Identification and Molecular Simulation of Genetic Variants in ABCA1 Gene Associated with Susceptibility to Dyslipidemia in Type 2 Diabetes
Abstract
:1. Introduction
2. Results
2.1. Genotyping of rs757194699 (K1587Q) of the ABCA1 Gene
2.2. Genotyping of rs2066714 (I883M) Variants of the ABCA1 Gene
SNP | Groups | |
---|---|---|
rs2066714 | Case (n = 110) | Control (n = 110) |
A | 87 (0.39) | 203(0.92) |
G | 133(0.60) | 17(0.07) |
AA | 5 (4.55%) | 93 (84.55%) |
AG | 77 (70%) | 17 (15.45%) |
GG | 28 (25.45%) | 0 |
rs757194699 | Case (n = 150) | Control (n = 150) |
A | 110(0.36) | 236(0.78) |
C | 190(0.63) | 64(0.21) |
AA | 0 | 86 (57%) |
AC | 110 (73%) | 64 (43%) |
CC | 40 (27%) | 0 |
SNP | Genotype | Cases | Controls | OR (95% CI) | p-Value | AIC | BIC |
---|---|---|---|---|---|---|---|
rs757194699 Overdominant | A/A-C/C | 40 (26.7%) | 86 (57.3%) | 1.00 | 0.0011 | 166.6 | 185.1 |
A/C | 110 (73.3%) | 64 (42.7%) | 3.84 (1.67–8.82) | ||||
rs2066714 Codominant | A/A | 5 (4.5%) | 93 (84.5%) | 1.00 | <0.0001 | 75 | 95.3 |
A/G | 77 (70%) | 17 (15.4%) | 39.61 (9.97–157.32) | ||||
G/G | 28 (25.4%) | 0 (0%) | 0.00 (0.00-NA) | ||||
Dominant | A/A | 5 (4.5%) | 93 (84.5%) | 1.00 | <0.0001 | 77.9 | 94.8 |
A/G-G/G | 105 (95.5%) | 17 (15.4%) | 59.59 (15.19–233.81) | ||||
Overdominant | A/A-G/G | 33 (30%) | 93 (84.5%) | 1.00 | <0.0001 | 110. 1 | 127 |
A/G | 77 (70%) | 17 (15.4%) | 9.75 (3.16–30.11) | ||||
Log-additive | --- | --- | --- | 42.15 (11.08–160.40) | <0.0001 | 73.2 | 90.1 |
2.3. Sanger Sequencing of Exon 5 of the ABCA1 Gene
2.4. In Silico ABCA1 Docking with ApoA1
3. Discussion
Study Strengths and Limitations
4. Materials and Methods
4.1. Study Design and Sample Collection
4.2. Molecular Genotyping of the ABCA1 Gene Variants rs757194699 (K1587Q) and rs2066714 (I883M)
4.3. Genetic Screening of Exon 5 of ABCA1
4.4. In Silico ABCA1 Docking with ApoA1
4.5. Statistical Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nathan, D.M. Long-term complications of diabetes mellitus. N. Engl. J. Med. 1993, 328, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.G.; Halter, J.B. The pathophysiology of hyperglycemia in older adults: Clinical considerations. Diabetes Care 2017, 40, 444–452. [Google Scholar] [CrossRef] [PubMed]
- ID Federation. IDF Diabetes Atlas, 10th ed. Brussels, Belgium. 2021. Available online: https://www.diabetesatlas.org (accessed on 29 December 2023).
- World Health Organization. Diabetes-FactSheet. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 23 May 2023).
- Basit, A.; Tanveer, S.; Fawwad, A.; Naeem, N.; Members, N. Prevalence and contributing risk factors for hypertension in urban and rural areas of Pakistan; A study from second National Diabetes Survey of Pakistan (NDSP) 2016–2017. Clin. Exp. Hypertens. 2019, 42, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Dendup, T.; Feng, X.; Clingan, S.; Astell-Burt, T. Environmental risk factors for developing type 2 diabetes mellitus: A systematic review. Int. J. Environ. Res. Public Health 2018, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Gerstein, H.C.; Holman, R.R.; Pfeffer, M.A. Heart failure: A cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol. 2014, 2, 843–851. [Google Scholar] [CrossRef]
- Imai, Y.; Cousins, R.S.; Liu, S.; Phelps, B.M.; Promes, J.A. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes. Ann. N. Y. Acad. Sci. 2020, 1461, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Santamarina-Fojo, S.; Peterson, K.; Knapper, C.; Qiu, Y.; Freeman, L.; Cheng, J.-F.; Osorio, J.; Remaley, A.; Yang, X.-P.; Haudenschild, C. Complete genomic sequence of the human ABCA1 gene: Analysis of the human and mouse ATP-binding cassette A promoter. Proc. Natl. Acad. Sci. USA 2000, 97, 7987–7992. [Google Scholar] [CrossRef]
- Wang, H.H.; Garruti, G.; Liu, M.; Portincasa, P.; Wang, D.Q. Cholesterol and lipoprotein metabolism and atherosclerosis: Recent advances in reverse cholesterol transport. Ann. Hepatol. 2018, 16, 27–42. [Google Scholar] [CrossRef]
- Huang, L.; Fan, B.; Ma, A.; Shaul, P.W.; Zhu, H. Inhibition of ABCA1 protein degradation promotes HDL cholesterol efflux capacity and RCT and reduces atherosclerosis in mice. J. Lipid Res. 2015, 56, 986–997. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razek, O.; Sadananda, S.N.; Li, X.; Cermakova, L.; Frohlich, J.; Brunham, L.R. Increased prevalence of clinical and subclinical atherosclerosis in patients with damaging mutations in ABCA1 or APOA1. J. Clin. Lipidol. 2018, 12, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Chagoya, A.; Moreno-Macías, H.; Sevilla-González, M.; Rodríguez-Guillén, R.; Ordóñez-Sánchez, M.L.; Gómez-Velasco, D.; Muñóz-Hernández, L.; Segura-Kato, Y.; Arellano-Campos, O.; Cruz-Bautista, I. Contribution of known genetic risk variants to dyslipidemias and type 2 diabetes in Mexico: A population-based nationwide study. Genes 2020, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, H.; Li, Y.; Wang, H.; He, J.; Mu, L.; Hu, Y.; Ma, J.; Yan, Y.; Li, S. Interactions among genes involved in reverse cholesterol transport and in the response to environmental factors in dyslipidemia in subjects from the Xinjiang rural area. PLoS ONE 2018, 13, e0196042. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Silver, D.L.; Thiele, C.; Tall, A.R. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J. Biol. Chem. 2001, 276, 23742–23747. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.Y.; Lei, S.; Huang, L.; Wang, Y.N.; Wang, X.N.; Zhou, P.P.; Xu, X.J.; Zhang, L.; Xu, L.W.; Yang, L. Associations of genetic variations in ABCA1 and lifestyle factors with coronary artery disease in a Southern Chinese Population with dyslipidemia: A Nested Case-Control Study. Int. J. Environ. Res. Public Health 2019, 16, 786. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Azuma, R.; Akumuo, R.; Goetzl, L.; Pinney, S.E. Gestational diabetes and maternal obesity are associated with sex-specific changes in miRNA and target gene expression in the fetus. Int. J. Obes. 2020, 44, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, G.P.; Malyshev, P.P.; Rozhkova, T.A.; Zubareva, M.Y.; Shuvalova, Y.A.; Rebrikov, D.V.; Titov, V.N. The effect of ABCA1 rs2230806 common gene variant on plasma lipid levels in patients with dyslipidemia.]. Klin. Lab. Diagn. 2018, 63, 410–413. [Google Scholar] [PubMed]
- Tang, F.; Guan, L.; Liu, X.; Fan, P.; Zhou, M.; Wu, Y.; Liu, R.; Liu, Y.; Liu, S.; Li, D.; et al. A common R219K variant of ATP-binding cassette transporter A1 gene alters atherometabolic traits in pregnant women with gestational diabetes mellitus. Front. Endocrinol. 2021, 12, 782453. [Google Scholar] [CrossRef]
- Yan, R.; Luo, J.; He, X.; Li, S. Association between ABC family variants rs1800977, rs4149313, and rs1128503 and susceptibility to type 2 diabetes in a Chinese Han population. J. Int. Med. Res. 2020, 48, 300060520941347. [Google Scholar] [CrossRef]
- Ghafar, M.T.A.; Shalaby, K.H.; Okda, H.I.; Rizk, F.H. Association of ABCA1 (C69T) gene polymorphism with dyslipidemia and type 2 diabetes among the Egyptian population. Meta Gene 2020, 25, 100714. [Google Scholar] [CrossRef]
- Lu, Z.; Luo, Z.; Jia, A.; Yu, L.; Muhammad, I.; Zeng, W.; Song, Y. Associations of the ABCA1 gene polymorphisms with plasma lipid levels: A meta-analysis. Medicine 2018, 97, e13521. [Google Scholar] [CrossRef]
- Fawzy, M.S.; Alhadramy, O.; Hussein, M.H.; Ismail, H.M.; Ismail, N.M.; Biomy, N.M.; Toraih, E.A. Functional and structural impact of ATP-binding cassette transporter A1 R219K and I883M gene polymorphisms in obese children and adolescents. Mol. Diagn. Ther. 2015, 19, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Weinstock, J.; Venners, S.A.; Cheng, J.; Hsu, Y.H.; Zou, Y.; Pan, F.; Jiang, S.; Zha, X.; Xu, X. Associations of the ABCA1 and LPL gene polymorphisms with lipid levels in a hyperlipidemic population. Clin. Appl. Thromb./Hemost. 2018, 24, 771–779. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, P.; Couvert, P.; Elbitar, S.; Ghaleb, Y.; Abou-Khalil, Y.; Azar, Y.; Ayoub, C.; Superville, A.; Guérin, M.; Rabès, J.-P. Identification of the first Tangier disease patient in Lebanon carrying a new pathogenic variant in ABCA1. J. Clin. Lipidol. 2018, 12, 1374–1382. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, V.; Aneja, A.; Singh, J. Genetic polymorphisms in ABCA1 (rs2230806 and rs1800977) and LIPC (rs2070895) genes and their association with the risk of type 2 diabetes: A case control study. Int. J. Diabetes Dev. Ctries. 2022, 42, 227–235. [Google Scholar] [CrossRef]
- Liu, P.; Ma, L.; Zhao, H.; Shen, Z.; Zhou, X.; Yan, M.; Zhao, T.; Zhang, H.; Qiu, X.; Li, P. Association between LXR-α and ABCA1 gene polymorphisms and the risk of diabetic kidney disease in patients with type 2 diabetes mellitus in a Chinese Han Population. J. Diabetes Res. 2020, 2020, 8721536. [Google Scholar] [CrossRef]
- Wang, F.; Ji, Y.; Chen, X.; Song, Y.; Huang, S.; Zhou, C.; Huang, C.; Chen, Z.; Zhang, L.; Ge, J. ABCA1 variants rs2230806 (R219K), rs4149313 (M8831I), and rs9282541 (R230C) are associated with susceptibility to coronary heart disease. J. Clin. Lab. Anal. 2019, 33, e22896. [Google Scholar] [CrossRef]
- Lu, Z.; Luo, Z.; Jia, A.; Muhammad, I.; Zeng, W.; Shiganmo, A.; Chen, X.; Song, Y. Effects of ABCA1 gene polymorphisms on risk factors, susceptibility and severity of coronary artery disease. Postgrad. Med. J. 2020, 96, 666–673. [Google Scholar] [CrossRef]
- Kolovou, V.; Marvaki, A.; Boutsikou, M.; Vasilopoulos, G.; Degiannis, D.; Marvaki, C.; Kolovou, G. Effect of ATP-binding cassette transporter A1 (ABCA1) gene polymorphisms on plasma lipid variables and common demographic parameters in Greek nurses. Open Cardiovasc. Med. J. 2016, 10, 233–239. [Google Scholar] [CrossRef]
- Mirza, Z.; Al-Saedi, D.A.; Saddeek, S.; Almowallad, S.; AlMassabi, R.F.; Huwait, E. Atheroprotective effect of fucoidan in THP-1 macrophages by potential upregulation of ABCA1. Biomedicines 2023, 11, 2929. [Google Scholar] [CrossRef] [PubMed]
- Villa, M.; Wu, J.; Hansen, S.; Pahnke, J. Emerging role of ABC transporters in glia cells in health and diseases of the central nervous system. Cells 2024, 13, 740. [Google Scholar] [CrossRef] [PubMed]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Isolation of High-molecular-weight DNA from mammalian cells using Proteinase K and Phenol. CSH Protoc. 2006, 2006, pdb.prot4036. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 2015, 12, 7–8. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; de Beer, T.A.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Yan, Y.; Tao, H.; He, J.; Huang, S.Y. The HDOCK server for integrated protein-protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
Sex | Genotypes | Status | OR (95% CI) | |
---|---|---|---|---|
Female | Control | Case | ||
I/I | 33 | 1 | 1.00 | |
I/M | 6 | 14 | 25.64 (1.75–376.06) | |
M/M | 0 | 8 | --- | |
Male | I/I | 60 | 4 | 1.00 |
I/M | 11 | 63 | 45.42 (9.23–223.45) | |
M/M | 0 | 20 | --- |
Interface statistics for wild ABCA1 and apoA1 interactions | ||||||
Chains | No. of interface residues | Interface area (Å2) | No. of salt bridges | No. of disulphide bonds | No. of hydrogen bonds | No. of non-bonded contacts |
82:84 | 4659:4718 | 25 | - | 50 | 515 | |
49:38 | 2505:2651 | 6 | - | 7 | 237 | |
72:71 | 4502:4534 | 6 | - | 28 | 348 | |
Interface statistics for mutated ABCA1 and apoA1 | ||||||
Chains | No. of interface residues | Interface area (Å2) | No. of salt bridges | No. of disulphide bonds | No. of hydrogen bonds | No. of non-bonded contacts |
56:58 | 4034:4032 | 12 | - | 12 | 340 | |
15:15 | 852:851 | - | - | - | 38 | |
69:57 | 4287:4459 | 4 | - | 7 | 307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majeed, A.; Baig, Z.A.; Rashid, A. Identification and Molecular Simulation of Genetic Variants in ABCA1 Gene Associated with Susceptibility to Dyslipidemia in Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 6796. https://doi.org/10.3390/ijms25126796
Majeed A, Baig ZA, Rashid A. Identification and Molecular Simulation of Genetic Variants in ABCA1 Gene Associated with Susceptibility to Dyslipidemia in Type 2 Diabetes. International Journal of Molecular Sciences. 2024; 25(12):6796. https://doi.org/10.3390/ijms25126796
Chicago/Turabian StyleMajeed, Asifa, Zunaira Ali Baig, and Amir Rashid. 2024. "Identification and Molecular Simulation of Genetic Variants in ABCA1 Gene Associated with Susceptibility to Dyslipidemia in Type 2 Diabetes" International Journal of Molecular Sciences 25, no. 12: 6796. https://doi.org/10.3390/ijms25126796
APA StyleMajeed, A., Baig, Z. A., & Rashid, A. (2024). Identification and Molecular Simulation of Genetic Variants in ABCA1 Gene Associated with Susceptibility to Dyslipidemia in Type 2 Diabetes. International Journal of Molecular Sciences, 25(12), 6796. https://doi.org/10.3390/ijms25126796