Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing—A Review
Abstract
:1. Introduction
2. Topics in Wound Healing
2.1. Wound Healing and Endogenous Electric Fields
2.2. TRPC Role in Wound Healing
2.3. TRPV Role in Wound Healing
2.4. TRPM Role in Wound Healing
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knoedler, S.; Knoedler, L.; Kauke-Navarro, M.; Rinkevich, Y.; Hundeshagen, G.; Harhaus, L.; Kneser, U.; Pomahac, B.; Orgill, D.P.; Panayi, A.C. Regulatory T Cells in Skin Regeneration and Wound Healing. Mil. Med. Res. 2023, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Solanas, G.; Benitah, S.A. Regenerating the Skin: A Task for the Heterogeneous Stem Cell Pool and Surrounding Niche. Nat. Rev. Mol. Cell Biol. 2013, 14, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Watt, F.M. Mammalian Skin Cell Biology: At the Interface between Laboratory and Clinic. Science 2014, 346, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Brandner, J.M.; Zorn-Kruppa, M.; Yoshida, T.; Moll, I.; Beck, L.A.; De Benedetto, A. Epidermal Tight Junctions in Health and Disease. Tissue Barriers 2015, 3, e974451. [Google Scholar] [CrossRef]
- Zomer, H.D.; Trentin, A.G. Skin Wound Healing in Humans and Mice: Challenges in Translational Research. J. Dermatol. Sci. 2018, 90, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Prost-Squarcioni, C. Histology of skin and hair follicle. Med. Sci. 2006, 22, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, H.N.; Hardman, M.J. Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef] [PubMed]
- Broughton, G.; Janis, J.E.; Attinger, C.E. Wound Healing: An Overview. Plast. Reconstr. Surg. 2006, 117, 1e-S–32e-S. [Google Scholar] [CrossRef] [PubMed]
- Yousef, H.; Alhajj, M.; Sharma, S. Anatomy, Skin (Integument), Epidermis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Agren, M.S.; Taplin, C.J.; Woessner, J.F.; Eaglstein, W.H.; Mertz, P.M. Collagenase in Wound Healing: Effect of Wound Age and Type. J. Investig. Dermatol. 1992, 99, 709–714. [Google Scholar] [CrossRef]
- Cañedo-Dorantes, L.; Cañedo-Ayala, M. Skin Acute Wound Healing: A Comprehensive Review. Int. J. Inflam. 2019, 2019, 3706315. [Google Scholar] [CrossRef]
- Handra, C.M.; Ghita, I.; Ulmeanu, A.; Enache, A.-M.; Epureanu, F.; Coman, O.A.; Coman, L.; Fulga, I. Depressive Clinical Manifestations Associated with Professional Aluminum Exposure. Rev. Chim. 2019, 70, 2162–2167. [Google Scholar] [CrossRef]
- Chirila, M.; Ghita, I.; Fulga, I. Current Knowledge on Bupropion and Varenicline Clinical Efficacy in Nicotine Dependence. Farmacia 2015, 63, 1–7. Available online: https://farmaciajournal.com/wp-content/uploads/2015-01-art-01-Chirila_01-07.pdf (accessed on 15 June 2024).
- Alecu, M.; Coman, G.; Mușetescu, A.; Coman, O.A. Antimicrobial Peptides as an Argument for the Involvement of Innate Immunity in Psoriasis (Review). Exp. Ther. Med. 2020, 20, 192. [Google Scholar] [CrossRef] [PubMed]
- Rousselle, P.; Braye, F.; Dayan, G. Re-Epithelialization of Adult Skin Wounds: Cellular Mechanisms and Therapeutic Strategies. Adv. Drug Deliv. Rev. 2019, 146, 344–365. [Google Scholar] [CrossRef]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef]
- Lindblad, W.J. Considerations for Selecting the Correct Animal Model for Dermal Wound-Healing Studies. J. Biomater. Sci. Polym. Ed. 2008, 19, 1087–1096. [Google Scholar] [CrossRef]
- Fang, R.C.; Mustoe, T.A. Animal Models of Wound Healing: Utility in Transgenic Mice. J. Biomater. Sci. Polym. Ed. 2008, 19, 989–1005. [Google Scholar] [CrossRef]
- Wong, V.W.; Sorkin, M.; Glotzbach, J.P.; Longaker, M.T.; Gurtner, G.C. Surgical Approaches to Create Murine Models of Human Wound Healing. J. Biomed. Biotechnol. 2011, 2011, 969618. [Google Scholar] [CrossRef] [PubMed]
- Cibelli, J.; Emborg, M.E.; Prockop, D.J.; Roberts, M.; Schatten, G.; Rao, M.; Harding, J.; Mirochnitchenko, O. Strategies for Improving Animal Models for Regenerative Medicine. Cell Stem Cell 2013, 12, 271–274. [Google Scholar] [CrossRef]
- Gerber, P.A.; Buhren, B.A.; Schrumpf, H.; Homey, B.; Zlotnik, A.; Hevezi, P. The Top Skin-Associated Genes: A Comparative Analysis of Human and Mouse Skin Transcriptomes. Biol. Chem. 2014, 395, 577–591. [Google Scholar] [CrossRef]
- Pasparakis, M.; Haase, I.; Nestle, F.O. Mechanisms Regulating Skin Immunity and Inflammation. Nat. Rev. Immunol. 2014, 14, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Menon, G.K. New Insights into Skin Structure: Scratching the Surface. Adv. Drug Deliv. Rev. 2002, 54 (Suppl. S1), S3–S17. [Google Scholar] [CrossRef] [PubMed]
- Bronaugh, R.L.; Stewart, R.F.; Congdon, E.R. Methods for in Vitro Percutaneous Absorption Studies. II. Animal Models for Human Skin. Toxicol. Appl. Pharmacol. 1982, 62, 481–488. [Google Scholar] [CrossRef]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Barker, T.H.; Engler, A.J. The Provisional Matrix: Setting the Stage for Tissue Repair Outcomes. Matrix Biol. 2017, 60–61, 1–4. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, A.S.; Mansbridge, J.N. The Innate Immune System in Acute and Chronic Wounds. Adv. Wound Care 2016, 5, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Lotz, M.M.; Wang, H.; Song, J.C.; Pories, S.E.; Matthews, J.B. K+ Channel Inhibition Accelerates Intestinal Epithelial Cell Wound Healing. Wound Repair. Regen. 2004, 12, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Choi, T.H.; Han, K.; Son, D.; Kim, J.H.; Kim, S.-H.; Park, J. Regulation of K(+) Channels May Enhance Wound Healing in the Skin. Med. Hypotheses 2008, 71, 927–929. [Google Scholar] [CrossRef]
- Cao, C.; Healey, S.; Amaral, A.; Lee-Couture, A.; Wan, S.; Kouttab, N.; Chu, W.; Wan, Y. ATP-Sensitive Potassium Channel: A Novel Target for Protection against UV-Induced Human Skin Cell Damage. J. Cell Physiol. 2007, 212, 252–263. [Google Scholar] [CrossRef]
- Greaves, N.S.; Ashcroft, K.J.; Baguneid, M.; Bayat, A. Current Understanding of Molecular and Cellular Mechanisms in Fibroplasia and Angiogenesis during Acute Wound Healing. J. Dermatol. Sci. 2013, 72, 206–217. [Google Scholar] [CrossRef]
- Tai, G.; Reid, B.; Cao, L.; Zhao, M. Electrotaxis and Wound Healing: Experimental Methods to Study Electric Fields as a Directional Signal for Cell Migration. Methods Mol. Biol. 2009, 571, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Moulin, V.J.; Dubé, J.; Rochette-Drouin, O.; Lévesque, P.; Gauvin, R.; Roberge, C.J.; Auger, F.A.; Goulet, D.; Bourdages, M.; Plante, M.; et al. Electric Potential Across Epidermis and Its Role During Wound Healing Can Be Studied by Using an In Vitro Reconstructed Human Skin. Adv. Wound Care 2012, 1, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Zhao, M. Regulation of Tissue Repair and Regeneration by Electric Fields. Chin. J. Traumatol. 2010, 13, 55–61. [Google Scholar] [PubMed]
- Messerli, M.A.; Graham, D.M. Extracellular Electrical Fields Direct Wound Healing and Regeneration. Biol. Bull. 2011, 221, 79–92. [Google Scholar] [CrossRef]
- Koegel, H.; Kaesler, S.; Burgstahler, R.; Werner, S.; Alzheimer, C. Unexpected Down-Regulation of the hIK1 Ca2+-Activated K+ Channel by Its Opener 1-Ethyl-2-Benzimidazolinone in HaCaT Keratinocytes. Inverse Effects on Cell Growth and Proliferation. J. Biol. Chem. 2003, 278, 3323–3330. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Markwardt, F. A Large Conductance [Ca(2+)](i)-Independent K(+) Channel Expressed in HaCaT Keratinocytes. Exp. Dermatol. 2002, 11, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, I.S.; Delling, M.; Clapham, D.E. An Introduction to TRP Channels. Annu. Rev. Physiol. 2006, 68, 619–647. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gu, W.; Du, J.; Reid, B.; Deng, X.; Liu, Z.; Zong, Z.; Wang, H.; Yao, B.; Yang, C.; et al. Electric Fields Guide Migration of Epidermal Stem Cells and Promote Skin Wound Healing. Wound Repair. Regen. 2012, 20, 840–851. [Google Scholar] [CrossRef]
- Caterina, M.J.; Pang, Z. TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals 2016, 9, 77. [Google Scholar] [CrossRef]
- Nilius, B.; Owsianik, G.; Voets, T.; Peters, J.A. Transient Receptor Potential Cation Channels in Disease. Physiol. Rev. 2007, 87, 165–217. [Google Scholar] [CrossRef]
- Yang, P.; Feng, J.; Luo, J.; Madison, M.; Hu, H. A Critical Role for TRP Channels in the Skin. In Neurobiology of TRP Channels; Emir, T.L.R., Ed.; Frontiers in Neuroscience; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2017; ISBN 978-1-315-15283-7. [Google Scholar]
- Pedersen, S.F.; Owsianik, G.; Nilius, B. TRP Channels: An Overview. Cell Calcium 2005, 38, 233–252. [Google Scholar] [CrossRef]
- Montell, C. The TRP Superfamily of Cation Channels. Sci. STKE 2005, 2005, re3. [Google Scholar] [CrossRef] [PubMed]
- Rosasco, M.G.; Gordon, S.E. TRP Channels: What Do They Look Like? In Neurobiology of TRP Channels; Emir, T.L.R., Ed.; Frontiers in Neuroscience; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2017; ISBN 978-1-315-15283-7. [Google Scholar]
- González-Ramírez, R.; Chen, Y.; Liedtke, W.B.; Morales-Lázaro, S.L. TRP Channels and Pain. In Neurobiology of TRP Channels; Emir, T.L.R., Ed.; Frontiers in Neuroscience; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2017; ISBN 978-1-315-15283-7. [Google Scholar]
- Nelson, P.L.; Beck, A.; Cheng, H. Transient Receptor Proteins Illuminated: Current Views on TRPs and Disease. Vet. J. 2011, 187, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, J.; Birnbaumer, L. Physiology and Pathophysiology of Canonical Transient Receptor Potential Channels. FASEB J. 2009, 23, 297–328. [Google Scholar] [CrossRef] [PubMed]
- Ambudkar, I.S.; Ong, H.L. Organization and Function of TRPC Channelosomes. Pflugers Arch. 2007, 455, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Beech, D.J. Integration of Transient Receptor Potential Canonical Channels with Lipids. Acta Physiol. 2012, 204, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Sharif-Naeini, R.; Folgering, J.R.H.; Bichet, D.; Duprat, F.; Honoré, E. Canonical TRP Channels and Mechanotransduction: From Physiology to Disease States. Pflugers Arch. 2010, 460, 571–581. [Google Scholar] [CrossRef]
- Bavencoffe, A.; Zhu, M.X.; Tian, J.-B. New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca2+ Stores. Adv. Exp. Med. Biol. 2017, 993, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.T.; Ong, H.L.; Liu, X.; Ambudkar, I.S. Contribution and Regulation of TRPC Channels in Store-Operated Ca2+ Entry. Curr. Top. Membr. 2013, 71, 149–179. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.L.; Ambudkar, I.S. STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca2+ Entry: Impact on Ca2+ Signaling and Cell Function. Adv. Exp. Med. Biol. 2017, 993, 159–188. [Google Scholar] [CrossRef]
- Harteneck, C.; Gollasch, M. Pharmacological Modulation of Diacylglycerol-Sensitive TRPC3/6/7 Channels. Curr. Pharm. Biotechnol. 2011, 12, 35–41. [Google Scholar] [CrossRef]
- Dutta Banik, D.; Martin, L.E.; Freichel, M.; Torregrossa, A.-M.; Medler, K.F. TRPM4 and TRPM5 Are Both Required for Normal Signaling in Taste Receptor Cells. Proc. Natl. Acad. Sci. USA 2018, 115, E772–E781. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, W.M.; McKemy, D.D. TRPM8: From Cold to Cancer, Peppermint to Pain. Curr. Pharm. Biotechnol. 2011, 12, 68–77. [Google Scholar] [CrossRef]
- McMahon, S.B.; Wood, J.N. Increasingly Irritable and Close to Tears: TRPA1 in Inflammatory Pain. Cell 2006, 124, 1123–1125. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Brönneke, S.; Kolbe, L.; Stäb, F.; Wenck, H.; Neufang, G. TRP-Channel-Specific Cutaneous Eicosanoid Release Patterns. Pain 2011, 152, 2765–2772. [Google Scholar] [CrossRef]
- Landini, L.; Souza Monteiro de Araujo, D.; Titiz, M.; Geppetti, P.; Nassini, R.; De Logu, F. TRPA1 Role in Inflammatory Disorders: What Is Known So Far? Int. J. Mol. Sci. 2022, 23, 4529. [Google Scholar] [CrossRef]
- Wilson, S.R.; Thé, L.; Batia, L.M.; Beattie, K.; Katibah, G.E.; McClain, S.P.; Pellegrino, M.; Estandian, D.M.; Bautista, D.M. The Epithelial Cell-Derived Atopic Dermatitis Cytokine TSLP Activates Neurons to Induce Itch. Cell 2013, 155, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Bautista, D.M.; Jordt, S.-E.; Nikai, T.; Tsuruda, P.R.; Read, A.J.; Poblete, J.; Yamoah, E.N.; Basbaum, A.I.; Julius, D. TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents. Cell 2006, 124, 1269–1282. [Google Scholar] [CrossRef]
- Peier, A.M.; Reeve, A.J.; Andersson, D.A.; Moqrich, A.; Earley, T.J.; Hergarden, A.C.; Story, G.M.; Colley, S.; Hogenesch, J.B.; McIntyre, P.; et al. A Heat-Sensitive TRP Channel Expressed in Keratinocytes. Science 2002, 296, 2046–2049. [Google Scholar] [CrossRef]
- Xu, H.; Ramsey, I.S.; Kotecha, S.A.; Moran, M.M.; Chong, J.A.; Lawson, D.; Ge, P.; Lilly, J.; Silos-Santiago, I.; Xie, Y.; et al. TRPV3 Is a Calcium-Permeable Temperature-Sensitive Cation Channel. Nature 2002, 418, 181–186. [Google Scholar] [CrossRef]
- Smith, G.D.; Gunthorpe, M.J.; Kelsell, R.E.; Hayes, P.D.; Reilly, P.; Facer, P.; Wright, J.E.; Jerman, J.C.; Walhin, J.-P.; Ooi, L.; et al. TRPV3 Is a Temperature-Sensitive Vanilloid Receptor-like Protein. Nature 2002, 418, 186–190. [Google Scholar] [CrossRef]
- Liebe, F.; Liebe, H.; Kaessmeyer, S.; Sponder, G.; Stumpff, F. The TRPV3 Channel of the Bovine Rumen: Localization and Functional Characterization of a Protein Relevant for Ruminal Ammonia Transport. Pflugers Arch. 2020, 472, 693–710. [Google Scholar] [CrossRef] [PubMed]
- Liebe, F.; Liebe, H.; Sponder, G.; Mergler, S.; Stumpff, F. Effects of Butyrate- on Ruminal Ca2+ Transport: Evidence for the Involvement of Apically Expressed TRPV3 and TRPV4 Channels. Pflugers Arch. 2022, 474, 315–342. [Google Scholar] [CrossRef] [PubMed]
- Schrapers, K.T.; Sponder, G.; Liebe, F.; Liebe, H.; Stumpff, F. The Bovine TRPV3 as a Pathway for the Uptake of Na+, Ca2+, and NH4+. PLoS ONE 2018, 13, e0193519. [Google Scholar] [CrossRef]
- Rosendahl, J.; Braun, H.S.; Schrapers, K.T.; Martens, H.; Stumpff, F. Evidence for the Functional Involvement of Members of the TRP Channel Family in the Uptake of Na(+) and NH4 (+) by the Ruminal Epithelium. Pflugers Arch. 2016, 468, 1333–1352. [Google Scholar] [CrossRef] [PubMed]
- Liebe, H.; Liebe, F.; Sponder, G.; Hedtrich, S.; Stumpff, F. Beyond Ca2+ Signalling: The Role of TRPV3 in the Transport of NH4. Pflugers Arch. 2021, 473, 1859–1884. [Google Scholar] [CrossRef] [PubMed]
- Raphaël, M.; Lehen’kyi, V.; Vandenberghe, M.; Beck, B.; Khalimonchyk, S.; Vanden Abeele, F.; Farsetti, L.; Germain, E.; Bokhobza, A.; Mihalache, A.; et al. TRPV6 Calcium Channel Translocates to the Plasma Membrane via Orai1-Mediated Mechanism and Controls Cancer Cell Survival. Proc. Natl. Acad. Sci. USA 2014, 111, E3870–E3879. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, S.H. Skin Barrier and Calcium. Ann. Dermatol. 2018, 30, 265–275. [Google Scholar] [CrossRef]
- van de Graaf, S.F.J.; Hoenderop, J.G.J.; Gkika, D.; Lamers, D.; Prenen, J.; Rescher, U.; Gerke, V.; Staub, O.; Nilius, B.; Bindels, R.J.M. Functional Expression of the Epithelial Ca(2+) Channels (TRPV5 and TRPV6) Requires Association of the S100A10-Annexin 2 Complex. EMBO J. 2003, 22, 1478–1487. [Google Scholar] [CrossRef]
- Sahu, R.P.; Goswami, C. Presence of TRPV3 in Macrophage Lysosomes Helps in Skin Wound Healing against Bacterial Infection. Exp. Dermatol. 2023, 32, 60–74. [Google Scholar] [CrossRef]
- Ran, L.; Feng, J.; Qi, X.; Liu, T.; Qi, B.; Jiang, K.; Zhang, Z.; Yu, Y.; Zhou, Q.; Xie, L. Effect of TRPM8 Functional Loss on Corneal Epithelial Wound Healing in Mice. Investig. Ophthalmol. Vis. Sci. 2023, 64, 19. [Google Scholar] [CrossRef]
- Zhang, Y.; Do, K.K.; Wang, F.; Lu, X.; Liu, J.Y.; Li, C.; Ceresa, B.P.; Zhang, L.; Dean, D.C.; Liu, Y. Zeb1 Facilitates Corneal Epithelial Wound Healing by Maintaining Corneal Epithelial Cell Viability and Mobility. Commun. Biol. 2023, 6, 434. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Saika, S.; Okada, Y.; Iwanishi, H.; Suzuki, K.; Yamada, G.; Asamura, S. Impaired Healing of Cutaneous Wound in a Trpv1 Deficient Mouse. Exp. Anim. 2023, 72, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Taivanbat, B.; Yamazaki, S.; Nasanbat, B.; Uchiyama, A.; Amalia, S.N.; Nasan-Ochir, M.; Inoue, Y.; Ishikawa, M.; Kosaka, K.; Sekiguchi, A.; et al. Transient Receptor Potential Vanilloid 4 Promotes Cutaneous Wound Healing by Regulating Keratinocytes and Fibroblasts Migration and Collagen Production in Fibroblasts in a Mouse Model. J. Dermatol. Sci. 2023, 112, 54–62. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, X.; Wei, N.; Wang, K. Inhibition of Cutaneous Heat-Sensitive Ca2+ -Permeable Transient Receptor Potential Vanilloid 3 Channels Alleviates UVB-Induced Skin Lesions in Mice. FASEB J. 2023, 37, e23309. [Google Scholar] [CrossRef]
- Mäki-Opas, I.; Hämäläinen, M.; Moilanen, E.; Scotece, M. TRPA1 as a Potential Factor and Drug Target in Scleroderma: Dermal Fibrosis and Alternative Macrophage Activation Are Attenuated in TRPA1-Deficient Mice in Bleomycin-Induced Experimental Model of Scleroderma. Arthritis Res. Ther. 2023, 25, 12. [Google Scholar] [CrossRef]
- Choi, C.-R.; Kim, E.-J.; Choi, T.H.; Han, J.; Kang, D. Enhancing Human Cutaneous Wound Healing through Targeted Suppression of Large Conductance Ca2+-Activated K+ Channels. Int. J. Mol. Sci. 2024, 25, 803. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Rolandi, M.; Isseroff, R.R. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb. Perspect. Biol. 2022, 14, a041236. [Google Scholar] [CrossRef]
- Grigore, A.; Vatasescu-Balcan, A.; Stoleru, S.; Zugravu, A.; Poenaru, E.; Engi, M.; Coman, O.A.; Fulga, I. Experimental Research on the Influence of Ion Channels on the Healing of Skin Wounds in Rats. Processes 2024, 12, 109. [Google Scholar] [CrossRef]
- Grigore, A.; Stoleru, S.; Zugravu, A.; Vatasescu-Balcan, A.; Poenaru, E.; Engi, M.; Fulga, I. Experimental Evaluation of the Influence of Amiodarone on Wound Healing. Farmacia 2024, 72, 234–242. [Google Scholar]
- Sumioka, T.; Okada, Y.; Reinach, P.S.; Shirai, K.; Miyajima, M.; Yamanaka, O.; Saika, S. Impairment of Corneal Epithelial Wound Healing in a TRPV1-Deficient Mouse. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3295–3302. [Google Scholar] [CrossRef]
- Inoue, K.; Koizumi, S.; Fuziwara, S.; Denda, S.; Inoue, K.; Denda, M. Functional Vanilloid Receptors in Cultured Normal Human Epidermal Keratinocytes. Biochem. Biophys. Res. Commun. 2002, 291, 124–129. [Google Scholar] [CrossRef]
- Zholos, A. Pharmacology of Transient Receptor Potential Melastatin Channels in the Vasculature. Br. J. Pharmacol. 2010, 159, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, M.; Kojima, I. Translocation of Calcium-Permeable TRPV2 Channel to the Podosome: Its Role in the Regulation of Podosome Assembly. Cell Calcium 2012, 51, 186–193. [Google Scholar] [CrossRef]
- Link, T.M.; Park, U.; Vonakis, B.M.; Raben, D.M.; Soloski, M.J.; Caterina, M.J. TRPV2 Has a Pivotal Role in Macrophage Particle Binding and Phagocytosis. Nat. Immunol. 2010, 11, 232–239. [Google Scholar] [CrossRef]
- Thompson, V.; Moshirfar, M.; Clinch, T.; Scoper, S.; Linn, S.H.; McIntosh, A.; Li, Y.; Eaton, M.; Ferriere, M.; Stasi, K. Topical Ocular TRPV1 Antagonist SAF312 (Libvatrep) for Postoperative Pain After Photorefractive Keratectomy. Transl. Vis. Sci. Technol. 2023, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Chen, X.; Zhao, Q.; Stanic, V.; Lin, Z.; Yang, S.; Chen, T.; Chen, J.; Yang, Y. Hair Loss Caused by Gain-of-Function Mutant TRPV3 Is Associated with Premature Differentiation of Follicular Keratinocytes. J. Investig. Dermatol. 2021, 141, 1964–1974. [Google Scholar] [CrossRef]
- Asakawa, M.; Yoshioka, T.; Matsutani, T.; Hikita, I.; Suzuki, M.; Oshima, I.; Tsukahara, K.; Arimura, A.; Horikawa, T.; Hirasawa, T.; et al. Association of a Mutation in TRPV3 with Defective Hair Growth in Rodents. J. Investig. Dermatol. 2006, 126, 2664–2672. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Sun, X.; Wang, G.; Liu, Y.; Wang, K. Pharmacological Activation of Thermo-Transient Receptor Potential Vanilloid 3 Channels Inhibits Hair Growth by Inducing Cell Death of Hair Follicle Outer Root Sheath. J. Pharmacol. Exp. Ther. 2019, 370, 299–307. [Google Scholar] [CrossRef]
- Borbíró, I.; Lisztes, E.; Tóth, B.I.; Czifra, G.; Oláh, A.; Szöllosi, A.G.; Szentandrássy, N.; Nánási, P.P.; Péter, Z.; Paus, R.; et al. Activation of Transient Receptor Potential Vanilloid-3 Inhibits Human Hair Growth. J. Investig. Dermatol. 2011, 131, 1605–1614. [Google Scholar] [CrossRef]
- Luo, J.; Stewart, R.; Berdeaux, R.; Hu, H. Tonic Inhibition of TRPV3 by Mg2+ in Mouse Epidermal Keratinocytes. J. Investig. Dermatol. 2012, 132, 2158–2165. [Google Scholar] [CrossRef]
- Stotz, S.C.; Vriens, J.; Martyn, D.; Clardy, J.; Clapham, D.E. Citral Sensing by Transient [Corrected] Receptor Potential Channels in Dorsal Root Ganglion Neurons. PLoS ONE 2008, 3, e2082. [Google Scholar] [CrossRef] [PubMed]
- Kalinovskii, A.P.; Utkina, L.L.; Korolkova, Y.V.; Andreev, Y.A. TRPV3 Ion Channel: From Gene to Pharmacology. Int. J. Mol. Sci. 2023, 24, 8601. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, R.; Benítez-Angeles, M.; Hernández-Vega, A.M.; Rosenbaum, T. Recent Advances on the Structure and the Function Relationships of the TRPV4 Ion Channel. Channels 2024, 18, 2313323. [Google Scholar] [CrossRef] [PubMed]
- Doñate-Macian, P.; Duarte, Y.; Rubio-Moscardo, F.; Pérez-Vilaró, G.; Canan, J.; Díez, J.; González-Nilo, F.; Valverde, M.A. Structural Determinants of TRPV4 Inhibition and Identification of New Antagonists with Antiviral Activity. Br. J. Pharmacol. 2022, 179, 3576–3591. [Google Scholar] [CrossRef]
- Zholos, A.; Johnson, C.; Burdyga, T.; Melanaphy, D. TRPM Channels in the Vasculature. Adv. Exp. Med. Biol. 2011, 704, 707–729. [Google Scholar] [CrossRef]
Study/Reference | Subject Species Animal Used | Strain/Gender | Ion Channel | Substance Agonist/Antagonist | Site of Action | Other Blocking Methods of the Ion Channel | Healing Stage | Limitations of the Study According to Authors | Author’s Conclusions | Our Remarks |
---|---|---|---|---|---|---|---|---|---|---|
Sahu RP et al., 2023 [74] | Mice | Balb/c | TRPV3 | FPP (2 μM)-ag/DPTHF (200 μM)-antag | Skin wound healing | TRPV3 SiRNA | Inflammatory | Does not specify the number of mice per batch. The animal gender is not specified. | TRPV3 modulation affects both bacterial phagocytosis as well as bacterial cell clearance by macrophages. | In the settings of infection of the skin, TRPV3-activator treated sample presented a better-healed tissue with more blood vessels there. |
Ran L. et al., 2023 [75] | Mice | C57BL/6J and Trpm8−/− | TRPM8 | Menthol and Tacrolimus- ag/ | Corneal epithelium | KO-of the gene | Proliferative | The cornea’s epithelial repair may be improved by the loss of TRPM8 function in corneal wound healing, but it could also increase the risk of epithelial scars and opacifications. | Loss of TRPM8 function promotes re-epithelization after debridement. | |
Zhang S. et al., 2023 [76] | Rats | Female/Sprague-Dawley | TRPM2 | /2-APB-antag | Spinal cord injury (SCI) | TRPM2 SiRNA | Inflammatory | Inhibition of TRPM2 with 2-APB or TRPM2 siRNA will ameliorate the apoptosis of endothelial cells and promote angiogenesis, subsequently enhance blood-spinal cord barrier integrity and improve the locomotor function recovery of diabetes combined with SCI in rats. | TRPM2: antagonism restore BHE integrity; ↓Reactive oxygen species through suppression of p-CaMKII/eNOS; ↑angiogenesis in some conditions: type 1 diabetes mellitus (T1DM) and SCI. | |
Ueno K. et al., 2023 [77] | Mice | TRPV1 KO and C57BL/6N/Male and female mice | TRPV1 | TRPV1 KO and WT mice | Wound produced by dorsal excision | KO of the gene of TRPV1 | Inflammatory | Postoperative day 7 and 10 showed a significant increase in the remaining cutaneous lesion in KO than WT mice. Histological examination revealed a significant delay in re-epithelialization in KO mice at postoperative day 7. | ↓ re-epithelization in KO mice; ↑ Neutrophil Extracellular TRAPS in KO mice. | |
Taivanbat B. et al., 2023 [78] | Mice | WT and TRPV4 KO mice. | TRPV4 | Wound produced by dorsal excision | KO of the gene | Inflammatory | Gender and/or the animals’ numbers are not specified | The migration of keratinocytes and fibroblasts and the increase in collagen accumulation in the wound area depended on TRPV4, which promotes cutaneous wounds healing. | On days 2–6, KO mice experienced a delay in healing. On day 4, the WT mice experienced a smaller lesion. KO mice have less granular tissue. The wound healing process is more complex and some intermediary data are conflicting with the final results. | |
Qu Y. et al., 2023 [79] | Mice | male and female/black C57BL/6 mice | TRPV3 | /Osthole and Verbascoside-antag | Ear exhibiting swelling and dermatitis induced by a single exposure of weak UVB radiation | KO of the gene | Inflammatory | Mice of both genders were used. Small number of mice per batch. The numbers of male and female mice are not specified | The TRPV3 gene KO can alleviate UVB-induced ear swelling and dorsal skin inflammation. The inhibitors of TRPV3, osthole and verbascoside, that were topically applied showed a dose-dependent reduction in skin inflammation and lesions. | The TRPV3 gene is up-regulated at the site of UVB irradiation both in fibroblast and keratinocytes and pharmacological manipulation of TRPV3 could alleviate the swelling and inflammation. |
Opas I.M. et al., 2023 [80] | Mice | WT and TRPA1-deficient male B6;129P-Trpa1(tm1Kykw)/J mice | TRPA1 | Scleroderma like induced by bleomycin | KO of the gene | Inflammatory | Mice of both genders were used. Small number of mice per batch. There is no control for KO mice batch. There were different amounts of solvent DMSO used, which is a very well-known tissue preservative and substance involved in cell survival. The numbers of male and female mice are not specified. | Bleomycin-induced scleroderma is aggravated by acting on TRPA1 which enhances fibrotic and inflammatory responses. TRPA1-blocking therapy has the potential to reduce M2 macrophage-driven diseases (macrophages depending on the exposure to IL4, IL10, IL13) such as systemic sclerosis and scleroderma. | Mice with TRPA1 deficiency had lower expression of collagens 1A1, 1A2 and 3A1 after taking bleomycin and manifest improvements in this model of cutaneous sclerosis. | |
Choi CR. et al., 2024 [81] | Rats | Sprague Dawley rat male | BKCa | /KCl-antag | BKCa SiRNA in rats | Proliferative | The researchers did not utilize a splint in order to inhibit wound contraction. | Keratinocyte wound healing is accelerated by blocking the BKCa channel with KCl and by influencing cell proliferation, migration and F-actin polymerization. | In the group treated with 25 mM KCl, the wound sizes at 7, 14 and 21 days post-injury were significantly smaller than those in the control group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigore, A.; Coman, O.A.; Păunescu, H.; Costescu, M.; Fulga, I. Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing—A Review. Int. J. Mol. Sci. 2024, 25, 6753. https://doi.org/10.3390/ijms25126753
Grigore A, Coman OA, Păunescu H, Costescu M, Fulga I. Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing—A Review. International Journal of Molecular Sciences. 2024; 25(12):6753. https://doi.org/10.3390/ijms25126753
Chicago/Turabian StyleGrigore, Alexandra, Oana Andreia Coman, Horia Păunescu, Mihnea Costescu, and Ion Fulga. 2024. "Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing—A Review" International Journal of Molecular Sciences 25, no. 12: 6753. https://doi.org/10.3390/ijms25126753
APA StyleGrigore, A., Coman, O. A., Păunescu, H., Costescu, M., & Fulga, I. (2024). Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing—A Review. International Journal of Molecular Sciences, 25(12), 6753. https://doi.org/10.3390/ijms25126753