Reviewing the Structure–Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches
Abstract
:1. Introduction
2. Fundamental Traits in the Study of PolyQ Diseases
2.1. Shape and Structure
2.2. Structural Networks and the Structure–Function Paradigm
2.3. When Dynamics Comes into Play
3. PolyQ Expansions and Neurodegeneration
PolyQ Disease (Abbrev.) | Targeted Protein | Protein Size (kDa) * | Gene and Locus | WT Function of Protein | Normal CAG Repeats | Pathogenic CAG Repeats | Most Damaged Brain Areas | Neuropathology | Clinical Aspects |
---|---|---|---|---|---|---|---|---|---|
SCA 1 | Ataxin-1 | 87 | ATXN1, 6p23 | Chromatin binding factor; Transcriptional co-repressor | 6–44 | 39–83 | Cerebellum | Purkinje cells Dentate inferior olive Cranial nerve nuclei Substantia nigra Subthalamic nucleus Putamen Pallidum | → Universal gait and limb ataxia → Dysarthria → Mild optic atrophy → Hypertonia (early)/hypotonia (late) → Dysphagia → Difficulties in breathing → Extrapyramidal findings |
SCA 2 | Ataxin-2 | 150 | ATXN2, 12q24.1 | Stress granules; Possible participation in gene; Translational repression in vivo | 15–31 | 34–200 | Cerebellum | Purkinje cells Inferior olive Pontocerebellar nuclei Substantia nigra Striatum Demyelination of posterior columns Cerebral cortex Spinocerebellar tracts | → Near universal gait and limb ataxia → Dysarthria → Abnormal eye movements → Neuropathy → Chorea → Dystonia → Dementia |
SCA 3 | Ataxin-3 | 48 | ATXN3, 14q24.3-32.2 | Proteolytic processing of other proteins | 12–41 | 55–84 | Spinal cord | Globus pallidus Subthalamic nucleus Substantia nigra Dentate nucleus Pontine and cranial nerve nuclei Spinal neurons Peripheral neuropathy | → Dystonia and rigidity (for type 1—early onset) → Cerebellar and pyramidal signs (for type 2) → Peripheral neuropathy (for type 3—late onset) → Parkinsonism (for type 4) |
SCA 6 | Ca+2 channel (α1A) | 280 | CACNA1, 19p13 | α1A-subunit of the voltage-dependent (P/Q) calcium channel | 4–17 | 20–33 | Cerebellum | Loss of Purkinje and granular cells Neuron death in dentate nucleus and inferior olive Atrophy in brain stem | → Spasticity → Peripheral neuropathy → Dysphagia → Parkinsonism → Balance problems → Ophtalmoplegia |
SCA 7 | Ataxin-7 | 96 | ATXN7, 3p14-21.1 | Regulation of gene transcription | 4–35 | 37–306 | Eye retina | Retina Cerebellar Purkinje and granule cells dentate Inferior olive Subthalamic nucleus and spinal motor neurons | → Visual loss → Hearing impairment → Gait and limb ataxia → Dysarthria → Pyramidal findings → Dysphagia |
SCA 8 | CAG/CTG | 40 | ATXN8, 13q21 | Transcription and RNA processing | 14–31 | 8–250 | Cerebellum | Substantia nigra Loss of Purkinje neurons | → Gait and limb ataxia → Dysarthria → Eye movement abnormalities → Extrapyramidal signs → Sensory neuropathy → Brain stem signs |
SCA 17 | Tata-binding protein (TBP) | 42 | TBP, 6p27 | General transcription initiation factor | 25–42 | 45–63 | Cerebellum | Small neurons in caudate nucleus and putamen Purkinje cells Thalamus Frontal and temporal cortex | → Gait and limb ataxia → Dementia → Parkinsonism → Chorea/dystonia → Hyperreflexia |
HD | Huntingtin | 348 | IT15, 4p16.3 | Cellular trafficking; Scaffold protein | 6–35 | 36–250 | Striatum | Cortex Basal ganglia Striatum | → Involuntary choreic movements → Cognitive impairment → Dementia |
SBMA | Androgen receptor | 99 | ARX-chromosome, Xq11-q12 | Receptor | 11–34 | 38–62 | Spinal cord and brainstem | Anterior horn cells in spinal cord Dorsal ganglia | → Muscle cramps → Walking disability → Decreased deep tendon reflexes → Dysarthria → Dysphagia |
DRPLA | DRPLA protein or ATN1 | 190 | ATN1DRPLA, 12p13 | Transcription co-regulator | 3–35 | 49–88 | Dentatorubral and pallidoluysian systems | Dentatorubral and pallidoluysian systems Basal ganglia Cerebellum | → Ataxia → Choreathetosis → Dementia (adults) → Mental retardation (childhood) → Behavioral disturbances → Myoclonus → Epilepsy |
4. PolyQ Disorders
4.1. Spinocerebellar Ataxias
4.2. Huntington’s Disease
4.3. Spinal and Bulbar Muscular Atrophy
4.4. Dentatorubral Pallidoluysian Atrophy
5. PolyQ Accumulation Behavior and Theoretical Models
5.1. Aggregation Patterns
5.2. Computational Studies
6. Structure–Dynamics–Function Correlations
6.1. Experimental Studies
6.2. Refined Models: Synergies between Theory and Experiment
- As part of a loop linking two β-strands;
- Within the core of an extended, stable helix;
- At the terminal end of a helix, exhibiting some loss of helical integrity;
- As a segment of a shorter helix;
- At the onset of a lengthy, stable helix;
- Or within coiled-coil structures, maintained by polyQ-induced interactions between helices.
7. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
polyQ | Polyglutamine |
3D | Three-dimensional |
H-bonds | Hydrogen bonds |
2D | Two-dimensional |
Cryo-EM | Cryogenic electron microscopy |
NMR | Nuclear magnetic resonance |
WT | Wild type |
PSN | Protein structural network |
P2P | Protein structural classification |
PCN | Protein contact network |
NAPS | Network analysis of protein structure |
PPI | Protein–protein interaction |
NNA | Neuronal network algorithm |
PCA | Principal component analysis |
vdW | Van der Waals |
DNM | Dynamics network models |
ENM | Elastic network models |
PEN | Protein energy networks |
PRS | Perturbation response scanning |
AAN | Amino acid network |
SAXS | Small-angle X-ray scattering |
MS | Mass spectrometry |
AFM | Atomic force microscopy |
smFRET | Single-molecule fluorescence resonance energy transfer |
ML | Machine learning |
AI | Artificial intelligence |
FFs | Force fields |
Q | Glutamine |
AR | Androgen receptor |
SBMA | Spinal and bulbar muscular atrophy |
SCA | Spinocerebellar ataxia |
HD | Huntington’s disease |
DRPLA | Dentatorubral pallidoluysian atrophy |
CAG | Cytosine adenine guanine |
CAA | Cytosine adenine adenine |
CCG | Cytosine cytosine guanine |
CCA | Cytosine cytosine adenine |
CAT | Cytosine adenine thymine |
CAC | Cytosine adenine cytosine |
CTA | Cytosine thymine adenine |
CTG | Cytosine thymine guanine |
CNS | Central nervous system |
ATP | Adenosine 5′-triphosphate |
GOF | Gain of function |
LOF | Loss of function |
SSM | Slipped strand mispairing |
RNA | Ribonucleic acid |
TF | Transcription factor |
AV | Autophagic vesicle |
UPS | Ubiquitin–proteasome system |
HTT | Huntingtin |
mHTT | Mutant huntingtin |
wtHTT | Wild-type huntingtin |
IT15 | Interesting transcript 15 |
PRD | Proline-rich domain |
MSNs | Medium spiny neurons |
ATPase | Adenosine triphosphatase |
NTD | Amino-terminal transactivation domain |
DBD | DNA-binding domain |
LBD | Ligand-binding domain |
LC3 | Microtubule-associated protein 1A/1B-light chain 3 |
TFEB | Transcription factor EB |
ATN1 | Atrophin-1 |
MD | Molecular dynamics |
REMD | Replica exchange MD |
CG | Coarse grain |
MC | Monte Carlo simulation |
PPII | Poly-l-proline type II |
QM | Quantum mechanics |
MM | Molecular mechanics |
polyP | Polyproline |
polyA | Polyalanine |
FLIM | Fluorescence lifetime imaging |
FLIM-FRET | FLIM microscopy detection of Förster resonance energy transfer |
CD | Circular dichroism |
DLS | Dynamic light scattering |
FTIR | Fourier transform infrared |
NPCs | Neural progenitor cells |
iPSCs | Induced pluripotent stem cells |
MSCs | Mesenchymal stem cells |
ASOs | Antisense oligonucleotides |
CSF | Cerebrospinal fluid |
AAV | Adeno-associated virus |
siRNA | Small interfering RNA |
ICV | Intracerebroventricular |
CaM | Calmodulin |
UVRR | Ultra-Violet Resonance Raman |
References
- Huntley, M.A.; Golding, G.B. Simple sequences are rare in the Protein Data Bank. Proteins 2002, 48, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Karlin, S.; Burge, C. Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc. Natl. Acad. Sci. USA 1996, 93, 1560–1565. [Google Scholar] [CrossRef] [PubMed]
- Jorda, J.; Kajava, A.V. Protein Homorepeats. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 79, pp. 59–88. [Google Scholar]
- Fondon, J.W.; Garner, H.R. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci. USA 2004, 101, 18058–18063. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, J.R.; Willemsen, R.; Oostra, B.A. Microsatellite repeat instability and neurological disease. Bioessays 2009, 31, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Elena-Real, C.A.; Mier, P.; Sibille, N.; Andrade-Navarro, M.A.; Bernadó, P. Structure–function relationships in protein homorepeats. Curr. Opin. Struct. Biol. 2023, 83, 102726. [Google Scholar] [CrossRef] [PubMed]
- Chavali, S.; Singh, A.K.; Santhanam, B.; Babu, M.M. Amino acid homorepeats in proteins. Nat. Rev. Chem. 2020, 4, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.; Cunha-Santos, J.; Vasconcelos-Ferreira, A.; Duarte-Neves, J.; Onofre, I.; Carmona, V.; Aveleira, C.A.; Lopes, S.M.; Lobo, D.D.; Martins, I.M.; et al. Nuclear Aging in Polyglutamine-Induced Neurodegeneration. bioRxiv 2023. [Google Scholar] [CrossRef]
- Bhagavan, N.V.; Ha, C.-E. Three-Dimensional Structure of Proteins and Disorders of Protein Misfolding. In Essentials of Medical Biochemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 31–51. [Google Scholar] [CrossRef]
- Chirigati, F. Predicting protein structure from cryo-EM data. Nat. Comput. Sci. 2021, 1, 96. [Google Scholar] [CrossRef] [PubMed]
- Prabantu, V.M.; Gadiyaram, V.; Vishveshwara, S.; Srinivasan, N. Understanding structural variability in proteins using protein structural networks. Curr. Res. Struct. Biol. 2022, 4, 134–145. [Google Scholar] [CrossRef]
- Burley, S.K.; Berman, H.M.; Duarte, J.M.; Feng, Z.; Flatt, J.W.; Hudson, B.P.; Lowe, R.; Peisach, E.; Piehl, D.W.; Rose, Y.; et al. Protein Data Bank: A Comprehensive Review of 3D Structure Holdings and Worldwide Utilization by Researchers, Educators, and Students. Biomolecules 2022, 12, 1425. [Google Scholar] [CrossRef]
- Shoemaker, S.C.; Ando, N. X-rays in the Cryo-Electron Microscopy Era: Structural Biology’s Dynamic Future. Biochemistry 2018, 57, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Gauto, D.F.; Estrozi, L.F.; Schwieters, C.D.; Effantin, G.; Macek, P.; Sounier, R.; Sivertsen, A.C.; Schmidt, E.; Kerfah, R.; Mas, G.; et al. Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Nat. Commun. 2019, 10, 2697. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963, 7, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Hong, N.; Baier, F.; Jackson, C.J.; Tokuriki, N. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects. Biochemistry 2016, 55, 4583–4593. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, N.; Suresh, S.; Gopi, S.; Raman, K.; Naganathan, A.N. A General Mechanism for the Propagation of Mutational Effects in Proteins. Biochemistry 2017, 56, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Guarnera, E.; Berezovsky, I.N. On the perturbation nature of allostery: Sites, mutations, and signal modulation. Curr. Opin. Struct. Biol. 2019, 56, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Guarnera, E.; Berezovsky, I.N. Toward Comprehensive Allosteric Control over Protein Activity. Structure 2019, 27, 866–878.e1. [Google Scholar] [CrossRef] [PubMed]
- Guarnera, E.; Berezovsky, I.N. Allosteric drugs and mutations: Chances, challenges, and necessity. Curr. Opin. Struct. Biol. 2020, 62, 149–157. [Google Scholar] [CrossRef]
- Naganathan, A.N. Modulation of allosteric coupling by mutations: From protein dynamics and packing to altered native ensembles and function. Curr. Opin. Struct. Biol. 2019, 54, 1–9. [Google Scholar] [CrossRef]
- Prabantu, V.M.; Naveenkumar, N.; Srinivasan, N. Influence of Disease-Causing Mutations on Protein Structural Networks. Front. Mol. Biosci. 2021, 7, 620554. [Google Scholar] [CrossRef]
- Rose, G.D. Ramachandran maps for side chains in globular proteins. Proteins 2019, 87, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Gromiha, M.M.; Selvaraj, S. Inter-residue interactions in protein folding and stability. Prog. Biophys. Mol. Biol. 2004, 86, 235–277. [Google Scholar] [CrossRef] [PubMed]
- Baker, D. A surprising simplicity to protein folding. Nature 2000, 405, 39–42. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Roche, R.; Shuvo, M.H.; Bhattacharya, D. Recent Advances in Protein Homology Detection Propelled by Inter-Residue Interaction Map Threading. Front. Mol. Biosci. 2021, 8, 643752. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Vijayabaskar, M.S.; Vishveshwara, S. Interaction Energy Based Protein Structure Networks. Biophys. J. 2010, 99, 3704–3715. [Google Scholar] [CrossRef]
- Taylor, N.R. Small world network strategies for studying protein structures and binding. Comput. Struct. Biotechnol. J. 2013, 5, e201302006. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, M.; Ghosh, S.; Vishveshwara, S. Protein Structure and Function: Looking through the Network of Side-Chain Interactions. Curr. Protein Pept. Sci. 2015, 17, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Costanzi, S. Topological Analyses of Protein-Ligand Binding: A Network Approach. Curr. Protein Pept. Sci. 2015, 17, 37–40. [Google Scholar] [CrossRef]
- Guarnera, E.; Tan, Z.W.; Zheng, Z.; Berezovsky, I.N. AlloSigMA: Allosteric signaling and mutation analysis server. Bioinformatics 2017, 33, 3996–3998. [Google Scholar] [CrossRef]
- Newaz, K.; Ghalehnovi, M.; Rahnama, A.; Antsaklis, P.J.; Milenković, T. Network-based protein structural classification. R. Soc. Open Sci. 2020, 7, 191461. [Google Scholar] [CrossRef]
- Grewal, R.; Roy, S. Modeling proteins as residue interaction networks. Protein Pept. Lett. 2015, 22, 923–933. [Google Scholar] [CrossRef]
- Yan, W.; Zhou, J.; Sun, M.; Chen, J.; Hu, G.; Shen, B. The construction of an amino acid network for understanding protein structure and function. Amino Acids 2014, 46, 1419–1439. [Google Scholar] [CrossRef]
- Di Paola, L.; De Ruvo, M.; Paci, P.; Santoni, D.; Giuliani, A. Protein Contact Networks: An Emerging Paradigm in Chemistry. Chem. Rev. 2013, 113, 1598–1613. [Google Scholar] [CrossRef]
- Greene, L.H. Protein structure networks. Brief. Funct. Genom. 2012, 11, 469–478. [Google Scholar] [CrossRef]
- Brinda, K.V.; Vishveshwara, S. A Network Representation of Protein Structures: Implications for Protein Stability. Biophys. J. 2005, 89, 4159–4170. [Google Scholar] [CrossRef]
- Böde, C.; Kovács, I.A.; Szalay, M.S.; Palotai, R.; Korcsmáros, T.; Csermely, P. Network analysis of protein dynamics. FEBS Lett. 2007, 581, 2776–2782. [Google Scholar] [CrossRef]
- Amitai, G.; Shemesh, A.; Sitbon, E.; Shklar, M.; Netanely, D.; Venger, I.; Pietrokovski, S. Network Analysis of Protein Structures Identifies Functional Residues. J. Mol. Biol. 2004, 344, 1135–1146. [Google Scholar] [CrossRef]
- Tse, A.; Verkhivker, G.M. Molecular Dynamics Simulations and Structural Network Analysis of c-Abl and c-Src Kinase Core Proteins: Capturing Allosteric Mechanisms and Communication Pathways from Residue Centrality. J. Chem. Inf. Model. 2015, 55, 1645–1662. [Google Scholar] [CrossRef]
- Sistla, R.K.; Brinda, K.V.; Vishveshwara, S. Identification of domains and domain interface residues in multidomain proteins from graph spectral method. Proteins 2005, 59, 616–626. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Parekh, N. Analysis of graph centrality measures for identifying Ankyrin repeats. In Proceedings of the 2012 World Congress on Information and Communication Technologies, Trivandrum, India, 30 October–2 November 2012; pp. 156–161. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Parekh, N. NAPS: Network Analysis of Protein Structures. Nucleic Acids Res. 2016, 44, W375–W382. [Google Scholar] [CrossRef]
- Bastolla, U.; Dehouck, Y.; Echave, J. What evolution tells us about protein physics, and protein physics tells us about evolution. Curr. Opin. Struct. Biol. 2017, 42, 59–66. [Google Scholar] [CrossRef]
- Dunker, A.K.; Silman, I.; Uversky, V.N.; Sussman, J.L. Function and structure of inherently disordered proteins. Curr. Opin. Struct. Biol. 2008, 18, 756–764. [Google Scholar] [CrossRef]
- Fuxreiter, M. Towards a Stochastic Paradigm: From Fuzzy Ensembles to Cellular Functions. Molecules 2018, 23, 3008. [Google Scholar] [CrossRef]
- Copley, S.D. Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 2017, 47, 167–175. [Google Scholar] [CrossRef]
- Manglik, A.; Kim, T.H.; Masureel, M.; Altenbach, C.; Yang, Z.; Hilger, D.; Lerch, M.T.; Kobilka, T.S.; Thian, F.S.; Hubbell, W.L.; et al. Structural Insights into the Dynamic Process of β 2 -Adrenergic Receptor Signaling. Cell 2015, 161, 1101–1111. [Google Scholar] [CrossRef]
- Ross, E.D.; Baxa, U.; Wickner, R.B. Scrambled Prion Domains Form Prions and Amyloid. Mol. Cell. Biol. 2004, 24, 7206–7213. [Google Scholar] [CrossRef]
- Franzmann, T.M.; Jahnel, M.; Pozniakovsky, A.; Mahamid, J.; Holehouse, A.S.; Nüske, E.; Richter, D.; Baumeister, W.; Grill, S.W.; Pappu, R.V.; et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 2018, 359, eaao5654. [Google Scholar] [CrossRef]
- Pacini, L.; Dorantes-Gilardi, R.; Vuillon, L.; Lesieur, C. Mapping Function from Dynamics: Future Challenges for Network-Based Models of Protein Structures. Front. Mol. Biosci. 2021, 8, 744646. [Google Scholar] [CrossRef]
- Jaffe, E.K. Wrangling Shape-Shifting Morpheeins to Tackle Disease and Approach Drug Discovery. Front. Mol. Biosci. 2020, 7, 582966. [Google Scholar] [CrossRef]
- Parisi, G.; Zea, D.J.; Monzon, A.M.; Marino-Buslje, C. Conformational diversity and the emergence of sequence signatures during evolution. Curr. Opin. Struct. Biol. 2015, 32, 58–65. [Google Scholar] [CrossRef]
- Surpeta, B.; Sequeiros-Borja, C.; Brezovsky, J. Dynamics, a Powerful Component of Current and Future in Silico Approaches for Protein Design and Engineering. Int. J. Mol. Sci. 2020, 21, 2713. [Google Scholar] [CrossRef]
- Leitner, D.M.; Yamato, T. Mapping Energy Transport Networks in Proteins. In Reviews in Computational Chemistry; Parrill, A.L., Lipkowitz, K.B., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 63–113. [Google Scholar] [CrossRef]
- Liang, Z.; Hu, J.; Yan, W.; Jiang, H.; Hu, G.; Luo, C. Deciphering the role of dimer interface in intrinsic dynamics and allosteric pathways underlying the functional transformation of DNMT3A. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2018, 1862, 1667–1679. [Google Scholar] [CrossRef]
- Ponzoni, L.; Bahar, I. Structural dynamics is a determinant of the functional significance of missense variants. Proc. Natl. Acad. Sci. USA 2018, 115, 4164–4169. [Google Scholar] [CrossRef]
- Bourgeat, L.; Pacini, L.; Serghei, A.; Lesieur, C. Experimental diagnostic of sequence-variant dynamic perturbations revealed by broadband dielectric spectroscopy. Structure 2021, 29, 1419–1429.e3. [Google Scholar] [CrossRef]
- Gheeraert, A.; Pacini, L.; Batista, V.S.; Vuillon, L.; Lesieur, C.; Rivalta, I. Exploring Allosteric Pathways of a V-Type Enzyme with Dynamical Perturbation Networks. J. Phys. Chem. B 2019, 123, 3452–3461. [Google Scholar] [CrossRef]
- Melo, M.C.R.; Bernardi, R.C.; de la Fuente-Nunez, C.; Luthey-Schulten, Z. Generalized correlation-based dynamical network analysis: A new high-performance approach for identifying allosteric communications in molecular dynamics trajectories. J. Chem. Phys. 2020, 153, 134104. [Google Scholar] [CrossRef]
- Liang, Z.; Verkhivker, G.M.; Hu, G. Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: Theory, tools and applications. Brief. Bioinform. 2020, 21, 815–835. [Google Scholar] [CrossRef]
- Di Paola, L.; Leitner, D.M. Network models of biological adaptation at the molecular scale. Phys. Life Rev. 2021, 38, 124–126. [Google Scholar] [CrossRef]
- Wingert, B.; Krieger, J.; Li, H.; Bahar, I. Adaptability and specificity: How do proteins balance opposing needs to achieve function? Curr. Opin. Struct. Biol. 2021, 67, 25–32. [Google Scholar] [CrossRef]
- Dorantes-Gilardi, R.; Bourgeat, L.; Pacini, L.; Vuillon, L.; Lesieur, C. In proteins, the structural responses of a position to mutation rely on the Goldilocks principle: Not too many links, not too few. Phys. Chem. Chem. Phys. 2018, 20, 25399–25410. [Google Scholar] [CrossRef]
- Salamanca Viloria, J.; Allega, M.F.; Lambrughi, M.; Papaleo, E. An optimal distance cutoff for contact-based Protein Structure Networks using side-chain centers of mass. Sci. Rep. 2017, 7, 2838. [Google Scholar] [CrossRef]
- Muñoz, V.; Cerminara, M. When fast is better: Protein folding fundamentals and mechanisms from ultrafast approaches. Biochem. J. 2016, 473, 2545–2559. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.; Ahmad, N.; Singh, T.P.; Sharma, S.; Sharma, P. Experimental techniques to study protein dynamics and conformations. In Advances in Protein Molecular and Structural Biology Methods; Elsevier: Amsterdam, The Netherlands, 2022; pp. 181–197. [Google Scholar] [CrossRef]
- Noé, F.; De Fabritiis, G.; Clementi, C. Machine learning for protein folding and dynamics. Curr. Opin. Struct. Biol. 2020, 60, 77–84. [Google Scholar] [CrossRef]
- Robustelli, P.; Piana, S.; Shaw, D.E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. USA 2018, 115, E4758–E4766. [Google Scholar] [CrossRef]
- Davtyan, A.; Schafer, N.P.; Zheng, W.; Clementi, C.; Wolynes, P.G.; Papoian, G.A. AWSEM-MD: Protein Structure Prediction Using Coarse-Grained Physical Potentials and Bioinformatically Based Local Structure Biasing. J. Phys. Chem. B 2012, 116, 8494–8503. [Google Scholar] [CrossRef]
- Kluber, A.; Burt, T.A.; Clementi, C. Size and topology modulate the effects of frustration in protein folding. Proc. Natl. Acad. Sci. USA 2018, 115, 9234–9239. [Google Scholar] [CrossRef]
- Chavali, S.; Chavali, P.L.; Chalancon, G.; de Groot, N.S.; Gemayel, R.; Latysheva, N.S.; Ing-Simmons, E.; Verstrepen, K.J.; Balaji, S.; Babu, M.M. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. Nat. Struct. Mol. Biol. 2017, 24, 765–777. [Google Scholar] [CrossRef]
- Lobanov, M.Y.; Galzitskaya, O.V. Occurrence of disordered patterns and homorepeats in eukaryotic and bacterial proteomes. Mol. BioSyst. 2012, 8, 327–337. [Google Scholar] [CrossRef]
- Faber, P.W.; Kuiper, G.; van Rooij, H.; van der Korput, J.; Brinkmann, A.; Trapman, J. The N-terminal domain of the human androgen receptor is encoded by one, large exon. Mol. Cell. Endocrinol. 1989, 61, 257–262. [Google Scholar] [CrossRef]
- La Spada, A.R.; Roling, D.B.; Harding, A.E.; Warner, C.L.; Spiegel, R.; Hausmanowa-Petrusewicz, I.; Yee, W.-C.; Fischbeck, K.H. Meiotic stability and genotype–phenotype correlation of the trinucleotide repeat in X–linked spinal and bulbar muscular atrophy. Nat. Genet. 1992, 2, 301–304. [Google Scholar] [CrossRef]
- Gatchel, J.R.; Zoghbi, H.Y. Diseases of Unstable Repeat Expansion: Mechanisms and Common Principles. Nat. Rev. Genet. 2005, 6, 743–755. [Google Scholar] [CrossRef]
- Almeida, B.; Fernandes, S.; Abreu, I.A.; Macedo-Ribeiro, S. Trinucleotide Repeats: A Structural Perspective. Front. Neurol. 2013, 4, 49158. [Google Scholar] [CrossRef]
- Mier, P.; Andrade-Navarro, M.A. Between Interactions and Aggregates: The PolyQ Balance. Genome Biol. Evol. 2021, 13, evab246. [Google Scholar] [CrossRef]
- Minakawa, E.N.; Nagai, Y. Protein Aggregation Inhibitors as Disease-Modifying Therapies for Polyglutamine Diseases. Front. Neurosci. 2021, 15, 621996. [Google Scholar] [CrossRef]
- Lieberman, A.P.; Shakkottai, V.G.; Albin, R.L. Polyglutamine Repeats in Neurodegenerative Diseases. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 1–27. [Google Scholar] [CrossRef]
- Hirunagi, T.; Sahashi, K.; Meilleur, K.G.; Katsuno, M. Nucleic Acid-Based Therapeutic Approach for Spinal and Bulbar Muscular Atrophy and Related Neurological Disorders. Genes 2022, 13, 109. [Google Scholar] [CrossRef]
- Sahashi, K.; Katsuno, M. Pathogenesis of Polyglutamine Diseases. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Rudich, P.; Watkins, S.; Lamitina, T. PolyQ-independent toxicity associated with novel translational products from CAG repeat expansions. PLoS ONE 2020, 15, e0227464. [Google Scholar] [CrossRef]
- Takeuchi, T.; Nagai, Y. Protein Misfolding and Aggregation as a Therapeutic Target for Polyglutamine Diseases. Brain Sci. 2017, 7, 128. [Google Scholar] [CrossRef]
- Nagai, Y.; Minakawa, E.N. Drug Development for Neurodegenerative Diseases. In Neurodegenerative Disorders as Systemic Diseases; Wada, K., Ed.; Springer: Tokyo, Japan, 2015; pp. 183–216. [Google Scholar] [CrossRef]
- Paulson, H. Repeat expansion diseases. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 147, pp. 105–123. [Google Scholar]
- Stoyas, C.A.; La Spada, A.R. The CAG–polyglutamine repeat diseases: A clinical, molecular, genetic, and pathophysiologic nosology. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 147, pp. 143–170. [Google Scholar]
- Totzeck, F.; Andrade-Navarro, M.A.; Mier, P. The Protein Structure Context of PolyQ Regions. PLoS ONE 2017, 12, e0170801. [Google Scholar] [CrossRef]
- Mier, P.; Elena-Real, C.; Urbanek, A.; Bernadó, P.; Andrade-Navarro, M.A. The importance of definitions in the study of polyQ regions: A tale of thresholds, impurities and sequence context. Comput. Struct. Biotechnol. J. 2020, 18, 306–313. [Google Scholar] [CrossRef]
- Ramazzotti, M.; Monsellier, E.; Kamoun, C.; Degl’Innocenti, D.; Melki, R. Polyglutamine repeats are associated to specific sequence biases that are conserved among eukaryotes. PLoS ONE 2012, 7, e30824. [Google Scholar] [CrossRef]
- Shao, J.; Diamond, M.I. Polyglutamine diseases: Emerging concepts in pathogenesis and therapy. Hum. Mol. Genet. 2007, 16, R115–R123. [Google Scholar] [CrossRef]
- Katti, M.V.; Ranjekar, P.K.; Gupta, V.S. Differential Distribution of Simple Sequence Repeats in Eukaryotic Genome Sequences. Mol. Biol. Evol. 2001, 18, 1161–1167. [Google Scholar] [CrossRef]
- Karlin, S.; Brocchieri, L.; Bergman, A.; Mrázek, J.; Gentles, A.J. Amino acid runs in eukaryotic proteomes and disease associations. Proc. Natl. Acad. Sci. USA 2002, 99, 333–338. [Google Scholar] [CrossRef]
- Garden, G.A.; Libby, R.T.; Fu, Y.-H.; Kinoshita, Y.; Huang, J.; Possin, D.E.; Smith, A.C.; Martinez, R.A.; Fine, G.C.; Grote, S.K.; et al. Polyglutamine-Expanded Ataxin-7 Promotes Non-Cell-Autonomous Purkinje Cell Degeneration and Displays Proteolytic Cleavage in Ataxic Transgenic Mice. J. Neurosci. 2002, 22, 4897–4905. [Google Scholar] [CrossRef]
- Kubodera, T.; Yokota, T.; Ohwada, K.; Ishikawa, K.; Miura, H.; Matsuoka, T.; Mizusawa, H. Proteolytic cleavage and cellular toxicity of the human α1A calcium channel in spinocerebellar ataxia type 6. Neurosci. Lett. 2003, 341, 74–78. [Google Scholar] [CrossRef]
- Friedman, M.J.; Wang, C.-E.; Li, X.-J.; Li, S. Polyglutamine Expansion Reduces the Association of TATA-binding Protein with DNA and Induces DNA Binding-independent Neurotoxicity. J. Biol. Chem. 2008, 283, 8283–8290. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, M.; Thomson, F.; Zavodszky, E.; Rubinsztein, D.C. Autophagy and polyglutamine diseases. Prog. Neurobiol. 2012, 97, 67–82. [Google Scholar] [CrossRef]
- Ren, H.; Hao, Z.; Wang, G. Autophagy and Polyglutamine Disease. In Autophagy: Biology and Diseases; Le, W., Ed.; Springer: Singapore, 2020; Volume 1207, pp. 149–161. [Google Scholar]
- Boland, B.; Kumar, A.; Lee, S.; Platt, F.M.; Wegiel, J.; Yu, W.H.; Nixon, R.A. Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 2008, 28, 6926–6937. [Google Scholar] [CrossRef]
- La Spada, A.R.; Taylor, J.P. Repeat expansion disease: Progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 2010, 11, 247–258. [Google Scholar] [CrossRef]
- Cortes, C.J.; La Spada, A.R. Autophagy in polyglutamine disease: Imposing order on disorder or contributing to the chaos? Mol. Cell. Neurosci. 2015, 66, 53–61. [Google Scholar] [CrossRef]
- Son, J.H.; Shim, J.H.; Kim, K.-H.; Ha, J.-Y.; Han, J.Y. Neuronal autophagy and neurodegenerative diseases. Exp. Mol. Med. 2012, 44, 89. [Google Scholar] [CrossRef]
- Gu, M.; Gash, M.T.; Mann, V.M.; Javoy-Agid, F.; Cooper, J.M.; Schapira, A.H.V. Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol. 1996, 39, 385–389. [Google Scholar] [CrossRef]
- Sorolla, M.A.; Reverter-Branchat, G.; Tamarit, J.; Ferrer, I.; Ros, J.; Cabiscol, E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic. Biol. Med. 2008, 45, 667–678. [Google Scholar] [CrossRef]
- Stack, E.C.; Matson, W.R.; Ferrante, R.J. Evidence of Oxidant Damage in Huntington’s Disease: Translational Strategies Using Antioxidants. Ann. N. Y. Acad. Sci. 2008, 1147, 79–92. [Google Scholar] [CrossRef]
- Jackson, W.S. Selective vulnerability to neurodegenerative disease: The curious case of Prion Protein. Dis. Models Mech. 2014, 7, 21–29. [Google Scholar] [CrossRef]
- Monaco, A.; Fraldi, A. Protein Aggregation and Dysfunction of Autophagy-Lysosomal Pathway: A Vicious Cycle in Lysosomal Storage Diseases. Front. Mol. Neurosci. 2020, 13, 37. [Google Scholar] [CrossRef]
- Ciechanover, A.; Kwon, Y.T. Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies. Exp. Mol. Med. 2015, 47, e147. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, R.; Ramakers, M.; De Smet, F.; Claes, F.; Khodaparast, L.; Khodaparast, L.; Couceiro, J.R.; Langenberg, T.; Siemons, M.; Nyström, S.; et al. De novo design of a biologically active amyloid. Science 2016, 354, aah4949. [Google Scholar] [CrossRef] [PubMed]
- Watt, N.T.; Taylor, D.R.; Kerrigan, T.L.; Griffiths, H.H.; Rushworth, J.V.; Whitehouse, I.J.; Hooper, N.M. Prion protein facilitates uptake of zinc into neuronal cells. Nat. Commun. 2012, 3, 1134. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Tsutsui, S.; Hameed, S.; Kannanayakal, T.J.; Chen, L.; Xia, P.; Engbers, J.D.; Lipton, S.A.; Stys, P.K.; Zamponi, G.W. Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 2012, 109, 1737–1742. [Google Scholar] [CrossRef]
- Spevacek, A.R.; Evans, E.G.; Miller, J.L.; Meyer, H.C.; Pelton, J.G.; Millhauser, G.L. Zinc drives a tertiary fold in the prion protein with familial disease mutation sites at the interface. Structure 2013, 21, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.; Watt, K.; Kelly, S.M.; Clark, C.; Price, N.C.; McEwan, I.J. Consequences of poly-glutamine repeat length for the conformation and folding of the androgen receptor amino-terminal domain. J. Mol. Endocrinol. 2008, 41, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Tunalı, E.N. Molecular Mechanisms of Polyglutamine Pathology and Lessons Learned from Huntington’s Disease. In Neurodegenerative Diseases-Molecular Mechanisms and Current Therapeutic Approaches; Ersoy Tunalı, N., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Margulis, B.A.; Vigont, V.; Lazarev, V.F.; Kaznacheyeva, E.V.; Guzhova, I.V. Pharmacological protein targets in polyglutamine diseases: Mutant polypeptides and their interactors. FEBS Lett. 2013, 587, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, C.S.; Li, D.; Wilton, S.D.; Aung-Htut, M.T. Polyglutamine Ataxias: Our Current Molecular Understanding and What the Future Holds for Antisense Therapies. Biomedicines 2021, 9, 1499. [Google Scholar] [CrossRef] [PubMed]
- Levinson, G.; Gutman, G.A. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Mol. Biol. Evol. 1987, 4, 203–221. [Google Scholar]
- Sweeney, P.; Park, H.; Baumann, M.; Dunlop, J.; Frydman, J.; Kopito, R.; McCampbell, A.; Leblanc, G.; Venkateswaran, A.; Nurmi, A.; et al. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl. Neurodegener. 2017, 6, 6. [Google Scholar] [CrossRef]
- Zoghbi, H.Y.; Orr, H.T. Polyglutamine diseases: Protein cleavage and aggregation. Curr. Opin. Neurobiol. 1999, 9, 566–570. [Google Scholar] [CrossRef]
- Kuiper, E.F.E.; De Mattos, E.P.; Jardim, L.B.; Kampinga, H.H.; Bergink, S. Chaperones in Polyglutamine Aggregation: Beyond the Q-Stretch. Front. Neurosci. 2017, 11, 145. [Google Scholar] [CrossRef]
- Nath, S.R.; Lieberman, A.P. The Ubiquitination, Disaggregation and Proteasomal Degradation Machineries in Polyglutamine Disease. Front. Mol. Neurosci. 2017, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, E. Loss of normal huntingtin function: New developments in Huntington’s disease research. Trends Neurosci. 2001, 24, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Saudou, F.; Finkbeiner, S.; Devys, D.; Greenberg, M.E. Huntingtin Acts in the Nucleus to Induce Apoptosis but Death Does Not Correlate with the Formation of Intranuclear Inclusions. Cell 1998, 95, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Karwacka, M.; Olejniczak, M. Advances in Modeling Polyglutamine Diseases Using Genome Editing Tools. Cells 2022, 11, 517. [Google Scholar] [CrossRef] [PubMed]
- Naphade, S.; Tshilenge, K.-T.; Ellerby, L.M. Modeling Polyglutamine Expansion Diseases with Induced Pluripotent Stem Cells. Neurotherapeutics 2019, 16, 979–998. [Google Scholar] [CrossRef] [PubMed]
- Orr, H.T. Polyglutamine neurodegeneration: Expanded glutamines enhance native functions. Curr. Opin. Genet. Dev. 2012, 22, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Ashizawa, T.; Öz, G.; Paulson, H.L. Spinocerebellar ataxias: Prospects and challenges for therapy development. Nat. Rev. Neurol. 2018, 14, 590–605. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Silva, U.C.; Hallak, J.E.C.; Júnior, W.M.; de Lima Osório, F. Association between spinocerebellar ataxias caused by glutamine expansion and psychiatric and neuropsychological signals—A literature review. Am. J. Neurodegener. Dis. 2013, 2, 57–69. [Google Scholar] [PubMed]
- Klockgether, T.; Mariotti, C.; Paulson, H.L. Spinocerebellar ataxia. Nat. Rev. Dis. Primers 2019, 5, 24. [Google Scholar] [CrossRef]
- Buijsen, R.A.M.; Toonen, L.J.; Gardiner, S.L.; van Roon-Mom, W.M. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019, 16, 263–286. [Google Scholar] [CrossRef]
- Schöls, L.; Linnemann, C.; Globas, C. Electrophysiology in spinocerebellar ataxias: Spread of disease and characteristic findings. Cerebellum 2008, 7, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Chen, T.; Wu, Y. The electrophysiology of spinocerebellar ataxias. Neurophysiol. Clin. 2016, 46, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ghanekar, S.D.; Kuo, S.-H.; Staffetti, J.S.; Zesiewicz, T.A. Current and emerging treatment modalities for spinocerebellar ataxias. Expert Rev. Neurother. 2022, 22, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Paulson, H.L.; Shakkottai, V.G.; Clark, H.B.; Orr, H.T. Polyglutamine spinocerebellar ataxias—From genes to potential treatments. Nat. Rev. Neurosci. 2017, 18, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Yau, W.Y.; O’Connor, E.; Houlden, H. Spinocerebellar ataxia: An update. J. Neurol. 2019, 266, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Bushart, D.D.; Shakkottai, V.G. Ion channel dysfunction in cerebellar ataxia. Neurosci. Lett. 2019, 688, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Honti, V.; Vécsei, L. Genetic and molecular aspects of spinocerebellar ataxias. Neuropsychiatr. Dis. Treat. 2005, 1, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, N.; Wardman, J.H.; Hargreaves, I.P.; Neergheen, V.; Bie, A.S.; Tümer, Z.; Nielsen, J.E.; Nielsen, T.T. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion 2017, 34, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-Y.; Jhang, Y.-L.; Cheng, P.-H.; Chang, Y.-F.; Mao, S.-H.; Yang, H.-I.; Lin, C.-W.; Chen, C.-M.; Yang, S.-H. The Truncated C-terminal Fragment of Mutant ATXN3 Disrupts Mitochondria Dynamics in Spinocerebellar Ataxia Type 3 Models. Front. Mol. Neurosci. 2017, 10, 196. [Google Scholar] [CrossRef]
- Kazachkova, N.; Raposo, M.; Montiel, R.; Cymbron, T.; Bettencourt, C.; Silva-Fernandes, A.; Duarte-Silva, S.; Maciel, P.; Lima, M. Patterns of Mitochondrial DNA Damage in Blood and Brain Tissues of a Transgenic Mouse Model of Machado-Joseph Disease. Neurodegener. Dis. 2013, 11, 206–214. [Google Scholar] [CrossRef]
- Ripolone, M.; Lucchini, V.; Ronchi, D.; Fagiolari, G.; Bordoni, A.; Fortunato, F.; Mondello, S.; Bonato, S.; Meregalli, M.; Torrente, Y.; et al. Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1. J. Neurosci. Res. 2018, 96, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ramos, Y.; Montoya-Estrada, A.; Cisneros, B.; Tercero-Pérez, K.; León-Reyes, G.; Leyva-García, N.; Hernández-Hernández, O.; Magaña, J.J. Oxidative Stress in Spinocerebellar Ataxia Type 7 Is Associated with Disease Severity. Cerebellum 2018, 17, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Nakamura, K.; Matsui, M.; Yamamoto, A.; Nakahara, Y.; Suzuki-Migishima, R.; Yokoyama, M.; Mishima, K.; Saito, I.; Okano, H.; et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Waguri, S.; Chiba, T.; Murata, S.; Iwata, J.-I.; Tanida, I.; Ueno, T.; Koike, M.; Uchiyama, Y.; Kominami, E.; et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Cuervo, A.M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci. 2010, 13, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, Y.-I.; Lee, Y.-S.; Lee, S.B. The Mechanisms of Nuclear Proteotoxicity in Polyglutamine Spinocerebellar Ataxias. Front. Neurosci. 2020, 14, 489. [Google Scholar] [CrossRef] [PubMed]
- Chhangani, D.; Nukina, N.; Kurosawa, M.; Amanullah, A.; Joshi, V.; Upadhyay, A.; Mishra, A. Mahogunin ring finger 1 suppresses misfolded polyglutamine aggregation and cytotoxicity. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 1472–1484. [Google Scholar] [CrossRef]
- Chen, Z.S.; Wong AK, Y.; Cheng, T.C.; Koon, A.C.; Chan, H.Y.E. FipoQ/ FBXO 33, a Cullin-1-based ubiquitin ligase complex component modulates ubiquitination and solubility of polyglutamine disease protein. J. Neurochem. 2019, 149, 781–798. [Google Scholar] [CrossRef] [PubMed]
- Marinello, M.; Werner, A.; Giannone, M.; Tahiri, K.; Alves, S.; Tesson, C.; Dunnen, W.D.; Seeler, J.-S.; Brice, A.; Sittler, A. SUMOylation by SUMO2 is implicated in the degradation of misfolded ataxin-7 via RNF4 in SCA7 models. Dis. Models Mech. 2018, 12, dmm036145. [Google Scholar] [CrossRef]
- Dhar, N.; Arsiwala, A.; Murali, S.; Kane, R.S. “Trim”ming PolyQ proteins with engineered PML. Biotechnol. Bioeng. 2020, 117, 362–371. [Google Scholar] [CrossRef]
- Ou, Z.; Luo, M.; Niu, X.; Chen, Y.; Xie, Y.; He, W.; Song, B.; Xian, Y.; Fan, D.; OuYang, S.; et al. Autophagy Promoted the Degradation of Mutant ATXN3 in Neurally Differentiated Spinocerebellar Ataxia-3 Human Induced Pluripotent Stem Cells. BioMed Res. Int. 2016, 2016, 6701793. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kukushkin, Y.; Gupta, R.; Chen, T.; Konagai, A.; Hipp, M.S.; Hayer-Hartl, M.; Hartl, F.U. PolyQ Proteins Interfere with Nuclear Degradation of Cytosolic Proteins by Sequestering the Sis1p Chaperone. Cell 2013, 154, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Moldovean, S.N.; Chiş, V. Molecular Dynamics Simulations Applied to Structural and Dynamical Transitions of the Huntingtin Protein: A Review. ACS Chem. Neurosci. 2020, 11, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S. Selective Neuronal Death in Neurodegenerative Diseases: The Ongoing Mystery. Yale J. Biol. Med. 2019, 92, 695–705. [Google Scholar] [PubMed]
- Perutz, M.F.; Johnson, T.; Suzuki, M.; Finch, J.T. Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 1994, 91, 5355–5358. [Google Scholar] [CrossRef] [PubMed]
- Kahlem, P.; Green, H.; Djian, P. Transglutaminase Action Imitates Huntington’s Disease: Selective Polymerization of Huntingtin Containing Expanded Polyglutamine. Mol. Cell 1998, 1, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Perutz, M. Polar zippers: Their role in human disease. Protein Sci. 1994, 3, 1629–1637. [Google Scholar] [CrossRef]
- Jarosińska, O.D.; Rüdiger, S.G.D. Molecular Strategies to Target Protein Aggregation in Huntington’s Disease. Front. Mol. Biosci. 2021, 8, 769184. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, C.M.; Duyao, M.P.; Barnes, G.; Bates, G.P.; Lin, C.S.; Srinidhi, J.; Baxendale, S.; Hummerich, H.; Lehrach, H.; Altherr, M.; et al. Structure and expression of the Huntington’s disease gene: Evidence against simple inactivation due to an expanded CAG repeat. Somat. Cell Mol. Genet. 1994, 20, 27–38. [Google Scholar] [CrossRef]
- White, J.K.; Auerbach, W.; Duyao, M.P.; Vonsattel, J.-P.; Gusella, J.F.; Joyner, A.L.; MacDonald, M.E. Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat. Genet. 1997, 17, 404–410. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Bento, C.F.; Ricketts, T.; Vicinanza, M.; Siddiqi, F.; Pavel, M.; Squitieri, F.; Hardenberg, M.C.; Imarisio, S.; Menzies, F.M.; et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 2017, 545, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Nollen, E.A.A.; Garcia, S.M.; van Haaften, G.; Kim, S.; Chavez, A.; Morimoto, R.I.; Plasterk, R.H.A. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl. Acad. Sci. USA 2004, 101, 6403–6408. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Correia, K.; Loupe, J.; Kim, K.-H.; Barker, D.; Hong, E.P.; Chao, M.J.; Long, J.D.; Lucente, D.; Vonsattel, J.P.G.; et al. CAG Repeat Not Polyglutamine Length Determines Timing of Huntington’s Disease Onset. Cell 2019, 178, 887–900.e14. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.E.B.; Collins, J.A.; Kay, C.; McDonald, C.; Dolzhenko, E.; Xia, Q.; Bečanović, K.; Drögemöller, B.I.; Semaka, A.; Nguyen, C.M. Length of Uninterrupted CAG, Independent of Polyglutamine Size, Results in Increased Somatic Instability, Hastening Onset of Huntington Disease. Am. J. Hum. Genet. 2019, 104, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Martindale, D.; Hackam, A.; Wieczorek, A.; Ellerby, L.; Wellington, C.; McCutcheon, K.; Singaraja, R.; Kazemi-Esfarjani, P.; Devon, R.; Kim, S.U.; et al. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet. 1998, 18, 150–154. [Google Scholar] [CrossRef]
- Chai, Y.; Koppenhafer, S.L.; Shoesmith, S.J.; Perez, M.K.; Paulson, H.L. Evidence for Proteasome Involvement in Polyglutamine Disease: Localization to Nuclear Inclusions in SCA3/MJD and Suppression of Polyglutamine Aggregation in vitro. Hum. Mol. Genet. 1999, 8, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.F.; Nucifora, C.F., Jr.; Kushia, J.; Seaman, H.C.; Cooper, J.K.; Herring, W.J.; Dawson, V.L.; Dawson, T.M.; Ross, C.A. Nuclear Targeting of Mutant Huntingtin Increases Toxicity. Mol. Cell. Neurosci. 1999, 14, 121–128. [Google Scholar] [CrossRef]
- Singh, M.D.; Chanu, S.I.; Sarkar, S. Deciphering the Enigma of Human Poly(Q) Disorders: Contribution of Drosophila melanogaster: Singh MD et al. Contribution of Drosophila in human poly(Q) research. Int. J. Neurol. Res. 2016, 2, 216–223. [Google Scholar] [CrossRef]
- Coppen, E.M.; Van Der Grond, J.; Roos, R.A.C. Atrophy of the putamen at time of clinical motor onset in Huntington’s disease: A 6-year follow-up study. J. Clin. Mov. Disord. 2018, 5, 2. [Google Scholar] [CrossRef]
- McColgan, P.; Seunarine, K.K.; Gregory, S.; Razi, A.; Papoutsi, M.; Long, J.D.; Mills, J.A.; Johnson, E.; Durr, A.; Roos, R.A.; et al. Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington’s disease. JCI Insight 2017, 2, e92641. [Google Scholar] [CrossRef]
- Rikani, A.A.; Choudhry, Z.; Choudhry, A.M.; Rizvi, N.; Ikram, H.; Mobassarah, N.J. The mechanism of degeneration of striatal neuronal subtypes in Huntington disease. Ann. Neurosci. 2014, 21, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Morigaki, R.; Goto, S. Striatal Vulnerability in Huntington’s Disease: Neuroprotection Versus Neurotoxicity. Brain Sci. 2017, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Wang, L.; Sanders, S.S.; Zuo, K.; Hayden, M.R.; Raymond, L.A. Altered Regulation of Striatal Neuronal N-Methyl-D-Aspartate Receptor Trafficking by Palmitoylation in Huntington Disease Mouse Model. Front. Synaptic Neurosci. 2019, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Vicente, M.; Talloczy, Z.; Wong, E.; Tang, G.; Koga, H.; Kaushik, S.; de Vries, R.; Arias, E.; Harris, S.; Sulzer, D.; et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat. Neurosci. 2010, 13, 567–576. [Google Scholar] [CrossRef]
- Atwal, R.S.; Xia, J.; Pinchev, D.; Taylor, J.; Epand, R.M.; Truant, R. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 2007, 16, 2600–2615. [Google Scholar] [CrossRef] [PubMed]
- Kegel, K.B.; Kim, M.; Sapp, E.; McIntyre, C.; Castano, J.G.; Aronin, N.; DiFiglia, M. Huntingtin Expression Stimulates Endosomal–Lysosomal Activity, Endosome Tubulation, and Autophagy. J. Neurosci. 2000, 20, 7268–7278. [Google Scholar] [CrossRef]
- Dejager, S.; Bry-Gauillard, H.; Bruckert, E.; Eymard, B.; Salachas, F.; LeGuern, E.; Tardieu, S.; Chadarevian, R.; Giral, P.; Turpin, G. A Comprehensive Endocrine Description of Kennedy’s Disease Revealing Androgen Insensitivity Linked to CAG Repeat Length. J. Clin. Endocrinol. Metab. 2002, 87, 3893–3901. [Google Scholar] [PubMed]
- Ravikumar, B. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 2002, 11, 1107–1117. [Google Scholar] [CrossRef]
- Ochaba, J.; Lukacsovich, T.; Csikos, G.; Zheng, S.; Margulis, J.; Salazar, L.; Mao, K.; Lau, A.L.; Yeung, S.Y.; Humbert, S.; et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl. Acad. Sci. USA 2014, 111, 16889–16894. [Google Scholar] [CrossRef]
- Rui, Y.-N.; Xu, Z.; Patel, B.; Cuervo, A.M.; Zhang, S. HTT/Huntingtin in selective autophagy and Huntington disease: A foe or a friend within? Autophagy 2015, 11, 858–860. [Google Scholar] [CrossRef]
- Rodriguez-Quiroga, S.A.; Gonzalez-Moron, D.; Garretto, N.; Kauffman, M.A. Huntington’s disease masquerading as spinocerebellar ataxia. Case Rep. 2013, 2013, bcr2012008380. [Google Scholar] [CrossRef] [PubMed]
- Franklin, G.L.; Camargo, C.H.F.; Meira, A.T.; Pavanelli, G.M.; Milano, S.S.; Germiniani, F.B.; Lima, N.S.C.; Raskin, S.; Barsottini, O.G.P.; Pedroso, J.L. Is Ataxia an Underestimated Symptom of Huntington’s Disease? Front. Neurol. 2020, 11, 571843. [Google Scholar] [CrossRef] [PubMed]
- Figiel, M.; Szlachcic, W.J.; Switonski, P.M.; Gabka, A.; Krzyzosiak, W.J. Mouse Models of Polyglutamine Diseases: Review and Data Table. Part I. Mol. Neurobiol. 2012, 46, 393–429. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Hashizume, A.; Hijikata, Y.; Yamada, S.; Ito, D.; Kishimoto, Y.; Torii, R.; Sato, H.; Hirakawa, A.; Katsuno, M. Development of a functional composite for the evaluation of spinal and bulbar muscular atrophy. Sci. Rep. 2022, 12, 17443. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.J.; La Spada, A.R. X-Linked Spinal and Bulbar Muscular Atrophy: From Clinical Genetic Features and Molecular Pathology to Mechanisms Underlying Disease Toxicity. In Polyglutamine Disorders; Nóbrega, C., Pereira De Almeida, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 1049, pp. 103–133. [Google Scholar]
- Giorgetti, E.; Lieberman, A.P. Polyglutamine androgen receptor-mediated neuromuscular disease. Cell. Mol. Life Sci. 2016, 73, 3991–3999. [Google Scholar] [CrossRef] [PubMed]
- Kratter, I.H.; Finkbeiner, S. PolyQ Disease: Too Many Qs, Too Much Function? Neuron 2010, 67, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Wyttenbach, A. Role of Heat Shock Proteins During Polyglutamine Neurodegeneration: Mechanisms and Hypothesis. J. Mol. Neurosci. 2004, 23, 069–096. [Google Scholar] [CrossRef] [PubMed]
- Jochum, T.; Ritz, M.E.; Schuster, C.; Funderburk, S.F.; Jehle, K.; Schmitz, K.; Brinkmann, F.; Hirtz, M.; Moss, D.; Cato, A.C. Toxic and non-toxic aggregates from the SBMA and normal forms of androgen receptor have distinct oligomeric structures. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 1070–1078. [Google Scholar] [CrossRef]
- Taylor, J.P. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum. Mol. Genet. 2003, 12, 749–757. [Google Scholar] [CrossRef]
- Kayed, R.; Head, E.; Thompson, J.L.; McIntire, T.M.; Milton, S.C.; Cotman, C.W.; Glabe, C.G. Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science 2003, 300, 486–489. [Google Scholar] [CrossRef]
- Paramithiotis, E.; Pinard, M.; Lawton, T.; LaBoissiere, S.; Leathers, V.L.; Zou, W.-Q.; A Estey, L.; Lamontagne, J.; Lehto, M.T.; Kondejewski, L.H.; et al. A prion protein epitope selective for the pathologically misfolded conformation. Nat. Med. 2003, 9, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Legleiter, J.; Lotz, G.P.; Miller, J.; Ko, J.; Ng, C.; Williams, G.L.; Finkbeiner, S.; Patterson, P.H.; Muchowski, P.J. Monoclonal Antibodies Recognize Distinct Conformational Epitopes Formed by Polyglutamine in a Mutant Huntingtin Fragment. J. Biol. Chem. 2009, 284, 21647–21658. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Arrasate, M.; Brooks, E.; Libeu, C.P.; Legleiter, J.; Hatters, D.; Curtis, J.; Cheung, K.; Krishnan, P.; Mitra, S.; et al. Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat. Chem. Biol. 2011, 7, 925–934. [Google Scholar] [CrossRef]
- Klein, F.A.C.; Pastore, A.; Masino, L.; Zeder-Lutz, G.; Nierengarten, H.; Oulad-Abdelghani, M.; Altschuh, D.; Mandel, J.-L.; Trottier, Y. Pathogenic and Non-pathogenic Polyglutamine Tracts Have Similar Structural Properties: Towards a Length-dependent Toxicity Gradient. J. Mol. Biol. 2007, 371, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Schaffar, G.; Breuer, P.; Boteva, R.; Behrends, C.; Tzvetkov, N.; Strippel, N.; Sakahira, H.; Siegers, K.; Hayer-Hartl, M.; Hartl, F. Cellular Toxicity of Polyglutamine Expansion Proteins. Mol. Cell 2004, 15, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Rusmini, P.; Bolzoni, E.; Crippa, V.; Onesto, E.; Sau, D.; Galbiati, M.; Piccolella, M.; Poletti, A. Proteasomal and autophagic degradative activities in spinal and bulbar muscular atrophy. Neurobiol. Dis. 2010, 40, 361–369. [Google Scholar] [CrossRef]
- Pandey, U.B.; Nie, Z.; Batlevi, Y.; McCray, B.A.; Ritson, G.P.; Nedelsky, N.B.; Schwartz, S.L.; DiProspero, N.A.; Knight, M.A.; Schuldiner, O.; et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007, 447, 859–863. [Google Scholar] [CrossRef]
- Cortes, C.J.; Miranda, H.C.; Frankowski, H.; Batlevi, Y.; E Young, J.; Le, A.; Ivanov, N.; Sopher, B.L.; Carromeu, C.; Muotri, A.R.; et al. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat. Neurosci. 2014, 17, 1180–1189. [Google Scholar] [CrossRef]
- Doi, H.; Adachi, H.; Katsuno, M.; Minamiyama, M.; Matsumoto, S.; Kondo, N.; Miyazaki, Y.; Iida, M.; Tohnai, G.; Qiang, Q.; et al. p62/SQSTM1 differentially removes the toxic mutant androgen receptor via autophagy and inclusion formation in a spinal and bulbar muscular atrophy mouse model. J. Neurosci. 2013, 33, 7710–7727. [Google Scholar] [CrossRef]
- Montie, H.L.; Cho, M.S.; Holder, L.; Liu, Y.; Tsvetkov, A.S.; Finkbeiner, S.; Merry, D.E. Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 2009, 18, 1937–1950. [Google Scholar] [CrossRef]
- Sandri, M.; Coletto, L.; Grumati, P.; Bonaldo, P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J. Cell Sci. 2013, 126, 5325–5333. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, A.M.; Adachi, H.; Katsuno, M.; Sobue, G.; Yue, Z.; Robins, D.M.; Lieberman, A.P. Macroautophagy is regulated by the UPR-mediator CHOP and accentuates the phenotype of SBMA mice. PLoS Genet. 2011, 7, e1002321. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.; Anthanasiou-Fragkouli, A.; Houlden, H. DRPLA: Understanding the natural history and developing biomarkers to accelerate therapeutic trials in a globally rare repeat expansion disorder. J. Neurol. 2021, 268, 3031–3041. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.S.; Massey, T.H.; Wardle, M.; Peall, K.J. Dentatorubral-pallidoluysian Atrophy: An Update. Tremor Other Hyperkinet. Mov. 2018, 8, 577. [Google Scholar] [CrossRef]
- Hasegawa, A.; Ikeuchi, T.; Koike, R.; Matsubara, N.; Tsuchiya, M.; Nozaki, H.; Homma, A.; Idezuka, J.; Nishizawa, M.; Onodera, O. Long-term disability and prognosis in dentatorubral-pallidoluysian atrophy: A correlation with CAG repeat length. Mov. Disord. 2010, 25, 1694–1700. [Google Scholar] [CrossRef]
- Ikeuchi, T.; Koide, R.; Tanaka, H.; Onodera, O.; Igarashi, S.; Takahashi, H.; Kondo, R.; Ishikawa, A.; Tomoda, A.; Miike, T.; et al. Dentatorubral-pallidoluysian atrophy: Clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann. Neurol. 1995, 37, 769–775. [Google Scholar] [CrossRef]
- Koide, R.; Ikeuchi, T.; Onodera, O.; Tanaka, H.; Igarashi, S.; Endo, K.; Takahashi, H.; Kondo, R.; Ishikawa, A.; Hayashi, T.; et al. Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA). Nat. Genet. 1994, 6, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.; Saito, Y.; Nakagawa, E.; Saito, T.; Komaki, H.; Sugai, K.; Sasaki, M.; Kumada, S.; Saito, Y.; Tanaka, H.; et al. Importance of CAG repeat length in childhood-onset dentatorubral–pallidoluysian atrophy. J. Neurol. 2012, 259, 2329–2334. [Google Scholar] [CrossRef]
- Sugiyama, A.; Sato, N.; Nakata, Y.; Kimura, Y.; Enokizono, M.; Maekawa, T.; Kondo, M.; Takahashi, Y.; Kuwabara, S.; Matsuda, H. Clinical and magnetic resonance imaging features of elderly onset dentatorubral–pallidoluysian atrophy. J. Neurol. 2018, 265, 322–329. [Google Scholar] [CrossRef]
- Tsuji, S. Dentatorubral–pallidoluysian atrophy. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 103, pp. 587–594. [Google Scholar]
- Nisoli, I.; Chauvin, J.P.; Napoletano, F.; Calamita, P.; Zanin, V.; Fanto, M.; Charroux, B. Neurodegeneration by polyglutamine Atrophin is not rescued by induction of autophagy. Cell Death Differ. 2010, 17, 1577–1587. [Google Scholar] [CrossRef]
- Crick, S.L.; Jayaraman, M.; Frieden, C.; Wetzel, R.; Pappu, R.V. Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc. Natl. Acad. Sci. USA 2006, 103, 16764–16769. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.J.; Huey-Tubman, K.E.; Herr, A.B.; West, A.P.; Ross, S.A.; Bjorkman, P.J. A linear lattice model for polyglutamine in CAG-expansion diseases. Proc. Natl. Acad. Sci. USA 2002, 99, 11634–11639. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Kikuchi, S.; Katada, S.; Nagai, Y.; Nishizawa, M.; Onodera, O. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum. Mol. Genet. 2008, 17, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Okamoto, Y.; Popiel, H.A.; Fujikake, N.; Toda, T.; Kinjo, M.; Nagai, Y. Detection of Polyglutamine Protein Oligomers in Cells by Fluorescence Correlation Spectroscopy. J. Biol. Chem. 2007, 282, 24039–24048. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Katada, S.; Onodera, O. Polyglutamine Diseases: Where does Toxicity Come from? What is Toxicity? Where are We Going? J. Mol. Cell Biol. 2010, 2, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Olshina, M.A.; Angley, L.M.; Ramdzan, Y.M.; Tang, J.; Bailey, M.F.; Hill, A.F.; Hatters, D.M. Tracking Mutant Huntingtin Aggregation Kinetics in Cells Reveals Three Major Populations That Include an Invariant Oligomer Pool. J. Biol. Chem. 2010, 285, 21807–21816. [Google Scholar] [CrossRef] [PubMed]
- Legleiter, J.; Mitchell, E.; Lotz, G.P.; Sapp, E.; Ng, C.; DiFiglia, M.; Thompson, L.M.; Muchowski, P.J. Mutant Huntingtin Fragments Form Oligomers in a Polyglutamine Length-dependent Manner in Vitro and in Vivo. J. Biol. Chem. 2010, 285, 14777–14790. [Google Scholar] [CrossRef] [PubMed]
- Sathasivam, K.; Lane, A.; Legleiter, J.; Warley, A.; Woodman, B.; Finkbeiner, S.; Paganetti, P.; Muchowski, P.J.; Wilson, S.; Bates, G.P. Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington’s disease. Hum. Mol. Genet. 2010, 19, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Nucifora, L.G.; Burke, K.A.; Feng, X.; Arbez, N.; Zhu, S.; Miller, J.; Yang, G.; Ratovitski, T.; Delannoy, M.; Muchowski, P.J.; et al. Identification of Novel Potentially Toxic Oligomers Formed in Vitro from Mammalian-derived Expanded huntingtin Exon-1 Protein. J. Biol. Chem. 2012, 287, 16017–16028. [Google Scholar] [CrossRef]
- Kim, Y.E.; Hosp, F.; Frottin, F.; Ge, H.; Mann, M.; Hayer-Hartl, M.; Hartl, F.U. Soluble Oligomers of PolyQ-Expanded Huntingtin Target a Multiplicity of Key Cellular Factors. Mol. Cell 2016, 63, 951–964. [Google Scholar] [CrossRef]
- Kim, M. Pathogenic polyglutamine expansion length correlates with polarity of the flanking sequences. Mol. Neurodegener. 2014, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Hosp, F.; Gutiérrez-Ángel, S.; Schaefer, M.H.; Cox, J.; Meissner, F.; Hipp, M.S.; Hartl, F.-U.; Klein, R.; Dudanova, I.; Mann, M. Spatiotemporal Proteomic Profiling of Huntington’s Disease Inclusions Reveals Widespread Loss of Protein Function. Cell Rep. 2017, 21, 2291–2303. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J.; Han, M.H.; Bagley, J.A.; Hyeon, D.Y.; Ko, B.S.; Lee, Y.M.; Cha, I.J.; Kim, S.Y.; Kim, D.Y.; Kim, H.M.; et al. Coiled-coil structure-dependent interactions between polyQ proteins and Foxo lead to dendrite pathology and behavioral defects. Proc. Natl. Acad. Sci. USA 2018, 115, E10748–E10757. [Google Scholar] [CrossRef] [PubMed]
- Eftekharzadeh, B.; Piai, A.; Chiesa, G.; Mungianu, D.; García, J.; Pierattelli, R.; Felli, I.C.; Salvatella, X. Sequence Context Influences the Structure and Aggregation Behavior of a PolyQ Tract. Biophys. J. 2016, 110, 2361–2366. [Google Scholar] [CrossRef] [PubMed]
- Urbanek, A.; Popovic, M.; Morató, A.; Estaña, A.; Elena-Real, C.A.; Mier, P.; Fournet, A.; Allemand, F.; Delbecq, S.; Andrade-Navarro, M.A.; et al. Flanking Regions Determine the Structure of the Poly-Glutamine in Huntingtin through Mechanisms Common among Glutamine-Rich Human Proteins. Structure 2020, 28, 733–746.e5. [Google Scholar] [CrossRef] [PubMed]
- De Chiara, C.; Pastore, A. Kaleidoscopic protein–protein interactions in the life and death of ataxin-1: New strategies against protein aggregation. Trends Neurosci. 2014, 37, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Saunders, H.M.; Bottomley, S.P. Multi-domain misfolding: Understanding the aggregation pathway of polyglutamine proteins. Protein Eng. Des. Sel. 2009, 22, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Punihaole, D.; Jakubek, R.S.; Workman, R.J.; Asher, S.A. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils. J. Phys. Chem. Lett. 2018, 9, 1944–1950. [Google Scholar] [CrossRef] [PubMed]
- Natalello, A.; Frana, A.M.; Relini, A.; Apicella, A.; Invernizzi, G.; Casari, C.; Gliozzi, A.; Doglia, S.M.; Tortora, P.; Regonesi, M.E. A Major Role for Side-Chain Polyglutamine Hydrogen Bonding in Irreversible Ataxin-3 Aggregation. PLoS ONE 2011, 6, e18789. [Google Scholar] [CrossRef]
- Yushchenko, T.; Deuerling, E.; Hauser, K. Insights into the Aggregation Mechanism of PolyQ Proteins with Different Glutamine Repeat Lengths. Biophys. J. 2018, 114, 1847–1857. [Google Scholar] [CrossRef]
- Buchanan, L.E.; Carr, J.K.; Fluitt, A.M.; Hoganson, A.J.; Moran, S.D.; de Pablo, J.J.; Skinner, J.L.; Zanni, M.T. Structural motif of polyglutamine amyloid fibrils discerned with mixed-isotope infrared spectroscopy. Proc. Natl. Acad. Sci. USA 2014, 111, 5796–5801. [Google Scholar] [CrossRef] [PubMed]
- Siu, H.-W.; Heck, B.; Kovermann, M.; Hauser, K. Template-assisted design of monomeric polyQ models to unravel the unique role of glutamine side chains in disease-related aggregation. Chem. Sci. 2021, 12, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Adegbuyiro, A.; Sedighi, F.; Pilkington, A.W.; Groover, S.; Legleiter, J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017, 56, 1199–1217. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Scoles, D.R.; Facelli, J.C. Molecular dynamics analysis of the aggregation propensity of polyglutamine segments. PLoS ONE 2017, 12, e0178333. [Google Scholar] [CrossRef] [PubMed]
- Babin, V.; Roland, C.; Sagui, C. The α-sheet: A missing-in-action secondary structure? Proteins 2011, 79, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, A.A.; Sternberg MJ, E.; Makarov, A.A. Polyproline-II Helix in Proteins: Structure and Function. J. Mol. Biol. 2013, 425, 2100–2132. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Babin, V.; Roland, C.; Sagui, C. Are Long-Range Structural Correlations Behind the Aggregration Phenomena of Polyglutamine Diseases? PLoS Comput. Biol. 2012, 8, e1002501. [Google Scholar] [CrossRef] [PubMed]
- Ruff, K.M.; Khan, S.J.; Pappu, R.V. A Coarse-Grained Model for Polyglutamine Aggregation Modulated by Amphipathic Flanking Sequences. Biophys. J. 2014, 107, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Baskar, M.; Shafique, M.; Nandel, F.S. A Unique Conformational Behaviour of Glutamine Peptides. J. Biophys. Chem. 2014, 5, 33–43. [Google Scholar] [CrossRef]
- Chiang, H.; Chen, C.; Okumura, H.; Hu, C. Transformation between α-helix and β-sheet structures of one and two polyglutamine peptides in explicit water molecules by replica-exchange molecular dynamics simulations. J. Comput. Chem. 2014, 35, 1430–1437. [Google Scholar] [CrossRef]
- Chen, S.; Berthelier, V.; Yang, W.; Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 2001, 311, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.L.; Horne, J.; Ellisdon, A.M.; Thomas, B.; Scanlon, M.J.; Bottomley, S.P. The Structural Impact of a Polyglutamine Tract Is Location-Dependent. Biophys. J. 2008, 95, 5922–5930. [Google Scholar] [CrossRef] [PubMed]
- Masino, L. Polyglutamine and neurodegeneration: Structural aspects. Protein Pept. Lett. 2004, 11, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Papaleo, E.; Invernizzi, G. Conformational diseases: Structural studies of aggregation of polyglutamine proteins. Curr. Comput. Aided Drug Des. 2011, 7, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Fiumara, F.; Fioriti, L.; Kandel, E.R.; Hendrickson, W.A. Essential Role of Coiled Coils for Aggregation and Activity of Q/N-Rich Prions and PolyQ Proteins. Cell 2010, 143, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, S.; Schaefer, M.H.; Wanker, E.E.; Andrade-Navarro, M.A. Aggregation of polyQ-extended proteins is promoted by interaction with their natural coiled-coil partners. Bioessays 2013, 35, 503–507. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Thakur, A.K.; Chellgren, V.M.; Thiagarajan, G.; Williams, A.D.; Chellgren, B.W.; Creamer, T.P.; Wetzel, R. Oligoproline Effects on Polyglutamine Conformation and Aggregation. J. Mol. Biol. 2006, 355, 524–535. [Google Scholar] [CrossRef]
- Pelassa, I.; Corà, D.; Cesano, F.; Monje, F.J.; Montarolo, P.G.; Fiumara, F. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum. Mol. Genet. 2014, 23, 3402–3420. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.H.; Wanker, E.E.; Andrade-Navarro, M.A. Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks. Nucleic Acids Res. 2012, 40, 4273–4287. [Google Scholar] [CrossRef]
- Haaga, J.; Gunton, J.D.; Buckles, C.N.; Rickman, J.M. Early stage aggregation of a coarse-grained model of polyglutamine. J. Chem. Phys. 2018, 148, 045106. [Google Scholar] [CrossRef]
- Mishra, R.; Thakur, A.K. Exceptional Aggregation Propensity of Amino Acids in Polyglutamine Amino-Acid-Homopolymer. bioRxiv 2020. [Google Scholar] [CrossRef]
- Chiti, F.; Stefani, M.; Taddei, N.; Ramponi, G.; Dobson, C.M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 2003, 424, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.S.; Richardson, D.C. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA 2002, 99, 2754–2759. [Google Scholar] [CrossRef] [PubMed]
- Moldovean, S.N.; Chiş, V. Specific Key-Point Mutations along the Helical Conformation of Huntingtin-Exon 1 Protein Might Have an Antagonistic Effect on the Toxic Helical Content’s Formation. ACS Chem. Neurosci. 2020, 11, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Moldovean, S.N.; Chiş, V. Decreased Interactions between Calmodulin and a Mutant Huntingtin Model Might Reduce the Cytotoxic Level of Intracellular Ca2+: A Molecular Dynamics Study. Int. J. Mol. Sci. 2021, 22, 9025. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Bell, D.R.; Wang, Z.; Zhang, W. Length-Dependent Structural Transformations of Huntingtin PolyQ Domain Upon Binding to 2D-Nanomaterials. Front. Chem. 2020, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Barrera, E.E.; Zonta, F.; Pantano, S. Dissecting the role of glutamine in seeding peptide aggregation. Comput. Struct. Biotechnol. J. 2021, 19, 1595–1602. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.-L.; Zhao, J.-H.; Liu, H.-L.; Wu, J.W.; Liu, K.-T.; Chuang, C.-K.; Tsai, W.-B.; Ho, Y. The Possible Structural Models for Polyglutamine Aggregation: A Molecular Dynamics Simulations Study. J. Biomol. Struct. Dyn. 2011, 28, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, F.; Santos, J.; Ventura, S. AlphaFold and the amyloid landscape. J. Mol. Biol. 2021, 433, 167059. [Google Scholar] [CrossRef]
- Ourmazd, A.; Moffat, K.; Lattman, E.E. Structural biology is solved—Now what? Nat. Methods 2022, 19, 24–26. [Google Scholar] [CrossRef]
- Schleif, R.; Espinosa, M. Where to From Here? Front. Mol. Biosci. 2022, 9, 848444. [Google Scholar] [CrossRef]
- Lane, T.J. Protein structure prediction has reached the single-structure frontier. Nat. Methods 2023, 20, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, A.; Piccirillo, J.; Aranda, J.; Diercks, T.; Topal, B.; Biesaga, M.; Staby, L.; Kragelund, L.L.; García, J.; Millet, O.; et al. A Glutamine-Based Single ɑ-Helix Scaffold to Target Globular Proteins. bioRxiv 2022. [Google Scholar] [CrossRef]
- Warner, J.B.; Ruff, K.M.; Tan, P.S.; Lemke, E.A.; Pappu, R.V.; Lashuel, H.A. Monomeric Huntingtin Exon 1 Has Similar Overall Structural Features for Wild-Type and Pathological Polyglutamine Lengths. J. Am. Chem. Soc. 2017, 139, 14456–14469. [Google Scholar] [CrossRef]
- Escobedo, A.; Topal, B.; Kunze, M.B.A.; Aranda, J.; Chiesa, G.; Mungianu, D.; Bernardo-Seisdedos, G.; Eftekharzadeh, B.; Gairí, M.; Pierattelli, R.; et al. Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor. Nat. Commun. 2019, 10, 2034. [Google Scholar] [CrossRef]
- Krobitsch, S.; Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 2000, 97, 1589–1594. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ferrone, F.A.; Wetzel, R. Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 2002, 99, 11884–11889. [Google Scholar] [CrossRef]
- Gusella, J.F.; MacDonald, M.E. Huntington’s disease: Seeing the pathogenic process through a genetic lens. Trends Biochem. Sci. 2006, 31, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; et al. Huntington disease. Nat. Rev. Dis. Primers 2015, 1, 15005. [Google Scholar] [CrossRef]
- Aziz, N.A.; Jurgens, C.K.; Landwehrmeyer, G.B.; EHDN Registry Study Group; van Roon-Mom, W.; van Ommen, G.J.; Stijnen, T.; Roos, R.A. Normal and mutant HTT interact to affect clinical severity and progression in Huntington disease. Neurology 2009, 73, 1280–1285. [Google Scholar]
- Aziz, N.A.; van der Burg, J.M.; Tabrizi, S.J.; Landwehrmeyer, G.B. Overlap between age-at-onset and disease-progression determinants in Huntington disease. Neurology 2018, 90, e2099–e2106. [Google Scholar] [CrossRef] [PubMed]
- Jakubek, R.S.; Workman, R.J.; White, S.E.; Asher, S.A. Polyglutamine Solution-State Structural Propensity Is Repeat Length Dependent. J. Phys. Chem. B 2019, 123, 4193–4203. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, B.R.; Guttman, J.A.; Hodgson, J.; Kimel, G.H.; Singaraja, R.; Vogl, A.; Hayden, M.R. Wild-Type Huntingtin Reduces the Cellular Toxicity of Mutant Huntingtin In Vivo. Am. J. Hum. Genet. 2001, 68, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Bhadra, A.K.; Roy, I. Cytotoxicity of Mutant Huntingtin Fragment in Yeast Can Be Modulated by the Expression Level of Wild Type Huntingtin Fragment. ACS Chem. Neurosci. 2014, 5, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Sethi, R.; Patel, V.; Saleh, A.A.; Roy, I. Cellular toxicity of yeast prion protein Rnq1 can be modulated by N-terminal wild type huntingtin. Arch. Biochem. Biophys. 2016, 590, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Sethi, R.; Tripathi, N.; Pallapati, A.R.; Gaikar, A.; Bharatam, P.V.; Roy, I. Does N-terminal huntingtin function as a ‘holdase’ for inhibiting cellular protein aggregation? FEBS J. 2018, 285, 1791–1811. [Google Scholar] [CrossRef] [PubMed]
- Sethi, R.; Roy, I. Stabilization of elongated polyglutamine tracts by a helical peptide derived from N-terminal huntingtin. IUBMB Life 2020, 72, 1528–1536. [Google Scholar] [CrossRef]
- Rockabrand, E.; Slepko, N.; Pantalone, A.; Nukala, V.N.; Kazantsev, A.; Marsh, J.L.; Sullivan, P.G.; Steffan, J.S.; Sensi, S.L.; Thompson, L.M. The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum. Mol. Genet. 2007, 16, 61–77. [Google Scholar] [CrossRef]
- Marquette, A.; Aisenbrey, C.; Bechinger, B. Membrane Interactions Accelerate the Self-Aggregation of Huntingtin Exon 1 Fragments in a Polyglutamine Length-Dependent Manner. Int. J. Mol. Sci. 2021, 22, 6725. [Google Scholar] [CrossRef]
- Pandey, N.K.; Isas, J.M.; Rawat, A.; Lee, R.V.; Langen, J.; Pandey, P.; Langen, R. The 17-residue-long N terminus in huntingtin controls stepwise aggregation in solution and on membranes via different mechanisms. J. Biol. Chem. 2018, 293, 2597–2605. [Google Scholar] [CrossRef]
- Tam, S.; Spiess, C.; Auyeung, W.; Joachimiak, L.; Chen, B.; A Poirier, M.; Frydman, J. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat. Struct. Mol. Biol. 2009, 16, 1279–1285. [Google Scholar] [CrossRef]
- Thakur, A.K.; Jayaraman, M.; Mishra, R.; Thakur, M.; Chellgren, V.M.; Byeon, I.-J.L.; Anjum, D.H.; Kodali, R.; Creamer, T.P.; Conway, J.F.; et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 2009, 16, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Kelley, N.W.; Huang, X.; Tam, S.; Spiess, C.; Frydman, J.; Pande, V.S. The Predicted Structure of the Headpiece of the Huntingtin Protein and Its Implications on Huntingtin Aggregation. J. Mol. Biol. 2009, 388, 919–927. [Google Scholar] [CrossRef]
- Boatz, J.C.; Piretra, T.; Lasorsa, A.; Matlahov, I.; Conway, J.F.; van der Wel, P.C. Protofilament Structure and Supramolecular Polymorphism of Aggregated Mutant Huntingtin Exon 1. J. Mol. Biol. 2020, 432, 4722–4744. [Google Scholar] [CrossRef] [PubMed]
- Michalek, M.; Salnikov, E.S.; Bechinger, B. Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach. Biophys. J. 2013, 105, 699–710. [Google Scholar] [CrossRef]
- Michalek, M.; Salnikov, E.S.; Werten, S.; Bechinger, B. Membrane Interactions of the Amphipathic Amino Terminus of Huntingtin. Biochemistry 2013, 52, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Côté, S.; Binette, V.; Salnikov, E.S.; Bechinger, B.; Mousseau, N. Probing the Huntingtin 1-17 Membrane Anchor on a Phospholipid Bilayer by Using All-Atom Simulations. Biophys. J. 2015, 108, 1187–1198. [Google Scholar] [CrossRef]
- Kegel-Gleason, K.B. Huntingtin Interactions with Membrane Phospholipids: Strategic Targets for Therapeutic Intervention? J. Huntington’s Dis. 2013, 2, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, A.; Jawahery, S.; Matysiak, S. The Effects of Flanking Sequences in the Interaction of Polyglutamine Peptides with a Membrane Bilayer. J. Phys. Chem. B 2014, 118, 6368–6379. [Google Scholar] [CrossRef]
- Tanaka, Y.; Igarashi, S.; Nakamura, M.; Gafni, J.; Torcassi, C.; Schilling, G.; Crippen, D.; Wood, J.D.; Sawa, A.; Jenkins, N.A.; et al. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin. Neurobiol. Dis. 2006, 21, 381–391. [Google Scholar] [CrossRef]
- Hackam, A.S.; Hodgson, J.G.; Singaraja, R.; Zhang, T.; Gan, L.; Gutekunst, C.-A.; Hersch, S.M.; Hayden, M.R. Evidence for both nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington’sdisease in cell culture and in transgenic mice expressing mutant huntingtin. Phil. Trans. R. Soc. Lond. B 1999, 354, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Xia, J. Huntingtin contains a highly conserved nuclear export signal. Hum. Mol. Genet. 2003, 12, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Choo, Y.S. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 2004, 13, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, S.; Yin, P.; Yang, S.; Zhang, J.; Jing, L.; Cheng, S.; Tang, B.; Li, X.-J.; Pan, Y.; et al. Cerebellum-enriched protein INPP5A contributes to selective neuropathology in mouse model of spinocerebellar ataxias type 17. Nat. Commun. 2020, 11, 1101. [Google Scholar] [CrossRef] [PubMed]
- Marcelo, A.; Afonso, I.T.; Afonso-Reis, R.; Brito, D.V.C.; Costa, R.G.; Rosa, A.; Alves-Cruzeiro, J.; Ferreira, B.; Henriques, C.; Nobre, R.J.; et al. Autophagy in Spinocerebellar ataxia type 2, a dysregulated pathway, and a target for therapy. Cell Death Dis. 2021, 12, 1117. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Patil, N.; Abdi, G.; Tarighat, M.A.; Mohammed, A.; Zain, M.R.A.M.; Goh, K.W. Mechanistic Insights and Potential Therapeutic Approaches in PolyQ Diseases via Autophagy. Biomedicines 2023, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zurawel, A.A.; Jenkins, N.P.; Duennwald, M.L.; Cheng, C.; Kettenbach, A.N.; Supattapone, S. Comparative Analysis of Mutant Huntingtin Binding Partners in Yeast Species. Sci. Rep. 2018, 8, 9554. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, M.; Juzwa, W.; Krzyzosiak, W.J.; Olejniczak, M. Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases. Front. Neurosci. 2018, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Kim, K.-H.; Chao, M.J.; Atwal, R.S.; Gillis, T.; MacDonald, M.E.; Gusella, J.F.; Lee, J.-M. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet. 2016, 25, 4566–4576. [Google Scholar] [CrossRef]
- Kolli, N.; Lu, M.; Maiti, P.; Rossignol, J.; Dunbar, G. CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington’s Disease. Int. J. Mol. Sci. 2017, 18, 754. [Google Scholar] [CrossRef]
- Monteys, A.M.; Ebanks, S.A.; Keiser, M.S.; Davidson, B.L. CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo. Mol. Ther. 2017, 25, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Fiszer, A.; Krzyzosiak, W.J. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res. 2014, 42, 6787–6810. [Google Scholar] [CrossRef] [PubMed]
- Keiser, M.S.; Kordasiewicz, H.B.; McBride, J.L. Gene suppression strategies for dominantly inherited neurodegenerative diseases: Lessons from Huntington’s disease and spinocerebellar ataxia. Hum. Mol. Genet. 2016, 25, R53–R64. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Alegre, P. Recent advances in molecular therapies for neurological disease: Triplet repeat disorders. Hum. Mol. Genet. 2019, 28, R80–R87. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.; Lobo, D.D.; Martins, I.M.; Lopes, S.M.; Henriques, C.; Duarte, S.P.; Dodart, J.-C.; Nobre, R.J.; de Almeida, L.P. Antisense oligonucleotide therapeutics in neurodegenerative diseases: The case of polyglutamine disorders. Brain 2020, 143, 407–429. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, S.J.; Leavitt, B.R.; Landwehrmeyer, G.B.; Wild, E.J.; Saft, C.; Barker, R.A.; Blair, N.F.; Craufurd, D.; Priller, J.; Rickards, H.; et al. Targeting Huntingtin Expression in Patients with Huntington’s Disease. N. Engl. J. Med. 2019, 380, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D. Failure of genetic therapies for Huntington’s devastates community. Nature 2021, 593, 180. [Google Scholar] [CrossRef] [PubMed]
- Kingwell, K. Double setback for ASO trials in Huntington disease. Nat. Rev. Drug Discov. 2021, 20, 412–413. [Google Scholar] [CrossRef] [PubMed]
- Zeitler, B.; Froelich, S.; Marlen, K.; Shivak, D.A.; Yu, Q.; Li, D.; Pearl, J.R.; Miller, J.C.; Zhang, L.; Paschon, D.E.; et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 2019, 25, 1131–1142. [Google Scholar] [CrossRef]
- Alterman, J.F.; Godinho, B.M.D.C.; Hassler, M.R.; Ferguson, C.M.; Echeverria, D.; Sapp, E.; Haraszti, R.A.; Coles, A.H.; Conroy, F.; Miller, R.; et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 2019, 37, 884–894. [Google Scholar] [CrossRef]
- Schuster, K.H.; Zalon, A.J.; Zhang, H.; DiFranco, D.M.; Stec, N.R.; Haque, Z.; Blumenstein, K.G.; Pierce, A.M.; Guan, Y.; Paulson, H.L.; et al. Impaired Oligodendrocyte Maturation Is an Early Feature in SCA3 Disease Pathogenesis. J. Neurosci. 2022, 42, 1604–1617. [Google Scholar] [CrossRef] [PubMed]
- Ingram, M.; Wozniak, E.A.; Duvick, L.; Yang, R.; Bergmann, P.; Carson, R.; O’callaghan, B.; Zoghbi, H.Y.; Henzler, C.; Orr, H.T. Cerebellar Transcriptome Profiles of ATXN1 Transgenic Mice Reveal SCA1 Disease Progression and Protection Pathways. Neuron 2016, 89, 1194–1207. [Google Scholar] [CrossRef]
- Duvick, L.; Barnes, J.; Ebner, B.; Agrawal, S.; Andresen, M.; Lim, J.; Giesler, G.J.; Zoghbi, H.Y.; Orr, H.T. SCA1-like Disease in Mice Expressing Wild-Type Ataxin-1 with a Serine to Aspartic Acid Replacement at Residue 776. Neuron 2010, 67, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Hamel, K.; Moncada, E.L.; Sheeler, C.; Rosa, J.; Gilliat, S.; Zhang, Y.; Cvetanovic, M. Loss of Intracerebellar Heterogeneity and Selective Vulnerability in Spinocerebellar Ataxia Type 1 Neurodegeneration. bioRxiv 2022. [Google Scholar] [CrossRef]
- Martinez-Rojas, V.A.; Juarez-Hernandez, L.J.; Musio, C. Ion channels and neuronal excitability in polyglutamine neurodegenerative diseases. Biomol. Concepts 2022, 13, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Coffin, S.L.; Durham, M.A.; Nitschke, L.; Xhako, E.; Brown, A.M.; Revelli, J.-P.; Gonzalez, E.V.; Lin, T.; Handler, H.P.; Dai, Y.; et al. Disruption of the ATXN1-CIC complex reveals the role of additional nuclear ATXN1 interactors in spinocerebellar ataxia type 1. Neuron 2023, 111, 481–492.e8. [Google Scholar] [CrossRef]
- Piol, D.; Tosatto, L.; Zuccaro, E.; Anderson, E.N.; Falconieri, A.; Polanco, M.J.; Marchioretti, C.; Lia, F.; White, J.; Bregolin, E.; et al. Antagonistic effect of cyclin-dependent kinases and a calcium-dependent phosphatase on polyglutamine-expanded androgen receptor toxic gain of function. Sci. Adv. 2023, 9, eade1694. [Google Scholar] [CrossRef]
- Pigazzini, M.L.; Lawrenz, M.; Margineanu, A.; Kaminski Schierle, G.S.; Kirstein, J. An Expanded Polyproline Domain Maintains Mutant Huntingtin Soluble in vivo and During Aging. Front. Mol. Neurosci. 2021, 14, 721749. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, H.; Perez-Aguilar, J.M.; Zhou, R. Possible Co-Evolution of Polyglutamine and Polyproline in Huntingtin Protein: Proline-Rich Domain as Transient Folding Chaperone. J. Phys. Chem. Lett. 2022, 13, 6331–6341. [Google Scholar] [CrossRef]
- Urbanek, A.; Popovic, M.; Elena-Real, C.A.; Morató, A.; Estaña, A.; Fournet, A.; Allemand, F.; Gil, A.M.; Cativiela, C.; Cortés, J.; et al. Evidence of the Reduced Abundance of Proline cis Conformation in Protein Poly Proline Tracts. J. Am. Chem. Soc. 2020, 142, 7976–7986. [Google Scholar] [CrossRef]
- Kapadia, K.; Trojniak, A.E.; Rodríguez, K.B.G.; Klus, N.J.; Huntley, C.; McDonald, P.; Roy, A.; Frankowski, K.J.; Aubé, J.; Muma, N.A. Small-Molecule Disruptors of Mutant Huntingtin–Calmodulin Protein–Protein Interaction Attenuate Deleterious Effects of Mutant Huntingtin. ACS Chem. Neurosci. 2022, 13, 2315–2337. [Google Scholar] [CrossRef] [PubMed]
- Truant, R.; Atwal, R.S.; Desmond, C.; Munsie, L.; Tran, T. Huntington’s disease: Revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J. 2008, 275, 4252–4262. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet. 2001, 10, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Punihaole, D.; Jakubek, R.S.; Workman, R.J.; Marbella, L.E.; Campbell, P.; Madura, J.D.; Asher, S.A. Monomeric Polyglutamine Structures That Evolve into Fibrils. J. Phys. Chem. B 2017, 121, 5953–5967. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Vitalis, A.; Wyczalkowski, M.A.; Pappu, R.V. Characterizing the conformational ensemble of monomeric polyglutamine. Proteins 2006, 63, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.-Y.; Wang, D.-D.; Xue, W.; Yue, H.-W.; Yang, H.; Jiang, L.-L.; Wang, W.-N.; Hu, H.-Y. Structural and dynamic studies reveal that the Ala-rich region of ataxin-7 initiates α-helix formation of the polyQ tract but suppresses its aggregation. Sci. Rep. 2019, 9, 7481. [Google Scholar] [CrossRef] [PubMed]
- Kandola, T.; Venkatesan, S.; Zhang, J.; Lerbakken, B.T.; Von Schulze, A.; Blanck, J.F.; Wu, J.; Unruh, J.R.; Berry, P.; Lange, J.J.; et al. Pathologic Polyglutamine Aggregation Begins with a Self-Poisoning Polymer Crystal. Elife 2023, 12, RP86939. [Google Scholar] [CrossRef] [PubMed]
- Hatano, Y.; Ishihara, T.; Hirokawa, S.; Onodera, O. Machine Learning Approach for the Prediction of Age-Specific Probability of SCA3 and DRPLA by Survival Curve Analysis. Neurol. Genet. 2023, 9, e200075. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003, 10, 980. [Google Scholar] [CrossRef]
- Estevam, B.; Matos, C.A.; Nóbrega, C. PolyQ Database—An integrated database on polyglutamine diseases. Database 2023, 2023, baad060. [Google Scholar] [CrossRef]
- Nóbrega, C.; Pereira De Almeida, L. Polyglutamine Disorders; Springer International Publishing: Cham, Switzerland, 2018; Volume 1049. [Google Scholar]
PolyQ Disease | Normal CAG Repeats | Pathogenic CAG Repeats | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Reports from 2013 | Reports from 2017 | Reports from 2020 | Reports from 2021 | Reports from 2022 | Reports from 2013 | Reports from 2017 | Reports from 2020 | Reports from 2021 | Reports from 2022 | |
HD | 7–35 | 6–35 | 6–35 | - | 10–26 | 36–170 | 36–180 | 36–250 | - | 36–250 |
SBMA | 11–35 | 9–36 | 11–34 | - | 5–34 | 38–62 | 38–65 | 38–62 | - | 37–70 |
DRPLA | 7–34 | 6–36 | 3–35 | - | 7–35 | 48–93 | 49–88 | 49–88 | - | 49–88 |
SCA1 | 27–36 | 6–39 | 6–44 | 6–35 | 6–35 | 39–82 | 39–83 | 39–83 | 41–89 | 39–91 |
SCA2 | 15–32 | 14–32 | 15–31 | 17–29 | 14–31 | 36–64 | 32–200 | 34–200 | 37–100 + | 33–500 |
SCA3 | 12–43 | 12–41 | 12–41 | 7–44 | 11–44 | 52–86 | 55–84 | 55–84 | 55–89 | 60–87 |
SCA6 | 8–14 | 4–19 | 4–17 | 4–18 | 4–18 | 20–33 | 20–33 | 20–33 | 21–30 | 20–33 |
SCA7 | 7–35 | 4–35 | 4–35 | 7–19 | 4–19 | 38–200 | 37–306 | 37–306 | 36–400 + | 34–460 |
SCA17 | 24–44 | 25–44 | 25–42 | 25–42 | 25–41 | 45–63 | 46–63 | 45–63 | 47–66 | 46–55 |
PolyQ Disease | Autophagic Dysfunctions |
---|---|
HD | AVs accumulation Inhibition of autophagy signaling Defective cargo recognition |
SBMA | AVs accumulation Impaired autophagy flux TFEB dysregulation |
DRPLA | Impaired lysosomal degradation |
SCA1 | Increased levels of LC3II Cytoplasmic vacuoles accumulation |
SCA2 | Altered levels of SQSTM1 and LC3B |
SCA3 | Impaired autophagy induction Autophagy flux defects |
SCA6 | Impaired autophagy induction Lysosomal proteins within aggregates |
SCA7 | AVs accumulation Impaired p53 signaling |
SCA17 | Decreased autophagy activation via HMGB1 sequestration |
Differences | Similarities | ||||
---|---|---|---|---|---|
Features | SCAs | HD | SBMA | DRPLA | PolyQ-Disorders |
Inheritance | Autosomal dominant | Autosomal dominant | X-linked recessive | Autosomal dominant | CAG expansion [127,128,129,130,131,132,133,134,135,136,137,154,155,156,157,184,185,186,187,188,205,206,207,208,209,210,211,212,213] |
Disease pathology | Mitochondrial dysfunction, protein aggregation [130,135,136,137] | Protein aggregation, mitochondrial disruption [154,155,156,157] | Protein misfolding, transcriptional interference [184,185,186,187,188] | Protein accumulation, impaired lysosomal function [205,206,207,208,209,210,211,212,213] | Host proteins aggregations [135,136,137,154,155,156,157,184,185,186,187,188,205,206,207,208,209,210,211,212,213] |
Genetic mechanism | CAG repeat expansions, aggregation propensity [130,135,136,137] | Expanded CAG repeats in HTT gene, toxic GOF/LOF [154,155,156,157] | PolyQ expansions in AR gene, GOF/LOF mechanisms [184,185,186,187,188] | Expanded CAG repeats in ATN1 gene, GOF mechanism [205,206,207,208,209,210,211,212,213] | Impaired autophagy and mitochondrial dysfunction [139,140,141,142,143,175,176,177,191,198,199,213] |
Proteotoxicity | Increased nuclear import, faulty clearance by UPS [147,148,149,150,151] | Accumulation in nucleus, toxic oligomers [115,160,161] | Misfolded proteins in nucleus, proteotoxic species [190,191] | Diffuse accumulation in neuronal nuclei [212] | GOF and LOF toxicity [127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,159,160,161,185,186,187,188,205,206,207,208,209,210,211,212,213] |
Affected CNS regions | Cerebellum, brainstem, spinal cord, basal ganglia, peripheral and autonomic nerves [128,129,130,131] | Striatum, cerebral cortex [170,171] | Lower motor neurons, skeletal muscle [186,187] | Dentatorubral and pallidoluysian systems, cerebral white matter [205,206,207,208,209,210,211] | Aberrant PPIs [147,148,149,150,151,154,155,156,157,184,185,186,187,188,205,206,207,208,209,210,211,212,213] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovean-Cioroianu, N.S. Reviewing the Structure–Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. Int. J. Mol. Sci. 2024, 25, 6789. https://doi.org/10.3390/ijms25126789
Moldovean-Cioroianu NS. Reviewing the Structure–Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. International Journal of Molecular Sciences. 2024; 25(12):6789. https://doi.org/10.3390/ijms25126789
Chicago/Turabian StyleMoldovean-Cioroianu, Nastasia Sanda. 2024. "Reviewing the Structure–Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches" International Journal of Molecular Sciences 25, no. 12: 6789. https://doi.org/10.3390/ijms25126789
APA StyleMoldovean-Cioroianu, N. S. (2024). Reviewing the Structure–Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. International Journal of Molecular Sciences, 25(12), 6789. https://doi.org/10.3390/ijms25126789