera, O.H.; O’Connor, S.D.; Swiney, B.S.; Salinas-Contreras, P.; Manzella, F.M.; Taylor, G.T.; Noguchi, K.K. Caffeine combined with sedative/anesthetic drugs triggers widespread neuroapoptosis in a mouse model of prematurity. J. Matern. Fetal Neonatal. Med. 2017, 30, 2734–2741. [Google Scholar] [CrossRef]
- Soyalp, C.; Oksuz, E.; Gorgisen, G.; Gulacar, I.M.; Yasar, S.; Tuncdemir, Y.E.; Delen, L.A. Role of Sedative-Hypnotic Agents in Neurodegeneration: Effects of Midazolam and Thiopental on Apoptosis and Oxidative Stress Expression in Neonatal and Adult Rat Brains. Turk. Neurosurg. 2022, 32, 378–385. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Zhao, J.; Li, L.; Wang, Y.; Zhang, Y.; Chen, Y.; Liu, W.; Gao, L. Midazolam Attenuates Autophagy and Apoptosis Caused by Ketamine by Decreasing Reactive Oxygen Species in the Hippocampus of Fetal Rats. Neuroscience 2018, 388, 460–471. [Google Scholar] [CrossRef]
- Sinner, B.; Steiner, J.; Malsy, M.; Graf, B.M.; Bundscherer, A. The positive allosteric modulation of GABAAreceptors mRNA in immature hippocampal rat neurons by midazolam affects receptor expression and induces apoptosis. Int. J. Neurosci. 2019, 129, 986–994. [Google Scholar] [CrossRef]
- Lipton, J.O.; Sahin, M. The neurology of mTOR. Neuron 2014, 84, 275–291. [Google Scholar] [CrossRef]
- Xu, J.; Kang, E.; Mintz, C.D. Anesthetics disrupt brain development via actions on the mTOR pathway. Commun. Integr. Biol. 2018, 11, 1–4. [Google Scholar] [CrossRef]
- Wen, J.; Xu, J.; Mathena, R.P.; Choi, J.H.; Mintz, C.D. Early Isoflurane Exposure Impairs Synaptic Development in Fmr1 KO Mice via the mTOR Pathway. Neurochem. Res. 2021, 46, 1577–1588. [Google Scholar] [CrossRef]
- Li, Q.; Mathena, R.P.; Eregha, O.N.; Mintz, C.D. Effects of Early Exposure of Isoflurane on Chronic Pain via the Mammalian Target of Rapamycin Signal Pathway. Int. J. Mol. Sci. 2019, 20, 5102. [Google Scholar] [CrossRef]
- Tan, H.; Li, C.L.; Zhang, L.; Yang, Z.J.; Zhao, X.; Wang, Y.W. Sevoflurane inhibits the phosphorylation of ribosomal protein S6 in neonatal rat brain. Int. J. Clin. Exp. Med. 2015, 8, 14816–14826. [Google Scholar]
- Ing, C.; DiMaggio, C.; Whitehouse, A.; Hegarty, M.K.; Brady, J.; von Ungern-Sternberg, B.S.; Davidson, A.; Wood, A.J.; Li, G.; Sun, L.S. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 2012, 130, e476–e485. [Google Scholar] [CrossRef]
- Wilder, R.T.; Flick, R.P.; Sprung, J.; Katusic, S.K.; Barbaresi, W.J.; Mickelson, C.; Gleich, S.J.; Schroeder, D.R.; Weaver, A.L.; Warner, D.O. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 2009, 110, 796–804. [Google Scholar] [CrossRef]
- DiMaggio, C.; Sun, L.S.; Kakavouli, A.; Byrne, M.W.; Li, G. A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J. Neurosurg. Anesthesiol. 2009, 21, 286–291. [Google Scholar] [CrossRef]
- Alam, A.; Suen, K.C.; Hana, Z.; Sanders, R.D.; Maze, M.; Ma, D. Neuroprotection and neurotoxicity in the developing brain: An update on the effects of dexmedetomidine and xenon. Neurotoxicol. Teratol. 2017, 60, 102–116. [Google Scholar] [CrossRef]
- Reddy, S.D.; Younus, I.; Clossen, B.L.; Reddy, D.S. Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABA(A) Receptors. J. Pharmacol. Exp. Ther. 2015, 353, 517–528. [Google Scholar] [CrossRef]
- Knoester, P.D.; Jonker, D.M.; Van Der Hoeven, R.T.; Vermeij, T.A.C.; Edelbroek, P.M.; Brekelmans, G.J.; De Haan, G.J. Pharmacokinetics and pharmacodynamics of midazolam administered as a concentrated intranasal spray. A study in healthy volunteers. Br. J. Clin. Pharmacol. 2002, 53, 501–507. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. Men and mice: Relating their ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef]
- Kawai, S.; Takagi, Y.; Kaneko, S.; Kurosawa, T. Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp. Anim. 2011, 60, 481–487. [Google Scholar] [CrossRef]
- Kirihara, Y.; Takechi, M.; Kurosaki, K.; Kobayashi, Y.; Kurosawa, T. Anesthetic effects of a mixture of medetomidine, midazolam and butorphanol in two strains of mice. Exp. Anim. 2013, 62, 173–180. [Google Scholar] [CrossRef]
- Kim, J.Y.; Duan, X.; Liu, C.Y.; Kim, J.Y.; Duan, X.; Liu, C.Y.; Jang, M.-H.; Guo, J.U.; Pow-anpongkul, N.; Kang, E.; et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 2009, 63, 761–773. [Google Scholar] [CrossRef]
- Kang, E.; Burdick, K.E.; Kim, J.Y.; Duan, X.; Guo, J.U.; Sailor, K.A.; Jung, D.-E.; Ganesan, S.; Choi, S.; Pradhan, D.; et al. Interaction between FEZ1 and DISC1 in regulation of neuronal development and risk for schizophrenia. Neuron 2011, 72, 559–571. [Google Scholar] [CrossRef]
- Song, J.; Sun, J.; Moss, J.; Wen, Z.; Sun, G.J.; Hsu, D.; Zhong, C.; Davoudi, H.; Christian, K.M.; Toni, N.; et al. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat. Neurosci. 2013, 16, 1728–1730. [Google Scholar] [CrossRef]
- Gogliotti, R.G.; Senter, R.K.; Rook, J.M.; Ghoshal, A.; Zamorano, R.; Malosh, C.; Stauffer, S.R.; Bridges, T.M.; Bartolome, J.M.; Daniels, J.S.; et al. mGlu5 positive allosteric modulation normalizes synaptic plasticity defects and motor phenotypes in a mouse model of Rett syndrome. Hum. Mol. Genet. 2016, 25, 1990–2004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wen, J.; Mathena, R.P.; Singh, S.; Boppana, S.H.; Yoon, O.I.; Choi, J.; Li, Q.; Zhang, P.; Mintz, C.D. Early Postnatal Exposure to Midazolam Causes Lasting Histological and Neurobehavioral Deficits via Activation of the mTOR Pathway. Int. J. Mol. Sci. 2024, 25, 6743. https://doi.org/10.3390/ijms25126743
Xu J, Wen J, Mathena RP, Singh S, Boppana SH, Yoon OI, Choi J, Li Q, Zhang P, Mintz CD. Early Postnatal Exposure to Midazolam Causes Lasting Histological and Neurobehavioral Deficits via Activation of the mTOR Pathway. International Journal of Molecular Sciences. 2024; 25(12):6743. https://doi.org/10.3390/ijms25126743
Chicago/Turabian StyleXu, Jing, Jieqiong Wen, Reilley Paige Mathena, Shreya Singh, Sri Harsha Boppana, Olivia Insun Yoon, Jun Choi, Qun Li, Pengbo Zhang, and Cyrus David Mintz. 2024. "Early Postnatal Exposure to Midazolam Causes Lasting Histological and Neurobehavioral Deficits via Activation of the mTOR Pathway" International Journal of Molecular Sciences 25, no. 12: 6743. https://doi.org/10.3390/ijms25126743
APA StyleXu, J., Wen, J., Mathena, R. P., Singh, S., Boppana, S. H., Yoon, O. I., Choi, J., Li, Q., Zhang, P., & Mintz, C. D. (2024). Early Postnatal Exposure to Midazolam Causes Lasting Histological and Neurobehavioral Deficits via Activation of the mTOR Pathway. International Journal of Molecular Sciences, 25(12), 6743. https://doi.org/10.3390/ijms25126743