Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration
Abstract
:1. Introduction
1.1. Bone and Bone Injuries
1.2. Current Treatments for Bone Injuries
1.3. Cell-Based Treatments
- Adult stem cells—also known as somatic stem cells, these undifferentiated cells can be found within specific differentiated tissues.
- Embryonic stem cells (ESCs)—ESCs originate from the inner cell population of the blastocyst embryo and have unlimited self-renewal and the ability to differentiate into other cell lines from the three germ layers.
- Extra-embryonic stem cells—these cells are derived from extra-embryonal sources, the primary source being isolated from tissue discarded after birth. These strains have a good multilineage differentiation ability.
- Induced pluripotent stem cells (iPSCs)—these pluripotent stem cells are derived from adult stem cells by reprogramming with inducing genes and factors.
1.4. Mesenchymal Stem Cells
2. From Fat to Bone: Achieving Bone Regeneration with AD-MSCs
2.1. Adipose Tissue as Source of Stem Cells
2.2. Isolation and Osteogenic Differentiation of AD-MSCs
2.3. Dedifferentiated Fat Cells
2.4. The Mechanism of Bone Formation and Bone Repair
2.5. Cell Delivery: Homogeneous AD-MSCs versus SVF
2.6. Towards Xeno-Free Culture and Xeno-Free Osteogenic Differentiation of AD-MSCs
2.7. AD-MSCs Secretome during Bone Regeneration
2.7.1. The AD-MSC Secretome
2.7.2. Cytokines and Growth Factors
2.7.3. Extracellular Vesicles (EVs)
3. AD-MSCs in Pre-Clinical Applications
3.1. In Vitro Applications
First Author | Cell Source and Type | AD-MSCs’ Harvest Method | Scaffold Used | Key Findings |
---|---|---|---|---|
Sari et al. [166] | AD-MSCs from rat | Not Reported | Bovine teeth scaffold | AD-MSCs exhibited good cell adherence to the allograft, showing its biocompatibility and accelerated osteogenic differentiation of AD-MSCs. |
Kurzyk et al. [167] | AD-MSCs from human | Lipoaspirate | PCL PCL + 5% TCP | AD-MSCs exhibited stable proliferative capacity and can be cultured for long durations in vitro. AD-MSCs were biocompatible with PCL or PCL + 5%TCP scaffolds, but PCL + 5%TCP scaffold showed the best bone regenerative capacity. |
Hosseini et al. [168] | AD-MSCs, BM-MSCs, and USSCs from human | Buccal Fat Pad | Bioceramic PCL PCL-Bio | Proliferation rate between 3 stem cell types was not significantly different. Higher proliferation was evident on scaffold compared to tissue culture place. BFP-AD-MSCs was concluded to be the best cell source type due to its availability and easy harvesting method. |
Gandolfi et al. [169] | AD-MSCs from human | Purchased | Mineral-doped PLA-based porous scaffolds | Mineral-doped scaffolds showed a dynamic surface and created a suitable bone-forming microenvironment—increasing osteogenic commitment. Presence of exosomes increased osteogenic gene markers. Exosome-enriched scaffolds could improve bone regenerative capacity. |
Roato et al. [170] | SVF-AD-MSCs from human | Lipoaspirate | Xenohybrid bone scaffold | SVF-AD-MSCs with scaffold, in the presence of osteogenic factors, had higher osteoinductive capabilities than AD-MSCs. |
Ghaderi et al. [171] | AD-MSCs and GDCs from human | Buccal Fat Pad | No Scaffold | Both BFP-AD-MSCs and GDC demonstrated potential to differentiate into osteocyte and chondrocyte, but BFP yielded a greater proportion. |
Ahmed et al. [172] | AD-MSCs and BM-MSCs from human | Lipoaspirate | No Scaffold | AD-MSCs showed significantly higher proliferation and adipogenic capacity with more lipid vesicle formation and expression of the adipogenesis-related genes than BM-MSCs. In contrast, BM-MSCs showed significantly higher osteogenic and chondrogenic capacity compared to AD-MSCs. |
Mazzoni et al. [173] | AD-MSCs from human | Lipoaspirate | HA | Scaffold provided the ideal microenvironment for AD-MSCs adhesion, increasing proliferation and upregulation of osteogenic genes with improvement in matrix mineralization and cell viability. |
D’Alimonte et al. [174] | AD-MSCs and DPSCs from human | Purchased | Titanium disks | AD-MSCs had greater proliferation, osteogenic differentiation, and colony-forming ability than DPSCs. AD-MSCs also showed better colonization and adhesion on the titanium scaffold. |
Canciani et al. [175] | AD-MSCs from human | Subcutaneous | 30/70 HA b-TCP | Combination of AD-MSCs and HA/b-TCP scaffold increased alkaline phosphatase activity of the cell and cellular vitality increased. Good adhesion capacity was observed between the cell and scaffold interface. |
Calabrese et al. [176] | AD-MSCs from human | Adipose tissue biopsies/lipoaspirate | Collagen/Mg doped HA | Collagen/hydroxyapatite scaffold can induce AD-MSCs differentiation and the addition of osteoinductive factors accelerates the osteogenic process. |
Russell et al. [39] | BM-MSCs and AD-MSCs from canine | Subcutaneous | No Scaffold | No significant differences were found between cell types in terms of their adipogenesis, osteogenesis, immunomodulatory capacity, immunophenotype, and progenitor and non-progenitor functions. AD-MSCs had higher isolation success and proliferation rate. |
Caetano et al. [177] | AD-MSCs from human | Lipoaspirates | PCL | AD-MSCs were viable in the scaffolds, and they could differentiate toward the osteogenic lineages for 28 days in culture with osteogenic medium. |
A. Ardeshirylajimi et al. [178] | BM-MSCs, AD-MSCs, and USSCs from human | Buccal Fat Pad Lipoaspirate | PLLA PLLA-Bio TCPS | No significant difference between proliferation levels of the four types of stem cell. BFP-AD-MSCs exhibited osteogenic differentiation close to BM-MSCs. Bio-Oss-coated PLLA found to be most appropriate substrate to support proliferation and osteogenic differentiation of stem cells in vitro. |
Kishimoto et al. [179] | AD-MSCs from human | Buccal Fat Pad | No Scaffold | DFAT cells’ osteoblastic differentiation ability is higher than that of ASCs. We consider DFAT cells from the BFP to be an ideal cell source for bone tissue engineering. |
Requicha et al. [180] | AD-MSCsfrom canine | Abdominal tissue | Starch and PCL | Wet-spun fiber mesh layer functionalized with silanol groups stimulated the osteogenic differentiation of AD-MSCs, while the membrane layers enabled a good cell attachment and proliferation. Double-layer scaffold enhances osteogenesis and promotes colonization. |
Niada et al. [181] | AD-MSCs from pigs | Subcutane-ous Buccal fat pad | Titanium disks | AD-MSCs from BFP osteo-differentiated well in association with synthetic supports. BFP contains a population of progenitor cells with stemness features that can differentiate in vitro and are associated with synthetic supports. |
Melief et al. [182] | AD-MSCs and BM-MSCs from human | Cadaveric Pancreata | No Scaffold | Immunomodulatory capacities of BM-MSCs and AD-MSCs are similar, AD-MSCs have more potent immunomodulatory effects than BM-MSCs where lower numbers of AD-MSCs evoke the same level of immunomodulation. |
Broccaioli et al. [183] | AD-MSCs from human | Buccal Fat Pad Subcutaneous | Alveolar bone Periodontal ligament Collagen membrane | Both AD-MSCs harvested from BFP and subcutaneous region have good proliferation rate and adhered to bone, periodontal ligament, collagen membrane, and polyglycol acid filaments. BFP-AD-MSCs were found to be able to differentiate and adhere to biological supports and synthetic materials. They are also able to proliferate in the presence of human serum. |
Jia Liu et al. [184] | AD-MSCs from rat | Subcutaneous | Heterogeneous deproteinized bone (HDB) | AD-MSCs-HDB composite displayed strong osteogenic ability, able to regenerate bone for segmental bone defects. It has significant improvements compared to HDB only method, showing higher density in the AD-MSCs experimental groups |
Shi et al. [185] | AD-MSCs (SVF) from human | Lipoaspirate | Human cancellous bone | AD-MSCs derived from the SVF of adipose have all the characteristics of MSCs, which include adherence, the presence of CD markers, and the capability of tri-lineage differentiation. |
PEÑA et al. [186] | AD-MSCs and BM-MSCs from human | Lipoaspirate | No Scaffold | AD-MSCs and BM-MSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. |
Guasch et al. [187] | AD-MSCs from human | Lipoaspirate Buccal Fat Pad | No Scaffold | AD-MSCs from BFP differentiate to chondrocytes, osteoblasts, and adipocytes, suggesting that BFP can be a rich alternative source of stem cells. |
Gabbay et al. [188] | AD-MSCs from human | Lipoaspirate | No Scaffold | Greater expression of osteogenic markers in AD-MSCs were shown in the 3-dimensional collagen gel—cells were found to adhere more readily to the 3-dimensional structure. |
Halvorsen et al. [36] | AD-MSCs from human | Not Reported | No Scaffold | Adipose tissue-derived human stromal cells can be expanded more than 100-fold, displaying adipocyte-specific proteins and osteoblastic gene markers. A readily available source of multipotential stromal cells. |
Ugarte et al. [189] | AD-MSCs and BM-MSCs from human | Lipoaspirate | No Scaffold | No significant differences were observed for yield of adherent stromal cells, growth kinetics, cell senescence, multi-lineage differentiation capacity, and gene transduction efficiency. Adipose tissue is an abundant and easily procured source of PLA cells, applicable for tissue-engineering and as gene delivery vehicles. |
Zuk et al. [31] | AD-MSCs from human | Lipoaspirate | No Scaffold | Adipose tissue may be another source of pluripotent stem cells with multi-germline potential. |
3.1.1. AD-MSCs as a Cell Source for Bone Regeneration
3.1.2. AD-MSCs from the Oral Region for Oral–Maxillofacial Applications
3.1.3. AD-MSCs and the Role of Scaffolds
3.2. In Vivo Applications
3.2.1. AD-MSCs’ Response in Bone Regeneration
First Author | Cell Source and Type | Harvest Method | Scaffold Used | Animal | Model | Key Findings |
---|---|---|---|---|---|---|
Ahn et al. [223] | AD-MSCs from human | Lipoaspirate | No Scaffold | Rat | 8 mm calvarial defect | Decellularized AD-MSCs matrix loaded with bone morphogenetic protein BMP2 had effective bone regeneration without any immune side effects. |
Dziedzic et al. [197] | AD-MSCs from rats | Inguinal fat | Decellularized Human Amniotic Membrane (DAM) | Rat | 8 mm calvarial defect | DAM with AD-MSCs demonstrated higher host bone deposition and has shown to be effective in critical bone defect management. |
Wang et al. [224] | AD-MSCs from rabbits EPCs | Inguinal adipose tissue | ADSC sheets | Rat and Rabbit | 10 mm calvarial defects | ADSC sheet-EPC was osteogenic and EPC enabled the formation of capillary-like structures. The combined scaffold formed dense and well-vascularized new bone tissue at 8 weeks after implantation without any complications. |
Maglione et al. [195] | AD-MSCs from rabbits | A single withdrawal from rabbits | Deproteinized bovine bone Bovine cancellous granular + collagen | Rabbit | 2 mm, 6 mm calvarial defect | New bone was formed in the seeded scaffold and was similar to those obtained through traditional regenerative technique. AD-MSCs combined with scaffolds accelerated some steps in normal osseous regeneration. |
Zhang et al. [225] | ADMCs from human | Not Reported | Osteogenic extracellular matrix (ECM) Small intestinal submucosa (SIS) | Rat | 4 mm calvarial defect | AD-MSCs adhered faster and had better colonization on ECM-SIS scaffolds than on SIS scaffolds. Proliferation of AD-MSCs was promoted by the scaffolds without requiring additional osteogenic factors. |
Semyari et al. [226] | AD-MSCs from rabbit | Fatty tissue from the nape | PLA PLAGA Decellularized amniotic membrane | Rabbit | 8 mm circular calvarial defects | The scaffolds seeded with AD-MSCs showed development of well-vascularized bone tissues. AD-MSCs were osteoinductive, biocompatible, and promoted faster and more effective osteogenesis together with all types of scaffolds. |
Ko et al. [227] | AD-MSCs from human | Purchased | Nanostructured decellularized tendon | Rat | 4 mm calvarial defect | Nanostructured scaffolds had advantages over microstructure scaffolds as it enhanced cellular alignment, improving differentiation and regenerative potential of AD-MSCs resulting in accelerated bone regeneration |
Di Bella et al. [228] | AD-MSCs | Inguinal fat pad | PLA | Rabbit | 15 mm in diameter calvarial defect | PLA coated with fibronectin displayed significantly more bone formation within the scaffold matrix compared to non-coated group. The surface treatment of scaffolds with fibronectin enhances bone regeneration, due to the hydrophilic nature of fibronectin that permits greater cell adhesion, proliferation, and differentiation into the scaffold. |
Han et al. [216] | AD-MSCs and BM-MSCs | Abdomen | Fibrin Glue | Rabbit | 10 × 10 mm calvarial defect | AD-MSCs differentiate directly into osteoblasts less often than BM-MSCs. However, the total amount of regenerated bone is almost the same because of the effect of indirect bone regeneration. |
Yoon et al. [214] | AD-MSCs from human | Lipoaspirate | PLGA | Rat | An 8 mm circular calvarial defect | Differentiated AD-MSCs combined with PLGA exhibited better, more robust bone regeneration capacity compared to undifferentiated AD-MSCs. Fourteen days of AD-MSCs culture duration was found to be optimal for differentiated AD-MSCs. |
Probst et al. [213] | AD-MSCs from minipigs | Lower abdominal area | TCP-PLGA titanium osteosynthesis plates. | Mini Pigs | Mandibular defect | AD-MSCs-seeded scaffolds had higher osteocalcin deposition and newly formed bone in the defect area. Improved bone regeneration in large mandibular defects. |
Jin et al. [222] | AD-MSCs and DPSCsfrom human | Lipoaspirate | No scaffold | Rat | 2 mm mandibular bone defect, 1 mm thickness | AD-MSCs showed visible bone tissue as early as week 1 and promoted faster and greater bone regeneration (higher osteogenic differentiation potential, higher expression of osteoblast marker genes) compared to the DPSC group. |
Mehra-bani et al. [199] | AD-MSCs from rabbits | Subcutaneous | Autologous bone graft | Rabbits | Bilateral 1.5 × 0.5 cm mandible defect | Significant increase in the thickness of new cortical bone when fibrin glue scaffold associated with AD-MSCs was used. |
Lee et al. [201] | BM-MSCs and AMSCs from canine | Abdominal cavity | PCL TCP | Canine | Maxillary bone defect | AD-MSCs and BM-MSCs seeded onto 3D-printed PCL/TCP scaffolds are implanted in bone defects and showed similar osteogenic properties. |
Pourebrahim et al. [204] | AD-MSCs from canine | Subcutaneous | HA bTCP | Canine | 15 mm alveolar crest to the nasal floor defect | Bone formation with AD-MSCs were slower than that of autografts, but the rate increased rapidly after day 60, exhibiting comparable bone regeneration capability as autografts. AD-MSCs together with HA and bTCP showed good potency for bone regeneration in critical defects. |
Lau et al. [108] | AD-MSCs | Lipoaspirate | PCL-TCP | Pigs | 4 defect 8 mm × 8 mm in alveolar ridge | Presence of AD-MSCs significantly enhanced bone regeneration for alveolar ridge augmentation. Scaffold-with-cell model exhibited better bone formation compared to scaffold-only models. |
Yoshida et al. [229] | AD-MSCs from rats | Right inguinal region | Osteogenic-induced ADSC sheets | Rat | 1 mm distal femur defect | Osteogenic-induced AD-MSC sheet may be more advantageous for bone healing than the AD-MSC sheet because of the higher number of osteocalcin-positive osteoblasts via the transplantation. |
Wagner et al. [198] | AD-MSCs from human | Abdominoplastic surgery | Cancellous human bone allografts Human allogenic spongiosa chips | Rat | 0.45 mm distal femur defect | Ratio of 84,600 cells per 100 mm3 scaffold is advantageous for vital cell population and cell seeding efficiency. Scaffolds seeded with AD-MSCs showed increased osteogenesis, proliferation, and angiogenesis, and elevated bone formation. |
Liu et al. [184] | AD-MSCs from rats | Inguinal region | HDB | Rat | 4 mm long bone defect | AD-MSCs-HDB has a strong osteogenic ability and successful regeneration of bone was found in segmental bone defects—a promising grafting material in bone tissue engineering. |
Zanicotti et al. [207] | AD-MSCs from sheep | Hip region | Machined (MTi) and alumina-blasted (ABTi) titanium discs. | Sheep | 10 mm × 9 mm × 7 mm femur epicondyle defect | AD-MSCs with titanium discs did not improve bone regeneration. Suspecting that the relative short duration given for healing (1 month) and the presence of titanium disc (1.5 mm thick) could have deteriorated bone healing process. |
Chandran et al. [206] | AD-MSCs from sheep | Subcutaneous | SrHAcSrHA | Sheep | 12 mm × 4 mm cortical bone defect | Local delivery of strontium and osteogenically induced AD-MSCs at the implant site facilitated improved osteogenesis and osteointegration. |
González et al. [230] | AD-MSCs from canine | Subcutaneous | bTCP with/without fibronectin (Fn) | Canine | 7 × 7 × 7 mm buccal cortical plate defect | bTCP coated with a combination of Fn and AD-MSCs appeared to encourage stabilization of the regenerated area, allowing a more efficient maintenance of the space at 3 months of healing. |
Cowan et al. [40] | AD-MSCs and BM-MSCs | Subcutaneous anterior abdominal wall | PLGA | Rat | 0.8 mm, 2 mm, 3 mm, 4 mm, and 5 mm parietal defect | AD-MSCs had higher proliferation capacity compared to BM-MSCs. Without any genetic manipulation or addition of exogenous growth factors, AD-MSCs were able to heal critical defects together with apatite-coated PLGA scaffolds at 12-week time point, filling 70–90% of area defect. |
Carvalho et al. [202] | AD-MSCs from human | Lipoaspirates | Starch-polycaprolactone (SPCL) scaffolds | Rat | 4 mm parietal bone defect | The use of AD-MSCs improved the outcomes of bone regeneration compared to the use of only scaffold alone. Wet-spun scaffolds were found to be biocompatible with AD-MSCs and facilitated bone regeneration. |
Wu et al. [231] | AD-MSCs from human | Infrapatellar fat pad | Amniotic membrane (AM) | Rat | 2.6 × 2.0 × 2.0 mm two-wall intrabony defect | AD-MSCs and AM co-culture system increased periodontal bone regeneration. Application of a co-culture system in periodontal disease is ideal due to its anti-inflammation, antiangiogenesis, and immunosuppression effects. |
Zhang et al. [205] | AD-MSCs from rabbits | Bilateral epididymidesDorsal fat tissue | DCS DCS-CHA CHA | Rat | Transplanted into subcutaneous tissue | CHA enhanced the osteogenesis and blood vessel formation abilities of the DCS complexes in vivo. DCS complexes also promoted the osteogenesis and blood vessel formation potential of the CHA scaffold. |
3.2.2. AD-MSCs with Different Scaffold Materials
3.2.3. AD-MSCs as a Scaffold-Free Bone Regeneration Solution
4. AD-MSCs in Clinical Applications
First Author | Cell Source and Type | Scaffold/Fillers Used | Harvest Method | Experimental Model | Model Details | Site of Injury/Area of Reconstruction | Key Findings |
---|---|---|---|---|---|---|---|
Lendeckel et al. [237] | AD-MSCs | Macroporous sheets | Left gluteal area | Calvarial Defect | Due to the limited amount of autologous cancellous bone, AD-MSCs were applied | 7-year-old girl with multifragment calvarial fractures | Clinical follow-up has shown symmetrical calvarial contour. There were no neurological deficits nor pathological findings. CT scans 3 months postoperatively showed a marked ossification in the defect areas. |
Thesleff et al. [212] | AD-MSCs | bTCP granules | Approx. 100 mL subcutaneous abdominal fat | Calvarial Defect | 5 patients who underwent cranioplasty | The average defect size was 8.1 × 6.7 cm2 | No clear outcomes were reported to show that AD-MSCs with bTCP granules improved ossification or bone regeneration, possibly due to infection and tumor recurrence found. Regardless, no adverse events were reported and all patients recovered. |
Thesleff et al. [238] | AD-MSCs | bTCP granules | 200 mL of subcutaneous abdominal fat | Calvarial Defect | 4 patients who underwent cranioplasty | HemangiomaFrontal meningiomaAcute subdural hematomaCranial base meningioma | Capacities of AD-MSCs and the osteoconductivity of the bTCP act synergistically towards producing a well-ossified construct, regenerating bone in adult critical-size calvarial defects |
Pak et al. [239] | SVF, AD-MSCs with platelet-rich plasma (PRP) | No Scaffold | 100 mL of lipoaspirates from lower abdomen | Orthopedic Defect | Mixture of AD-MSCs and PRP were percutaneously injected into knees, hips, low backs, and ankles. | 15 avascular necrosis 7 hip osteoarthritis 74 knees 2 low-back spinal disc herniation | 100 joint injections of AD-MSCs, in the form of SVF, with PRP shows that AD-MSCs/PRP treatment is safe and provides long-term pain improvement. No evidence of neoplastic complications in any implant sites in 91 patients with 100 joints. |
Dufrane et al. [240] | AD-MSCs | No Scaffold | 1.926 g of fatty tissue by subcutaneous biopsy | Orthopedic Defect | AD-MSCs in osteogenic media, supplemented with demineralized bone matrix. | 3 patients with bone non-unions due to congenital pseudarthrosis or acquired pseudarthrosis | The final bone formation was stable and did not rupture with forceps manipulation nor had donor site morbidity. No acute side-effects associated with the graft up to 4 years after transplantation. |
Vériter et al. [241] | AD-MSCs | No Scaffold | 9.7 ± 13.7 g by lipoaspiration | Orthopedic Defect | Assess the safety and efficacy of AD-MSCs (1) in bone non-union and (2) in dermal reconstruction of non-healing chronic wounds. | 17 patients who had not experienced any success with conventional therapies | 3D osteogenic-like structure allowed bone consolidation for up to 4 years without any notable complications in oncologic patients with tumor resection. No serious adverse events were found (up to 54 months). |
Saxer et al. [215] | SVF, AD-MSCs | Ceramic granules within fibrin gel | Lipoaspirate | Orthopedic Defect | Evaluate the efficacy of SVF progenitors at bone fracture site. | Patients with low-energy proximal humeral fractures in 8 patients (64–84 years old) along with standard open reduction and internal fixation | Biopsies of the repair tissue (after up to 12 months), upon plate revision or removal, exhibited formation of bone ossicles, structurally disconnected and morphologically distinct from osteoconducted bone, suggesting the osteogenic nature of implanted SVF cells. |
Mesimaki et al. [208] | AD-MSCs | Titanium bTCP | 200 mL of subcutaneous abdominal fat | Oral– Maxillofacial Defect | Evaluate the method to reconstruct a major maxillary defect using AD-MSCs with recombinant human protein (rhBMP) and a scaffold. | 65-year-old male, who had undergone a hemi-maxillectomy 28 months earlier due to a large recurrent keratocyst | After 8 months of follow-up, the flap had developed mature bone structures and vasculature and was transplanted into the defect area. The combination of AD-MSCs with bTCP acted synergistically producing a well-ossified construct. |
Sandor et al. [209] | AD-MSCs | bTCP granulesTitanium mesh | 200 mL of subcutaneous adipose tissue | Oral– Maxillofacial Defect | To access the reconstruction of large anterior mandibular defect using 1-stage in situ bone formation instead of multistep ectopic bone formation. | Replacement of a 10 cm anterior mandibular ameloblastoma resection defect, reproducing the original anatomy of the chin | AD-MSCs in combination with bTCP and BMP-2 successfully treated large mandibular defect without the need for ectopic bone formation; in situ ossification was present which saved the patient a second surgical site as no vessel anastomosis or second transplantation step was necessary. |
Sandor et al. [210] | AD-MSCs | Bioactive glassbTCP | 50–200 mL of subcutaneous adipose tissue | Oral– Maxillofacial Defect | Access the efficacy of AD-MSCs seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. | 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites—frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases) | Healed hard-tissue grafts in the defect area were functioning according to the demands of their new native sites during the healing period. Resorption of the constructs was more than expected in the cranial defect. For cranial defect, a sturdy, non-resorbable material should be used to cater to the dural pulsation that is exposed to the cranial wounds to provide optimal healing environment. |
Prins et al. [243] | SVF, AD-MSCs | Straumann dental implants | 150 mL by lipoaspriate | Oral– Maxillofacial Defect | SVF applied in a one-step surgical procedure with calcium phosphate ceramics (CaP) to increase maxillary bone height for dental implantations. | 10 patients were included in this study, who were partially edentulous in the posterior maxilla | The bioactive implants generated showed successful one-step surgical implantation and healing outcomes. The osteoid percentages were higher at the AD-MSCs’ seeded group than unseeded group. SVF improved bone formation capacity, resulting in higher bone volume. |
Khojasteh et al. [196] | AD-MSCs | Autograft | 3 to 5 mL from buccal fat pad | Oral– Maxillofacial Defect | Combination of different grafts with AD-MSCs derived from BFC was accessed for the restoration of unilateral cleft lip and palate. | Ten patients with unilateral cleft lip and palate | Complex of AD-MSCs and scaffold improved bone regeneration with lower donor site morbidity and recovery duration. Combining AD-MSCs with AIC-enhanced new bone growth and LRCP was found to be useful in housing scaffolds loaded with AD-MSCs. |
Cardiel et al. [211] | AD-MSCs | Compression titanium plate | 50 cc adipose tissue from abdominal region | Oral– Maxillofacial Defect | Treatment of defect with/without AD-MSCs | 16 patients with mandible condyle fractures or associated facial fractures | Similar ossification values were obtained after 4 weeks when the use of AD-MSCs was compared to simple fracture reduction. However, after 12 weeks, the AD-MSCs group had a 36.48% higher ossification rate. |
Guasch et al. [191] | SVF, AD-MSCs | bTCP biphasic calcium phosphate carriers | >125 mL from lipoaspiration | Oral– Maxillofacial Defect | SVF seeded on two types of calcium phosphate carriers, were accessed to understand their potential for bone regeneration. | 10 patients with and used for Maxillary Sinus Floor Elevation Model in a one-step surgical procedure | Increase in the quantity and maturity of blood vessels was found, particularly near the cranial regions. Bone percentages are proportional to blood vessel formation and are higher in AD-MSCs seeded group in bTCP-treated patients. SVF was found to have pro-angiogenic bone formation-enhancing effects. |
Mazzoni et al. [203] | AD-MSCs | HA–collagen hybrid | Purchased | Oral–Maxillofacial Defect | In vitro and in vivo analysis of HA–collagen scaffold effectiveness for bone regeneration. | 50 patients with zygomatic augmentation and bimaxillary osteotomy | Presence of mature bone was found pre-eminently at the periosteal side, whereas the presence of new immature bone was detected entirely in the deep layer of the native bone. Successful clinical outcome was found in patients, showing significant osteogenic induction. |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Porter, J.R.; Henson, A.; Popat, K.C. Biodegradable poly (ε-caprolactone) nanowires for bone tissue engineering applications. Biomaterials 2009, 30, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Florencio-Silva, R.; Sasso, G.R.d.S.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef] [PubMed]
- Tzioupis, C.; Giannoudis, P.V. Prevalence of long-bone non-unions. Injury 2007, 38, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Dufrane, D. Impact of age on human adipose stem cells for bone tissue engineering. Cell Transplant. 2017, 26, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury 2011, 42, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D. Non-union bone fracture: A quicker fix. Nature 2017, 550, S193. [Google Scholar] [CrossRef]
- Holmes, D. Closing the gap. Nature 2017, 550, S194–S195. [Google Scholar] [CrossRef] [PubMed]
- Horenberg, A.L.; Rindone, A.N.; Grayson, W.L. Engineering bone from fat: A review of the in vivo mechanisms of adipose derived stem cell-mediated bone regeneration. Prog. Biomed. Eng. 2021, 3, 042002. [Google Scholar] [CrossRef]
- Pipitone, P.S.; Rehman, S. Management of traumatic bone loss in the lower extremity. Orthop. Clin. 2014, 45, 469–482. [Google Scholar] [CrossRef]
- Rauch, F.; Glorieux, F.H. Osteogenesis imperfecta. Lancet 2004, 363, 1377–1385. [Google Scholar] [CrossRef]
- Kartus, J.; Movin, T.; Karlsson, J. Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthrosc. J. Arthrosc. Relat. Surg. 2001, 17, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Konofaos, P.; Ver Halen, J. Nerve repair by means of tubulization: Past, present, future. J. Reconstr. Microsurg. 2013, 29, 149–164. [Google Scholar] [CrossRef]
- Giannoudis, P.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: An update. Injury 2005, 36, S20–S27. [Google Scholar] [CrossRef] [PubMed]
- Finkemeier, C.G. Bone-grafting and bone-graft substitutes. JBJS 2002, 84, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Toolan, B.C. Current concepts review: Orthobiologics. Foot Ankle Int. 2006, 27, 561–566. [Google Scholar] [CrossRef]
- William, G., Jr.; Einhorn, T.A.; Koval, K.; McKee, M.; Smith, W.; Sanders, R.; Watson, T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery: A critical analysis. JBJS 2007, 89, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Calori, G.; Mazza, E.; Colombo, M.; Ripamonti, C. The use of bone-graft substitutes in large bone defects: Any specific needs? Injury 2011, 42 (Suppl. S2), S56–S63. [Google Scholar] [CrossRef]
- Storti, G.; Scioli, M.G.; Kim, B.-S.; Orlandi, A.; Cervelli, V. Adipose-derived stem cells in bone tissue engineering: Useful tools with new applications. Stem Cells Int. 2019, 2019, 3673857. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Yin, G.; Huang, Z.; Liao, X.; Chen, X.; Yao, Y.; Pu, X. Localized delivery of growth factors for angiogenesis and bone formation in tissue engineering. Int. Immunopharmacol. 2013, 16, 214–223. [Google Scholar] [CrossRef]
- Bueno, E.M.; Glowacki, J. Cell-free and cell-based approaches for bone regeneration. Nat. Rev. Rheumatol. 2009, 5, 685–697. [Google Scholar] [CrossRef]
- Berthiaume, F.; Maguire, T.J.; Yarmush, M.L. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 403–430. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, W.; Zhou, G.; Zhang, W.; Cui, L.; Cao, Y. Tissue engineering of cartilage, tendon and bone. Front. Med. 2011, 5, 61–69. [Google Scholar] [CrossRef]
- Soufi, K.H.; Castillo, J.A.; Rogdriguez, F.Y.; DeMesa, C.J.; Ebinu, J.O. Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 8893. [Google Scholar] [CrossRef] [PubMed]
- Radtke, C.L.; Nino-Fong, R.; Esparza Gonzalez, B.P.; Stryhn, H.; McDuffee, L.A. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Am. J. Vet. Res. 2013, 74, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Illich, D.J.; Demir, N.; Stojković, M.; Scheer, M.; Rothamel, D.; Neugebauer, J.; Hescheler, J.; Zöller, J.E. Concise review: Induced pluripotent stem cells and lineage reprogramming: Prospects for bone regeneration. Stem Cells 2011, 29, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Pantalone, A.; Antonucci, I.; Guelfi, M.; Pantalone, P.; Usuelli, F.G.; Stuppia, L.; Salini, V. Amniotic fluid stem cells: An ideal resource for therapeutic application in bone tissue engineering. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2884–2890. [Google Scholar] [PubMed]
- Fiedler, T.; Rabe, M.; Mundkowski, R.G.; Oehmcke-Hecht, S.; Peters, K. Adipose-derived mesenchymal stem cells release microvesicles with procoagulant activity. Int. J. Biochem. Cell Biol. 2018, 100, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells-current trends and future prospective. Biosci. Rep. 2015, 35, e00191. [Google Scholar] [CrossRef] [PubMed]
- Arutyunyan, I.; Elchaninov, A.; Makarov, A.; Fatkhudinov, T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int. 2016, 2016, 6901286. [Google Scholar] [CrossRef]
- Chandramohan, Y.; Jeganathan, K.; Sivanesan, S.; Koka, P.; Amritha, T.M.S.; Vimalraj, S.; Dhanasekaran, A. Assessment of human ovarian follicular fluid derived mesenchymal stem cells in chitosan/PCL/Zn scaffold for bone tissue regeneration. Life Sci. 2021, 264, 118502. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.; Benhaim, P.; Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 2002, 13, 4279–4295. [Google Scholar] [CrossRef] [PubMed]
- Desiderio, V.; De Francesco, F.; Schiraldi, C.; De Rosa, A.; La Gatta, A.; Paino, F.; d’Aquino, R.; Ferraro, G.A.; Tirino, V.; Papaccio, G. Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-Lys scaffold fabricate a skeletal muscle tissue. J. Cell Physiol. 2013, 228, 1762–1773. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Sohn, J.; Shen, H.; Langhans, M.T.; Tuan, R.S. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019, 203, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Seo, E.Y.; Chen, J.Y.; Lo, D.; McArdle, A.; Sinha, R.; Tevlin, R.; Seita, J.; Vincent-Tompkins, J.; Wearda, T.; et al. Identification and specification of the mouse skeletal stem cell. Cell 2015, 160, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, Y.C.; Wilkison, W.O.; Gimble, J.M. Adipose-derived stromal cells--their utility and potential in bone formation. Int. J. Obes. Relat. Metab. Disord. 2000, 24 (Suppl. S4), S41–S44. [Google Scholar] [CrossRef] [PubMed]
- Gimble, J.M.; Guilak, F. Differentiation potential of adipose derived adult stem (ADAS) cells. Curr. Top. Dev. Biol. 2003, 58, 137–160. [Google Scholar] [CrossRef]
- De Francesco, F.; Ricci, G.; D’Andrea, F.; Nicoletti, G.F.; Ferraro, G.A. Human Adipose Stem Cells: From Bench to Bedside. Tissue Eng. Part B Rev. 2015, 21, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.A.; Chow, N.H.; Dukoff, D.; Gibson, T.W.; LaMarre, J.; Betts, D.H.; Koch, T.G. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells. PLoS ONE 2016, 11, e0167442. [Google Scholar] [CrossRef]
- Cowan, C.M.; Shi, Y.-Y.; Aalami, O.O.; Chou, Y.-F.; Mari, C.; Thomas, R.; Quarto, N.; Contag, C.H.; Wu, B.; Longaker, M.T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 2004, 22, 560–567. [Google Scholar] [CrossRef]
- Minteer, D.; Marra, K.G.; Rubin, J.P. Adipose-derived mesenchymal stem cells: Biology and potential applications. Adv. Biochem. Eng./Biotechnol. 2013, 129, 59–71. [Google Scholar] [CrossRef]
- Sabol, R.A.; Bowles, A.C.; Côté, A.; Wise, R.; Pashos, N.; Bunnell, B.A. Therapeutic Potential of Adipose Stem Cells. Adv. Exp. Med. Biol. 2018, 13, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Barba, M.; Di Taranto, G.; Lattanzi, W. Adipose-derived stem cell therapies for bone regeneration. Expert Opin. Biol. Ther. 2017, 17, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.; Yoshimura, K.; Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15, 641–648. [Google Scholar] [CrossRef]
- Si, Z.; Wang, X.; Sun, C.; Kang, Y.; Xu, J.; Wang, X.; Hui, Y. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed. Pharmacother. 2019, 114, 108765. [Google Scholar] [CrossRef]
- Cawthorn, W.P.; Scheller, E.L.; MacDougald, O.A. Adipose tissue stem cells: The great WAT hope. Trends Endocrinol. Metab. TEM 2012, 23, 270–277. [Google Scholar] [CrossRef]
- Schäffler, A.; Büchler, C. Concise Review: Adipose Tissue-Derived Stromal Cells—Basic and Clinical Implications for Novel Cell-Based Therapies. Stem Cells 2007, 25, 818–827. [Google Scholar] [CrossRef]
- Salehi-Nik, N.; Rezai Rad, M.; Kheiri, L.; Nazeman, P.; Nadjmi, N.; Khojasteh, A. Buccal Fat Pad as a Potential Source of Stem Cells for Bone Regeneration: A Literature Review. Stem Cells Int. 2017, 2017, 8354640. [Google Scholar] [CrossRef] [PubMed]
- Simonacci, F.; Bertozzi, N.; Grieco, M.P.; Grignaffini, E.; Raposio, E. Procedure, applications, and outcomes of autologous fat grafting. Ann. Med. Surg. 2017, 20, 49–60. [Google Scholar] [CrossRef]
- Berry, M.G.; Davies, D. Liposuction: A review of principles and techniques. J. Plast. Reconstr. Aesthetic Surg. 2011, 64, 985–992. [Google Scholar] [CrossRef]
- Kuterbekov, M.; Jonas, A.M.; Glinel, K.; Picart, C. Osteogenic Differentiation of Adipose-Derived Stromal Cells: From Bench to Clinics. Tissue Eng. Part B Rev. 2020, 26, 461–474. [Google Scholar] [CrossRef]
- Shafaei, H.; Kalarestaghi, H. Adipose-derived stem cells: An appropriate selection for osteogenic differentiation. J. Cell Physiol. 2020, 235, 8371–8386. [Google Scholar] [CrossRef]
- McCullen, S.D.; Zhan, J.; Onorato, M.L.; Bernacki, S.H.; Loboa, E.G. Effect of varied ionic calcium on human adipose-derived stem cell mineralization. Tissue Eng. Part A 2010, 16, 1971–1981. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, X.; Zhang, X.; Sun, H.; Tu, J.; Tang, T.; Chang, J.; Dai, K. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials 2009, 30, 5041–5048. [Google Scholar] [CrossRef]
- Ma, B.; Han, J.; Zhang, S.; Liu, F.; Wang, S.; Duan, J.; Sang, Y.; Jiang, H.; Li, D.; Ge, S.; et al. Hydroxyapatite nanobelt/polylactic acid Janus membrane with osteoinduction/barrier dual functions for precise bone defect repair. Acta Biomater. 2018, 71, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Aimaiti, A.; Maimaitiyiming, A.; Boyong, X.; Aji, K.; Li, C.; Cui, L. Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway. Stem Cell Res. Ther. 2017, 8, 282. [Google Scholar] [CrossRef]
- Teoh, S.H.; Goh, B.T.; Lim, J. Three-Dimensional Printed Polycaprolactone Scaffolds for Bone Regeneration Success and Future Perspective. Tissue Eng. Part A 2019, 25, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Hadden, W.J.; Young, J.L.; Holle, A.W.; McFetridge, M.L.; Kim, D.Y.; Wijesinghe, P.; Taylor-Weiner, H.; Wen, J.H.; Lee, A.R.; Bieback, K.; et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl. Acad. Sci. USA 2017, 114, 5647–5652. [Google Scholar] [CrossRef]
- Ardeshirylajimi, A.; Delgoshaie, M.; Mirzaei, S.; Khojasteh, A. Different Porosities of Chitosan Can Influence the Osteogenic Differentiation Potential of Stem Cells. J. Cell. Biochem. 2018, 119, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qian, Y.; Xia, Y.; Chen, G.; Dai, Y.; Li, N.; Zhang, F.; Gu, N. Enhanced Osteogenesis of ADSCs by the Synergistic Effect of Aligned Fibers Containing Collagen I. ACS Appl. Mater. Interfaces 2016, 8, 29289–29297. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.B.; Custódio, C.A.; Gasperini, L.; Reis, R.L.; Mano, J.F. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomater. 2016, 41, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Altankov, G.; Grabiec, U.; Bennett, M.; Salmeron-Sanchez, M.; Dehghani, F.; Groth, T. Molecular composition of GAG-collagen I multilayers affects remodeling of terminal layers and osteogenic differentiation of adipose-derived stem cells. Acta Biomater. 2016, 41, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, M.; Grayson, W.L.; Marolt, D.; Gimble, J.M.; Kregar-Velikonja, N.; Vunjak-Novakovic, G. Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng. Part A 2010, 16, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Elashry, M.I.; Baulig, N.; Wagner, A.-S.; Klymiuk, M.C.; Kruppke, B.; Hanke, T.; Wenisch, S.; Arnhold, S. Combined macromolecule biomaterials together with fluid shear stress promote the osteogenic differentiation capacity of equine adipose-derived mesenchymal stem cells. Stem Cell Res. Ther. 2021, 12, 116. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, P.; Yu, Q.; Peng, Y.; Zhu, Z.; Tian, J. The Effects of a Pulsed Electromagnetic Field on the Proliferation and Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 3274–3282. [Google Scholar] [CrossRef] [PubMed]
- Ehnert, S.; van Griensven, M.; Unger, M.; Scheffler, H.; Falldorf, K.; Fentz, A.K.; Seeliger, C.; Schröter, S.; Nussler, A.K.; Balmayor, E.R. Co-Culture with Human Osteoblasts and Exposure to Extremely Low Frequency Pulsed Electromagnetic Fields Improve Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2018, 19, 994. [Google Scholar] [CrossRef] [PubMed]
- Catalano, M.G.; Marano, F.; Rinella, L.; de Girolamo, L.; Bosco, O.; Fortunati, N.; Berta, L.; Frairia, R. Extracorporeal shockwaves (ESWs) enhance the osteogenic medium-induced differentiation of adipose-derived stem cells into osteoblast-like cells. J. Tissue Eng. Regen. Med. 2017, 11, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Marędziak, M.; Lewandowski, D.; Tomaszewski, K.A.; Kubiak, K.; Marycz, K. The Effect of Low-Magnitude Low-Frequency Vibrations (LMLF) on Osteogenic Differentiation Potential of Human Adipose Derived Mesenchymal Stem Cells. Cell. Mol. Bioeng. 2017, 10, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Jumabay, M.; Boström, K.I. Dedifferentiated fat cells: A cell source for regenerative medicine. World J. Stem Cells 2015, 7, 1202–1214. [Google Scholar] [CrossRef]
- Liang, Z.; He, Y.; Tang, H.; Li, J.; Cai, J.; Liao, Y. Dedifferentiated fat cells: Current applications and future directions in regenerative medicine. Stem Cell Res. Ther. 2023, 14, 207. [Google Scholar] [CrossRef]
- Huang, G.; Xia, B.; Dai, Z.; Yang, R.; Chen, R.; Yang, H. Comparative study of dedifferentiated fat cell and adipose-derived stromal cell sheets for periodontal tissue regeneration: In vivo and in vitro evidence. J. Clin. Periodontol. 2022, 49, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- Takabatake, K.; Matsubara, M.; Yamachika, E.; Fujita, Y.; Arimura, Y.; Nakatsuji, K.; Nakano, K.; Nagatsuka, H.; Iida, S. Comparing the Osteogenic Potential and Bone Regeneration Capacities of Dedifferentiated Fat Cells and Adipose-Derived Stem Cells In Vitro and In Vivo: Application of DFAT Cells Isolated by a Mesh Method. Int. J. Mol. Sci. 2021, 22, 12392. [Google Scholar] [CrossRef] [PubMed]
- Tsumano, N.; Kubo, H.; Imataki, R.; Honda, Y.; Hashimoto, Y.; Nakajima, M. Bone Regeneration by Dedifferentiated Fat Cells Using Composite Sponge of Alfa-Tricalcium Phosphate and Gelatin in a Rat Calvarial Defect Model. Appl. Sci. 2021, 11, 11941. [Google Scholar] [CrossRef]
- Yanagi, T.; Kajiya, H.; Fujisaki, S.; Maeshiba, M.; Yanagi-S, A.; Yamamoto-M, N.; Kakura, K.; Kido, H.; Ohno, J. Three-dimensional spheroids of dedifferentiated fat cells enhance bone regeneration. Regen. Ther. 2021, 18, 472–479. [Google Scholar] [CrossRef]
- Shah, M.; George, R.L.; Evancho-Chapman, M.M.; Zhang, G. Current challenges in dedifferentiated fat cells research. Organogenesis 2016, 12, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Breeland, G.S.; Margaret, A.; Menezes, R.G. Embryology, Bone Ossification; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539718/ (accessed on 10 February 2024).
- Senarath-Yapa, K.; McArdle, A.; Renda, A.; Longaker, M.T.; Quarto, N. Adipose-derived stem cells: A review of signaling networks governing cell fate and regenerative potential in the context of craniofacial and long bone skeletal repair. Int. J. Mol. Sci. 2014, 15, 9314–9330. [Google Scholar] [CrossRef] [PubMed]
- Pirosa, A.; Gottardi, R.; Alexander, P.G.; Tuan, R.S. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res. Ther. 2018, 9, 112. [Google Scholar] [CrossRef]
- Chung, A.S.; Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 2011, 27, 563–584. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.R.; Kouroupis, D.; Li, D.J.; Best, T.M.; Kaplan, L.; Correa, D. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front. Bioeng. Biotechnol. 2018, 6, 105. [Google Scholar] [CrossRef]
- Dimitriou, R.; Tsiridis, E.; Giannoudis, P.V. Current concepts of molecular aspects of bone healing. Injury 2005, 36, 1392–1404. [Google Scholar] [CrossRef]
- Gerstenfeld, L.C.; Cullinane, D.M.; Barnes, G.L.; Graves, D.T.; Einhorn, T.A. Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 2003, 88, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Ornitz, D.M. Development of the endochondral skeleton. Cold Spring Harb. Perspect. Biol. 2013, 5, a008334. [Google Scholar] [CrossRef] [PubMed]
- Runyan, C.M.; Gabrick, K.S. Biology of Bone Formation, Fracture Healing, and Distraction Osteogenesis. J. Craniofacial Surg. 2017, 28, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef] [PubMed]
- Grottkau, B.E.; Lin, Y. Osteogenesis of adipose-derived stem cells. Bone Res. 2013, 1, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Knippenberg, M.; Helder, M.N.; Zandieh Doulabi, B.; Wuisman, P.I.; Klein-Nulend, J. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem. Biophys. Res. Commun. 2006, 342, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Liu, C.; Yan, Y.; Li, Q.; Huang, R.-L. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J. Tissue Eng. 2021, 12, 20417314211004211. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yang, J.; Liu, T.; Li, J.; Lan, Y.; Wang, Y.; Wang, A.; Tian, Y.; Li, Y. Gukang Capsule Promotes Fracture Healing by Activating BMP/SMAD and Wnt/β-Catenin Signaling Pathways. Evid.-Based Complement. Altern. Med. Ecam 2020, 2020, 7184502. [Google Scholar] [CrossRef] [PubMed]
- Tsang, E.J.; Wu, B.; Zuk, P. MAPK signaling has stage-dependent osteogenic effects on human adipose-derived stem cells in vitro. Connect. Tissue Res. 2018, 59, 129–146. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Zhou, Y.; Wu, G. The roles of bone morphogenetic proteins and their signaling in the osteogenesis of adipose-derived stem cells. Tissue Eng. Part B Rev. 2014, 20, 84–92. [Google Scholar] [CrossRef]
- Langenbach, F.; Handschel, J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res. Ther. 2013, 4, 117. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.C.C.; Cardozo, F.; Magini, R.S.; Simões, C.M.O. Retinoic acid increases the effect of bone morphogenetic protein type 2 on osteogenic differentiation of human adipose-derived stem cells. J. Appl. Oral Sci. Rev. FOB 2019, 27, e20180317. [Google Scholar] [CrossRef] [PubMed]
- Trivisonno, A.; Alexander, R.W.; Baldari, S.; Cohen, S.R.; Di Rocco, G.; Gentile, P.; Magalon, G.; Magalon, J.; Miller, R.B.; Womack, H.; et al. Intraoperative Strategies for Minimal Manipulation of Autologous Adipose Tissue for Cell- and Tissue-Based Therapies: Concise Review. Stem Cells Transl. Med. 2019, 8, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghadban, S.; Artiles, M.; Bunnell, B.A. Adipose Stem Cells in Regenerative Medicine: Looking Forward. Front. Bioeng. Biotechnol. 2022, 9, 837464. [Google Scholar] [CrossRef]
- de Celis-Ruiz, E.; Fuentes, B.; Alonso de Leciñana, M.; Gutiérrez-Fernández, M.; Borobia, A.M.; Gutiérrez-Zúñiga, R.; Ruiz-Ares, G.; Otero-Ortega, L.; Laso-García, F.; Gómez-de Frutos, M.C.; et al. Final Results of Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells in Acute Ischemic Stroke (AMASCIS): A Phase II, Randomized, Double-Blind, Placebo-Controlled, Single-Center, Pilot Clinical Trial. Cell Transpl. 2022, 31, 9636897221083863. [Google Scholar] [CrossRef]
- Han, S.; Sun, H.M.; Hwang, K.C.; Kim, S.W. Adipose-Derived Stromal Vascular Fraction Cells: Update on Clinical Utility and Efficacy. Crit. Rev. Eukaryot. Gene Expr. 2015, 25, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R. Understanding mechanical emulsification (nanofat) versus enzymatic isolation of tissue stromal vascular fraction (tSVF) cells from adipose tissue: Potential uses in biocellular regenerative medicine. J. Prolother. 2016, 8, e947–e960. [Google Scholar]
- Bora, P.; Majumdar, A.S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: A brief review on biology and translation. Stem Cell Res. Ther. 2017, 8, 145. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, W.; Rubin, J.P.; Marra, K.G. Adipose-derived stem cells: Implications in tissue regeneration. World J. Stem Cells 2014, 6, 312–321. [Google Scholar] [CrossRef]
- Turner, L.G. Federal Regulatory Oversight of US Clinics Marketing Adipose-Derived Autologous Stem Cell Interventions: Insights from 3 New FDA Draft Guidance Documents. Mayo Clin. Proc. 2015, 90, 567–571. [Google Scholar] [CrossRef]
- Raposio, E.; Ciliberti, R. Clinical use of adipose-derived stem cells: European legislative issues. Ann. Med. Surg. 2017, 24, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Simonacci, F.; Bertozzi, N.; Raposio, E. Off-label use of adipose-derived stem cells. Ann. Med. Surg. 2017, 24, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Pilgaard, L.; Lund, P.; Rasmussen, J.G.; Fink, T.; Zachar, V. Comparative analysis of highly defined proteases for the isolation of adipose tissue-derived stem cells. Regen. Med. 2008, 3, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Aronowitz, J.A.; Lockhart, R.A.; Hakakian, C.S. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. SpringerPlus 2015, 4, 713. [Google Scholar] [CrossRef] [PubMed]
- Condé-Green, A.; Kotamarti, V.S.; Sherman, L.S.; Keith, J.D.; Lee, E.S.; Granick, M.S.; Rameshwar, P. Shift toward Mechanical Isolation of Adipose-derived Stromal Vascular Fraction: Review of Upcoming Techniques. Plast. Reconstr. Surgery. Glob. Open 2016, 4, e1017. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.W. Biocellular Regenerative Medicine: Use of Adipose-Derived Stem/Stromal Cells and It’s Native Bioactive Matrix. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.S.; Chua, J.; Prasadh, S.; Lim, J.; Saigo, L.; Goh, B.T. Alveolar Ridge Augmentation with a Novel Combination of 3D-Printed Scaffolds and Adipose-Derived Mesenchymal Stem Cells-A Pilot Study in Pigs. Biomedicines 2023, 11, 2274. [Google Scholar] [CrossRef] [PubMed]
- Patrikoski, M.; Juntunen, M.; Boucher, S.; Campbell, A.; Vemuri, M.C.; Mannerström, B.; Miettinen, S. Development of fully defined xeno-free culture system for the preparation and propagation of cell therapy-compliant human adipose stem cells. Stem Cell Res. Ther. 2013, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Devireddy, L.R.; Myers, M.; Screven, R.; Liu, Z.; Boxer, L. A serum-free medium formulation efficiently supports isolation and propagation of canine adipose-derived mesenchymal stem/stromal cells. PLoS ONE 2019, 14, e0210250. [Google Scholar] [CrossRef]
- Ochiai, J.; Villanueva, L.; Niihara, H.; Niihara, Y.; Oliva, J. Posology and Serum-/Xeno-Free Engineered Adipose Stromal Cells Cell Sheets. Front. Cell Dev. Biol. 2022, 10, 873603. [Google Scholar] [CrossRef]
- Riis, S.; Nielsen, F.M.; Pennisi, C.P.; Zachar, V.; Fink, T. Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells. Stem Cells Transl. Med. 2016, 5, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Agata, H.; Watanabe, N.; Ishii, Y.; Kubo, N.; Ohshima, S.; Yamazaki, M.; Tojo, A.; Kagami, H. Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions. Biochem. Biophys. Res. Commun. 2009, 382, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Fekete, N.; Rojewski, M.T.; Fürst, D.; Kreja, L.; Ignatius, A.; Dausend, J.; Schrezenmeier, H. GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS ONE 2012, 7, e43255. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Nogués, C.; O’Brien, T. Current good manufacturing practice considerations for mesenchymal stromal cells as therapeutic agents. Biomater. Biosyst. 2021, 2, 100018. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.M.; Matyas, J.; Ungrin, M.; Hart, D.A.; Sen, A. Serum-Free Culture of Human Mesenchymal Stem Cell Aggregates in Suspension Bioreactors for Tissue Engineering Applications. Stem Cells Int. 2019, 2019, 4607461. [Google Scholar] [CrossRef] [PubMed]
- Bolander, J.; Ji, W.; Leijten, J.; Teixeira, L.M.; Bloemen, V.; Lambrechts, D.; Chaklader, M.; Luyten, F.P. Healing of a Large Long-Bone Defect through Serum-Free In Vitro Priming of Human Periosteum-Derived Cells. Stem Cell Rep. 2017, 8, 758–772. [Google Scholar] [CrossRef] [PubMed]
- Panella, S.; Muoio, F.; Jossen, V.; Harder, Y.; Eibl-Schindler, R.; Tallone, T. Chemically Defined Xeno- and Serum-Free Cell Culture Medium to Grow Human Adipose Stem Cells. Cells 2021, 10, 466. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kang, M.H.; Jang, J.E.; Lee, J.E.; Yang, Y.; Choi, J.Y.; Kang, H.S.; Lee, U.; Choung, J.W.; Jung, H.; et al. Comparative analysis of mesenchymal stem cells cultivated in serum free media. Sci. Rep. 2022, 12, 8620. [Google Scholar] [CrossRef] [PubMed]
- Al-Saqi, S.H.; Saliem, M.; Asikainen, S.; Quezada, H.C.; Ekblad, Å.; Hovatta, O.; Le Blanc, K.; Jonasson, A.F.; Götherström, C. Defined serum-free media for in vitro expansion of adipose-derived mesenchymal stem cells. Cytotherapy 2014, 16, 915–926. [Google Scholar] [CrossRef]
- Kyllönen, L.; Haimi, S.; Mannerström, B.; Huhtala, H.; Rajala, K.M.; Skottman, H.; Sándor, G.K.; Miettinen, S. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro. Stem Cell Res. Ther. 2013, 4, 17. [Google Scholar] [CrossRef]
- Lee, M.-S.; Youn, C.; Kim, J.H.; Park, B.J.; Ahn, J.; Hong, S.; Kim, Y.-D.; Shin, Y.K.; Park, S.G. Enhanced Cell Growth of Adipocyte-Derived Mesenchymal Stem Cells Using Chemically-Defined Serum-Free Media. Int. J. Mol. Sci. 2017, 18, 1779. [Google Scholar] [CrossRef] [PubMed]
- Sefcik, L.S.; Neal, R.A.; Kaszuba, S.N.; Parker, A.M.; Katz, A.J.; Ogle, R.C.; Botchwey, E.A. Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. J. Tissue Eng. Regen. Med. 2008, 2, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Zanicotti, D.G.; Duncan, W.J.; Seymour, G.J.; Coates, D.E. Effect of Titanium Surfaces on the Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Int. J. Oral Maxillofac. Implant. 2018, 33, e77–e87. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Fu, B.; Yang, X.; Xiao, Y.; Pan, M. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J. Cell. Biochem. 2019, 120, 10847–10854. [Google Scholar] [CrossRef] [PubMed]
- Noverina, R.; Widowati, W.; Ayuningtyas, W.; Kurniawan, D.; Afifah, E.; Laksmitawati, D.R.; Rinendyaputri, R.; Rilianawati, R.; Faried, A.; Bachtiar, I. Growth factors profile in conditioned medium human adipose tissue-derived mesenchymal stem cells (CM-hATMSCs). Clin. Nutr. Exp. 2019, 24, 34–44. [Google Scholar] [CrossRef]
- Tratwal, J.; Mathiasen, A.B.; Juhl, M.; Brorsen, S.K.; Kastrup, J.; Ekblond, A. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells. Stem Cell Res. Ther. 2015, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Blaber, S.P.; Webster, R.A.; Hill, C.J.; Breen, E.J.; Kuah, D.; Vesey, G.; Herbert, B.R. Analysis of in vitro secretion profiles from adipose-derived cell populations. J. Transl. Med. 2012, 10, 172. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.M.; Reinkemeier, F.; Wallner, C.; Dadras, M.; Huber, J.; Schmidt, S.V.; Drysch, M.; Dittfeld, S.; Jaurich, H.; Becerikli, M. Adipose-derived stromal cells are capable of restoring bone regeneration after post-traumatic osteomyelitis and modulate B-cell response. Stem Cells Transl. Med. 2019, 8, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S.; Pontecorvi, P.; Anastasiadou, E.; Napoli, C.; Marchese, C. Immunomodulatory effect of adipose-derived stem cells: The cutting edge of clinical application. Front. Cell Dev. Biol. 2020, 8, 236. [Google Scholar] [CrossRef]
- Niu, P.; Smagul, A.; Wang, L.; Sadvakas, A.; Sha, Y.; Pérez, L.M.; Nussupbekova, A.; Amirbekov, A.; Akanov, A.A.; Gálvez, B.G. Transcriptional profiling of interleukin-2-primed human adipose derived mesenchymal stem cells revealed dramatic changes in stem cells response imposed by replicative senescence. Oncotarget 2015, 6, 17938. [Google Scholar] [CrossRef]
- Huh, J.-E.; Lee, S.Y. IL-6 is produced by adipose-derived stromal cells and promotes osteogenesis. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2013, 1833, 2608–2616. [Google Scholar] [CrossRef]
- Bastidas-Coral, A.P.; Bakker, A.D.; Zandieh-Doulabi, B.; Kleverlaan, C.J.; Bravenboer, N.; Forouzanfar, T.; Klein-Nulend, J. Cytokines TNF-α, IL-6, IL-17F, and IL-4 differentially affect osteogenic differentiation of human adipose stem cells. Stem Cells Int. 2016, 2016, 1318256. [Google Scholar] [CrossRef] [PubMed]
- Prichard, H.L.; Reichert, W.; Klitzman, B. IFATS collection: Adipose-derived stromal cells improve the foreign body response. Stem Cells 2008, 26, 2691–2695. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, Y.-N.; Song, L.; Liu, R.; Li, X.; Shang, Q.; Wang, Y.; Shao, C.; Shi, Y. Macrophages inhibit adipogenic differentiation of adipose tissue derived mesenchymal stem/stromal cells by producing pro-inflammatory cytokines. Cell Biosci. 2020, 10, 88. [Google Scholar] [CrossRef]
- Ghannam, S.; Bouffi, C.; Djouad, F.; Jorgensen, C.; Noël, D. Immunosuppression by mesenchymal stem cells: Mechanisms and clinical applications. Stem Cell Res. Ther. 2010, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Yin, S.; Liu, W.; Li, N.; Zhang, W.; Cao, Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng. 2007, 13, 1185–1195. [Google Scholar] [CrossRef]
- Tsao, C.-H.; Shiau, M.-Y.; Chuang, P.-H.; Chang, Y.-H.; Hwang, J. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J. Lipid Res. 2014, 55, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Dubey, N.K.; Mishra, V.K.; Dubey, R.; Deng, Y.H.; Tsai, F.C.; Deng, W.P. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int. J. Mol. Sci. 2018, 19, 2200. [Google Scholar] [CrossRef]
- Ieda, Y.; Fujita, J.; Ieda, M.; Yagi, T.; Kawada, H.; Ando, K.; Fukuda, K. G-CSF and HGF: Combination of vasculogenesis and angiogenesis synergistically improves recovery in murine hind limb ischemia. J. Mol. Cell. Cardiol. 2007, 42, 540–548. [Google Scholar] [CrossRef]
- Ball, S.G.; Shuttleworth, C.A.; Kielty, C.M. Mesenchymal stem cells and neovascularization: Role of platelet-derived growth factor receptors. J. Cell. Mol. Med. 2007, 11, 1012–1030. [Google Scholar]
- Lopatina, T.; Bruno, S.; Tetta, C.; Kalinina, N.; Porta, M.; Camussi, G. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun. Signal. 2014, 12, 26. [Google Scholar]
- Youssef, A.; Aboalola, D.; Han, V.K. The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int. 2017, 2017, 9453108. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Song, W.; Chen, B.; Liu, X.; He, Y. Exosomes isolated from adipose-derived stem cells: A new cell-free approach to prevent the muscle degeneration associated with torn rotator cuffs. Am. J. Sports Med. 2019, 47, 3247–3255. [Google Scholar] [CrossRef]
- Chicharro, D.; Carrillo, J.M.; Rubio, M.; Cugat, R.; Cuervo, B.; Guil, S.; Forteza, J.; Moreno, V.; Vilar, J.M.; Sopena, J. Combined plasma rich in growth factors and adipose-derived mesenchymal stem cells promotes the cutaneous wound healing in rabbits. BMC Vet. Res. 2018, 14, 288. [Google Scholar] [PubMed]
- Van Niel, G.; d’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Boudreau, L.H.; Duchez, A.-C.; Cloutier, N.; Soulet, D.; Martin, N.; Bollinger, J.; Paré, A.; Rousseau, M.; Naika, G.S.; Lévesque, T. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood J. Am. Soc. Hematol. 2014, 124, 2173–2183. [Google Scholar] [CrossRef]
- Maas, S.L.; Breakefield, X.O.; Weaver, A.M. Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol. 2017, 27, 172–188. [Google Scholar] [CrossRef]
- Tricarico, C.; Clancy, J.; D’Souza-Schorey, C. Biology and biogenesis of shed microvesicles. Small GTPases 2017, 8, 220–232. [Google Scholar] [PubMed]
- Mathivanan, S.; Ji, H.; Simpson, R.J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteom. 2010, 73, 1907–1920. [Google Scholar] [CrossRef]
- Marolt Presen, D.; Traweger, A.; Gimona, M.; Redl, H. Mesenchymal stromal cell-based bone regeneration therapies: From cell transplantation and tissue engineering to therapeutic secretomes and extracellular vesicles. Front. Bioeng. Biotechnol. 2019, 7, 352. [Google Scholar]
- Zhang, J.; Liu, Y.; Chen, Y.; Yuan, L.; Liu, H.; Wang, J.; Liu, Q.; Zhang, Y. Adipose-derived stem cells: Current applications and future directions in the regeneration of multiple tissues. Stem Cells Int. 2020, 2020, 8810813. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Guan, P.; Xiao, C.; Wen, H.; Wang, Q.; Liu, C.; Luo, Y.; Ma, L.; Tan, G.; Yu, P. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact. Mater. 2021, 6, 2754–2766. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Q.-Y.; Sheng, J.-G. Exosomes in the repair of bone defects: Next-generation therapeutic tools for the treatment of nonunion. BioMed Res. Int. 2019, 2019, 1983131. [Google Scholar] [PubMed]
- Yang, Z.; Zhang, W.; Ren, X.; Tu, C.; Li, Z. Exosomes: A friend or foe for osteoporotic fracture? Front. Endocrinol. 2021, 12, 679914. [Google Scholar] [PubMed]
- Cai, Y.; Li, J.; Jia, C.; He, Y.; Deng, C. Therapeutic applications of adipose cell-free derivatives: A review. Stem Cell Res. Ther. 2020, 11, 312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yin, Y.; Lai, R.C.; Tan, S.S.; Choo, A.B.H.; Lim, S.K. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014, 23, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wang, L.; Gao, Z.; Chen, G.; Zhang, C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 2016, 6, 21961. [Google Scholar] [CrossRef] [PubMed]
- Osugi, M.; Katagiri, W.; Yoshimi, R.; Inukai, T.; Hibi, H.; Ueda, M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng. Part A 2012, 18, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, Y.; Zhang, P.; Tang, Y.; Zhou, M.; Jiang, W.; Zhang, X.; Wu, G.; Zhou, Y. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl. Mater. Interfaces 2018, 10, 5240–5254. [Google Scholar] [CrossRef]
- Chen, L.; Mou, S.; Li, F.; Zeng, Y.; Sun, Y.; Horch, R.E.; Wei, W.; Wang, Z.; Sun, J. Self-assembled human adipose-derived stem cell-derived extracellular vesicle-functionalized biotin-doped polypyrrole titanium with long-term stability and potential osteoinductive ability. ACS Appl. Mater. Interfaces 2019, 11, 46183–46196. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, L.; Zhang, J.; Chiang, C.l.; Pan, J.; Wang, X.; Kwak, K.J.; Li, H.; Zhao, R.; Rima, X.Y. Exosomal mRNAs for angiogenic–osteogenic coupled bone repair. Adv. Sci. 2023, 10, 2302622. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.R.; Fellabaum, C.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells 2019, 8, 467. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jia, Y.; Wang, Y.; Xu, J.; Chai, Y. Impaired bone regenerative effect of exosomes derived from bone marrow mesenchymal stem cells in type 1 diabetes. Stem Cells Transl. Med. 2019, 8, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Huber, J.; Griffin, M.F.; Longaker, M.T.; Quarto, N. Exosomes: A tool for bone tissue engineering. Tissue Eng. Part B Rev. 2022, 28, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Sari, D.S.; Maduratna, E.; Latief, F.D.E.; Nugraha, A.P.; Sudiana, K.; Rantam, F.A. Osteogenic Differentiation and Biocompatibility of Bovine Teeth Scaffold with Rat Adipose-derived Mesenchymal Stem Cells. Eur. J. Dent. 2019, 13, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Kurzyk, A.; Ostrowska, B.; Święszkowski, W.; Pojda, Z. Characterization and Optimization of the Seeding Process of Adipose Stem Cells on the Polycaprolactone Scaffolds. Stem Cells Int. 2019, 2019, 1201927. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, F.S.; Soleimanifar, F.; Ardeshirylajimi, A.; Vakilian, S.; Mossahebi-Mohammadi, M.; Enderami, S.E.; Khojasteh, A.; Zare Karizi, S. In vitro osteogenic differentiation of stem cells with different sources on composite scaffold containing natural bioceramic and polycaprolactone. Artif. Cells Nanomed. Biotechnol. 2019, 47, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.G.; Gardin, C.; Zamparini, F.; Ferroni, L.; Esposti, M.D.; Parchi, G.; Ercan, B.; Manzoli, L.; Fava, F.; Fabbri, P.; et al. Mineral-Doped Poly(L-lactide) Acid Scaffolds Enriched with Exosomes Improve Osteogenic Commitment of Human Adipose-Derived Mesenchymal Stem Cells. Nanomaterials 2020, 10, 432. [Google Scholar] [CrossRef]
- Roato, I.; Belisario, D.C.; Compagno, M.; Verderio, L.; Sighinolfi, A.; Mussano, F.; Genova, T.; Veneziano, F.; Pertici, G.; Perale, G.; et al. Adipose-Derived Stromal Vascular Fraction/Xenohybrid Bone Scaffold: An Alternative Source for Bone Regeneration. Stem Cells Int. 2018, 2018, 4126379. [Google Scholar] [CrossRef]
- Ghaderi, H.; Razmkhah, M.; Kiany, F.; Chenari, N.; Haghshenas, M.R.; Ghaderi, A. Comparison of Osteogenic and Chondrogenic Differentiation Ability of Buccal Fat Pad Derived Mesenchymal Stem Cells and Gingival Derived Cells. J. Dent. (Shiraz) 2018, 19, 124–131. [Google Scholar]
- Mohamed-Ahmed, S.; Fristad, I.; Lie, S.A.; Suliman, S.; Mustafa, K.; Vindenes, H.; Idris, S.B. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res. Ther. 2018, 9, 168. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, E.; D’Agostino, A.; Manfrini, M.; Maniero, S.; Puozzo, A.; Bassi, E.; Marsico, S.; Fortini, C.; Trevisiol, L.; Patergnani, S.; et al. Human adipose stem cells induced to osteogenic differentiation by an innovative collagen/hydroxylapatite hybrid scaffold. FASEB J. 2017, 31, 4555–4565. [Google Scholar] [CrossRef]
- D’Alimonte, I.; Mastrangelo, F.; Giuliani, P.; Pierdomenico, L.; Marchisio, M.; Zuccarini, M.; Di Iorio, P.; Quaresima, R.; Caciagli, F.; Ciccarelli, R. Osteogenic differentiation of mesenchymal stromal cells: A comparative analysis between human subcutaneous adipose tissue and dental pulp. Stem Cells Dev. 2017, 26, 843–855. [Google Scholar]
- Canciani, E.; Dellavia, C.; Ferreira, L.M.; Giannasi, C.; Carmagnola, D.; Carrassi, A.; Brini, A.T. Human Adipose-Derived Stem Cells on Rapid Prototyped Three-Dimensional Hydroxyapatite/Beta-Tricalcium Phosphate Scaffold. J. Craniofacial Surg. 2016, 27, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, G.; Giuffrida, R.; Fabbi, C.; Figallo, E.; Lo Furno, D.; Gulino, R.; Colarossi, C.; Fullone, F.; Giuffrida, R.; Parenti, R.; et al. Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro. PLoS ONE 2016, 11, e0151181. [Google Scholar] [CrossRef]
- Caetano, G.F.; Bártolo, P.J.; Domingos, M.; Oliveira, C.C.; Leite, M.N.; Frade, M.A.C. Osteogenic Differentiation of Adipose-derived Mesenchymal Stem Cells into Polycaprolactone (PCL) Scaffold. Procedia Eng. 2015, 110, 59–66. [Google Scholar] [CrossRef]
- Ardeshirylajimi, A.; Mossahebi-Mohammadi, M.; Vakilian, S.; Langroudi, L.; Seyedjafari, E.; Atashi, A.; Soleimani, M. Comparison of osteogenic differentiation potential of human adult stem cells loaded on bioceramic-coated electrospun poly (L-lactide) nanofibres. Cell Prolif. 2015, 48, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, N.; Momota, Y.; Hashimoto, Y.; Tatsumi, S.; Ando, K.; Omasa, T.; Kotani, J. The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad. Clin. Oral Investig. 2014, 18, 1893–1901. [Google Scholar] [CrossRef]
- Requicha, J.F.; Viegas, C.A.; Muñoz, F.; Azevedo, J.M.; Leonor, I.B.; Reis, R.L.; Gomes, M.E. A tissue engineering approach for periodontal regeneration based on a biodegradable double-layer scaffold and adipose-derived stem cells. Tissue Eng. Part A 2014, 20, 2483–2492. [Google Scholar] [CrossRef]
- Niada, S.; Ferreira, L.M.; Arrigoni, E.; Addis, A.; Campagnol, M.; Broccaioli, E.; Brini, A.T. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery. Stem Cell Res. Ther. 2013, 4, 148. [Google Scholar] [CrossRef]
- Melief, S.M.; Zwaginga, J.J.; Fibbe, W.E.; Roelofs, H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl. Med. 2013, 2, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Broccaioli, E.; Niada, S.; Rasperini, G.; Ferreira, L.M.; Arrigoni, E.; Yenagi, V.; Brini, A.T. Mesenchymal Stem Cells from Bichat’s Fat Pad: In Vitro Comparison with Adipose-Derived Stem Cells from Subcutaneous Tissue. Biores. Open Access 2013, 2, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, P.; Long, Y.; Huang, C.; Chen, D. Repair of bone defects in rat radii with a composite of allogeneic adipose-derived stem cells and heterogeneous deproteinized bone. Stem Cell Res. Ther. 2018, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Niedzinski, J.R.; Samaniego, A.; Bogdansky, S.; Atkinson, B.L. Adipose-derived stem cells combined with a demineralized cancellous bone substrate for bone regeneration. Tissue Eng. Part A 2012, 18, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Pachón-Peña, G.; Yu, G.; Tucker, A.; Wu, X.; Vendrell, J.; Bunnell, B.A.; Gimble, J.M. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J. Cell Physiol. 2011, 226, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Farre-Guasch, E.; Martl-Pages, C.; Hernandez-Alfaro, F.; Klein-Nulend, J.; Casals, N. Buccal fat pad, an oral access source of human adipose stem cells with potential for osteochondral tissue engineering: An in vitro study. Tissue Eng. Part C Methods 2010, 16, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Gabbay, J.S.; Heller, J.B.; Mitchell, S.A.; Zuk, P.A.; Spoon, D.B.; Wasson, K.L.; Jarrahy, R.; Benhaim, P.; Bradley, J.P. Osteogenic Potentiation of Human Adipose–Derived Stem Cells in a 3-Dimensional Matrix. Ann. Plast. Surg. 2006, 57, 89–93. [Google Scholar] [CrossRef] [PubMed]
- De Ugarte, D.A.; Morizono, K.; Elbarbary, A.; Alfonso, Z.; Zuk, P.A.; Zhu, M.; Dragoo, J.L.; Ashjian, P.; Thomas, B.; Benhaim, P.; et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003, 174, 101–109. [Google Scholar] [CrossRef]
- Nagasaki, R.; Mukudai, Y.; Yoshizawa, Y.; Nagasaki, M.; Shiogama, S.; Suzuki, M.; Kondo, S.; Shintani, S.; Shirota, T. A Combination of Low-Intensity Pulsed Ultrasound and Nanohydroxyapatite Concordantly Enhances Osteogenesis of Adipose-Derived Stem Cells from Buccal Fat Pad. Cell Med. 2015, 7, 123–131. [Google Scholar] [CrossRef]
- Farré-Guasch, E.; Bravenboer, N.; Helder, M.N.; Schulten, E.; Ten Bruggenkate, C.M.; Klein-Nulend, J. Blood Vessel Formation and Bone Regeneration Potential of the Stromal Vascular Fraction Seeded on a Calcium Phosphate Scaffold in the Human Maxillary Sinus Floor Elevation Model. Materials 2018, 11, 161. [Google Scholar] [CrossRef]
- Przekora, A. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater. Sci. Eng. C 2019, 97, 1036–1051. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.H.; Wang, P.; Wang, L.; Bao, C.; Chen, Q.; Weir, M.D.; Chow, L.C.; Zhao, L.; Zhou, X.; Reynolds, M.A. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 2017, 5, 17056. [Google Scholar] [CrossRef] [PubMed]
- García-Gareta, E.; Coathup, M.J.; Blunn, G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015, 81, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Maglione, M.; Salvador, E.; Ruaro, M.E.; Melato, M.; Tromba, G.; Angerame, D.; Bevilacqua, L. Bone regeneration with adipose derived stem cells in a rabbit model. J. Biomed. Res. 2019, 33, 38. [Google Scholar] [PubMed]
- Khojasteh, A.; Hosseinpour, S.; Rad, M.R.; Alikhasi, M. Buccal fat pad–derived stem cells in three-dimensional rehabilitation of large alveolar defects: A report of two cases. J. Oral Implantol. 2019, 45, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, D.S.M.; Francisco, J.C.; Mogharbel, B.F.; Irioda, A.C.; Stricker, P.E.F.; Floriano, J.; de Noronha, L.; Abdelwahid, E.; Franco, C.R.C.; de Carvalho, K.A.T. Combined biomaterials: Amniotic membrane and adipose tissue to restore injured bone as promoter of calcification in bone regeneration: Preclinical model. Calcif. Tissue Int. 2021, 108, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.M.; Conze, N.; Lewik, G.; Wallner, C.; Brune, J.C.; Dittfeld, S.; Jaurich, H.; Becerikli, M.; Dadras, M.; Harati, K.; et al. Bone allografts combined with adipose-derived stem cells in an optimized cell/volume ratio showed enhanced osteogenesis and angiogenesis in a murine femur defect model. J. Mol. Med. 2019, 97, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Mehrabani, D.; Khodakaram-Tafti, A.; Shaterzadeh-Yazdi, H.; Zamiri, B.; Omidi, M. Comparison of the regenerative effect of adipose-derived stem cells, fibrin glue scaffold, and autologous bone graft in experimental mandibular defect in rabbit. Dent. Traumatol. 2018, 34, 413–420. [Google Scholar] [CrossRef]
- Myerson, C.L.; Myerson, M.S.; Coetzee, J.C.; Stone McGaver, R.; Giveans, M.R. Subtalar Arthrodesis with Use of Adipose-Derived Cellular Bone Matrix Compared with Autologous Bone Graft: A Multicenter, Randomized Controlled Trial. JBJS 2019, 101, 1904–1911. [Google Scholar] [CrossRef]
- Lee, J.W.; Chu, S.G.; Kim, H.T.; Choi, K.Y.; Oh, E.J.; Shim, J.-H.; Yun, W.-S.; Huh, J.B.; Moon, S.H.; Kang, S.S.; et al. Osteogenesis of Adipose-Derived and Bone Marrow Stem Cells with Polycaprolactone/Tricalcium Phosphate and Three-Dimensional Printing Technology in a Dog Model of Maxillary Bone Defects. Polymers 2017, 9, 450. [Google Scholar] [CrossRef]
- Carvalho, P.P.; Leonor, I.B.; Smith, B.J.; Dias, I.R.; Reis, R.L.; Gimble, J.M.; Gomes, M.E. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch–polycaprolactone scaffolds enhance bone regeneration: Nude mice calvarial defect in vivo study. J. Biomed. Mater. Res. Part A 2014, 102, 3102–3111. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, E.; D’Agostino, A.; Iaquinta, M.R.; Bononi, I.; Trevisiol, L.; Rotondo, J.C.; Patergnani, S.; Giorgi, C.; Gunson, M.J.; Arnett, G.W.; et al. Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients. Stem Cells Transl. Med. 2020, 9, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Pourebrahim, N.; Hashemibeni, B.; Shahnaseri, S.; Torabinia, N.; Mousavi, B.; Adibi, S.; Heidari, F.; Alavi, M.J. A comparison of tissue-engineered bone from adipose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs. Int. J. Oral Maxillofac. Surg. 2013, 42, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, Y.; Zhang, W.; Wang, K.; Xu, L.; Ma, H.; Deng, Y. Construction of vascularized tissue-engineered bone with a double-cell sheet complex. Acta Biomater. 2018, 77, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.; Shenoy, S.J.; Nair, R.P.; Varma, H.K.; John, A. Strontium Hydroxyapatite scaffolds engineered with stem cells aid osteointegration and osteogenesis in osteoporotic sheep model. Colloids Surf. B Biointerfaces 2018, 163, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Godoy Zanicotti, D.; Coates, D.E.; Duncan, W.J. In vivo bone regeneration on titanium devices using serum-free grown adipose-derived stem cells, in a sheep femur model. Clin. Oral Implant. Res. 2017, 28, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Mesimäki, K.; Lindroos, B.; Törnwall, J.; Mauno, J.; Lindqvist, C.; Kontio, R.; Miettinen, S.; Suuronen, R. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int. J. Oral Maxillofac. Surg. 2009, 38, 201–209. [Google Scholar] [CrossRef]
- Sándor, G.K.; Tuovinen, V.J.; Wolff, J.; Patrikoski, M.; Jokinen, J.; Nieminen, E.; Mannerström, B.; Lappalainen, O.P.; Seppänen, R.; Miettinen, S. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: A case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J. Oral Maxillofac. Surg. 2013, 71, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Sándor, G.K.; Numminen, J.; Wolff, J.; Thesleff, T.; Miettinen, A.; Tuovinen, V.J.; Mannerström, B.; Patrikoski, M.; Seppänen, R.; Miettinen, S.; et al. Adipose Stem Cells Used to Reconstruct 13 Cases with Cranio-Maxillofacial Hard-Tissue Defects. Stem Cells Transl. Med. 2014, 3, 530–540. [Google Scholar] [CrossRef]
- Castillo-Cardiel, G.; López-Echaury, A.C.; Saucedo-Ortiz, J.A.; Fuentes-Orozco, C.; Michel-Espinoza, L.R.; Irusteta-Jiménez, L.; Salazar-Parra, M.; González-Ojeda, A. Bone regeneration in mandibular fractures after the application of autologous mesenchymal stem cells, a randomized clinical trial. Dent. Traumatol. 2017, 33, 38–44. [Google Scholar] [CrossRef]
- Thesleff, T.; Lehtimäki, K.; Niskakangas, T.; Mannerström, B.; Miettinen, S.; Suuronen, R.; Öhman, J. Cranioplasty with Adipose-Derived Stem Cells and Biomaterial: A Novel Method for Cranial Reconstruction. Neurosurgery 2011, 68, 1535–1540. [Google Scholar] [CrossRef]
- Probst, F.A.; Fliefel, R.; Burian, E.; Probst, M.; Eddicks, M.; Cornelsen, M.; Riedl, C.; Seitz, H.; Aszódi, A.; Schieker, M. Bone regeneration of minipig mandibular defect by adipose derived mesenchymal stem cells seeded tri-calcium phosphate-poly (D, L-lactide-co-glycolide) scaffolds. Sci. Rep. 2020, 10, 2062. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.; Dhar, S.; Chun, D.E.; Gharibjanian, N.A.; Evans, G.R. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng. 2007, 13, 619–627. [Google Scholar] [CrossRef]
- Saxer, F.; Scherberich, A.; Todorov, A.; Studer, P.; Miot, S.; Schreiner, S.; Güven, S.; Tchang, L.A.; Haug, M.; Heberer, M.; et al. Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study. Stem Cells 2016, 34, 2956–2966. [Google Scholar] [CrossRef]
- Han, D.S.; Chang, H.K.; Kim, K.R.; Woo, S.M. Consideration of bone regeneration effect of stem cells: Comparison of bone regeneration between bone marrow stem cells and adipose-derived stem cells. J. Craniofacial Surg. 2014, 25, 196–201. [Google Scholar] [CrossRef]
- Manferdini, C.; Cavallo, C.; Grigolo, B.; Fiorini, M.; Nicoletti, A.; Gabusi, E.; Zini, N.; Pressato, D.; Facchini, A.; Lisignoli, G. Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration. J. Tissue Eng. Regen. Med. 2016, 10, 374–391. [Google Scholar] [CrossRef] [PubMed]
- Grigolo, B.; Fiorini, M.; Manferdini, C.; Cavallo, C.; Gabusi, E.; Zini, N.; Dolcini, L.; Nicoletti, A.; Pressato, D.; Facchini, A. Chemical-physical properties and in vitro cell culturing of a novel biphasic bio-mimetic scaffold for osteo-chondral tissue regeneration. J. Biol. Regul. Homeost. Agents 2011, 25, S3–S13. [Google Scholar] [PubMed]
- Prins, H.J.; Braat, A.K.; Gawlitta, D.; Dhert, W.J.; Egan, D.A.; Tijssen-Slump, E.; Yuan, H.; Coffer, P.J.; Rozemuller, H.; Martens, A.C. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Res. 2014, 12, 428–440. [Google Scholar] [CrossRef]
- Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone regenerative medicine: Classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9, 18. [Google Scholar] [CrossRef]
- Luby, A.O.; Ranganathan, K.; Lynn, J.V.; Nelson, N.S.; Donneys, A.; Buchman, S.R. Stem cells for bone regeneration: Current state and future directions. J. Craniofacial Surg. 2019, 30, 730–735. [Google Scholar] [CrossRef]
- Jin, Q.; Yuan, K.; Lin, W.; Niu, C.; Ma, R.; Huang, Z. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Ahn, W.B.; Lee, Y.B.; Ji, Y.-H.; Moon, K.-S.; Jang, H.-S.; Kang, S.-W. Decellularized Human Adipose Tissue as an Alternative Graft Material for Bone Regeneration. Tissue Eng. Regen. Med. 2022, 19, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Han, L.; Sun, T.; Wang, W.; Li, X.; Wu, B. Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits. J. Biomed. Mater. Res. Part A 2021, 109, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, M.; Zhu, J.; Luo, F.; Zhao, J. Enhanced bone repair induced by human adipose-derived stem cells on osteogenic extracellular matrix ornamented small intestinal submucosa. Regen. Med. 2017, 12, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Semyari, H.; Rajipour, M.; Sabetkish, S.; Sabetkish, N.; Abbas, F.M.; Kajbafzadeh, A.-M. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: An animal study. Cell Tissue Bank. 2016, 17, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.; Lee, J.S.; Kim, H.; Yang, S.Y.; Yang, D.; Yang, K.; Lee, J.; Shin, J.; Yang, H.S.; Ryu, W.; et al. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2018, 10, 7614–7625. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, C.; Farlie, P.; Penington, A.J. Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Eng. Part A 2008, 14, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Matsubara, H.; Fang, X.; Hayashi, K.; Nomura, I.; Ugaji, S.; Hamada, T.; Tsuchiya, H. Adipose-derived stem cell sheets accelerate bone healing in rat femoral defects. PLoS ONE 2019, 14, e0214488. [Google Scholar]
- Alvira-González, J.; Sánchez Garcés, M.; Barbany, J.R.; Reina del Pozo, M.; Müller Sánchez, C.A.; Gay Escoda, C. Assessment of bone-regeneration using adipose-derived stem cells in critical-size alveolar ridge defects: An experimental study in a dog model. Int. J. Oral Maxillofac. Implant. 2016, 31, 196–203. [Google Scholar] [CrossRef]
- Wu, P.H.; Chung, H.Y.; Wang, J.H.; Shih, J.C.; Kuo, M.Y.; Chang, P.C.; Huang, Y.D.; Wang, P.C.; Chang, C.C. Amniotic membrane and adipose-derived stem cell co-culture system enhances bone regeneration in a rat periodontal defect model. J. Formos. Med. Assoc. 2016, 115, 186–194. [Google Scholar] [CrossRef]
- Tang, Z.; Li, X.; Tan, Y.; Fan, H.; Zhang, X. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen. Biomater. 2018, 5, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Ye, F.; Yang, R.; Lu, X.; Shi, Y.; Li, L.; Fan, H.; Bu, H. Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 2010, 6, 1569–1574. [Google Scholar] [CrossRef]
- Bohnenblust, M.E.; Steigelman, M.B.; Wang, Q.; Walker, J.A.; Wang, H.T. An experimental design to study adipocyte stem cells for reconstruction of calvarial defects. J. Craniofacial Surg. 2009, 20, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Utoh, R.; Nagase, K.; Okano, T. Cell sheet approach for tissue engineering and regenerative medicine. J. Control Release 2014, 190, 228–239. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Liu, J. Bioprinting of 3D tissues/organs combined with microfluidics. RSC Adv. 2018, 8, 21712–21727. [Google Scholar]
- Thesleff, T.; Lehtimäki, K.; Niskakangas, T.; Huovinen, S.; Mannerström, B.; Miettinen, S.; Seppänen-Kaijansinkko, R.; Öhman, J. Cranioplasty with Adipose-Derived Stem Cells, Beta-Tricalcium Phosphate Granules and Supporting Mesh: Six-Year Clinical Follow-Up Results. Stem Cells Transl. Med. 2017, 6, 1576–1582. [Google Scholar] [CrossRef]
- Lendeckel, S.; Jödicke, A.; Christophis, P.; Heidinger, K.; Wolff, J.; Fraser, J.K.; Hedrick, M.H.; Berthold, L.; Howaldt, H.-P. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report. J. Cranio-Maxillofac. Surg. 2004, 32, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Pak, J.; Chang, J.-J.; Lee, J.H.; Lee, S.H. Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints. BMC Musculoskelet. Disord. 2013, 14, 337. [Google Scholar] [CrossRef]
- Dufrane, D.; Docquier, P.-L.; Delloye, C.; Poirel, H.A.; André, W.; Aouassar, N. Scaffold-free Three-dimensional Graft from Autologous Adipose-derived Stem Cells for Large Bone Defect Reconstruction: Clinical Proof of Concept. Medicine 2015, 94, e2220. [Google Scholar] [CrossRef]
- Vériter, S.; André, W.; Aouassar, N.; Poirel, H.A.; Lafosse, A.; Docquier, P.-L.; Dufrane, D. Human adipose-derived mesenchymal stem cells in cell therapy: Safety and feasibility in different” hospital exemption” clinical applications. PLoS ONE 2015, 10, e0139566. [Google Scholar] [CrossRef]
- Gaihre, B.; Uswatta, S.; Jayasuriya, A.C. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J. Funct. Biomater. 2017, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Prins, H.-J.; Schulten, E.A.; Ten Bruggenkate, C.M.; Klein-Nulend, J.; Helder, M.N. Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics. Stem Cells Transl. Med. 2016, 5, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Liu, B.; Liu, G.; Zhang, W.; Cen, L.; Sun, J.; Yin, S.; Liu, W.; Cao, Y. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 2007, 28, 5477–5486. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Zhang, T.; Lin, Y.; Cai, X. Vascularization in craniofacial bone tissue engineering. J. Dent. Res. 2018, 97, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Lopes, D.; Martins-Cruz, C.; Oliveira, M.B.; Mano, J.F. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018, 185, 240–275. [Google Scholar] [CrossRef] [PubMed]
- Freeman, F.E.; Brennan, M.Á.; Browe, D.C.; Renaud, A.; De Lima, J.; Kelly, D.J.; McNamara, L.M.; Layrolle, P. A Developmental Engineering-Based Approach to Bone Repair: Endochondral Priming Enhances Vascularization and New Bone Formation in a Critical Size Defect. Front. Bioeng. Biotechnol. 2020, 8, 230. [Google Scholar] [CrossRef]
- Farrell, E.; Both, S.K.; Odörfer, K.I.; Koevoet, W.; Kops, N.; O’Brien, F.J.; de Jong, R.J.B.; Verhaar, J.A.; Cuijpers, V.; Jansen, J.; et al. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet. Disord. 2011, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Browe, D.C.; Coleman, C.M.; Barry, F.P.; Elliman, S.J. Hypoxia Activates the PTHrP -MEF2C Pathway to Attenuate Hypertrophy in Mesenchymal Stem Cell Derived Cartilage. Sci. Rep. 2019, 9, 13274. [Google Scholar] [CrossRef] [PubMed]
- Matsiko, A.; Thompson, E.M.; Lloyd-Griffith, C.; Cunniffe, G.M.; Vinardell, T.; Gleeson, J.P.; Kelly, D.J.; O’Brien, F.J. An endochondral ossification approach to early stage bone repair: Use of tissue-engineered hypertrophic cartilage constructs as primordial templates for weight-bearing bone repair. J. Tissue Eng. Regen. Med. 2018, 12, e2147–e2150. [Google Scholar] [CrossRef]
- Sun, M.M.; Beier, F. Chondrocyte hypertrophy in skeletal development, growth, and disease. Birth Defects Res. C Embryo Today 2014, 102, 74–82. [Google Scholar] [CrossRef]
- Bernhard, J.; Ferguson, J.; Rieder, B.; Heimel, P.; Nau, T.; Tangl, S.; Redl, H.; Vunjak-Novakovic, G. Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair. Biomaterials 2017, 139, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, J.C.; Marolt Presen, D.; Li, M.; Monforte, X.; Ferguson, J.; Leinfellner, G.; Heimel, P.; Betti, S.L.; Shu, S.; Teuschl-Woller, A.H.; et al. Effects of Endochondral and Intramembranous Ossification Pathways on Bone Tissue Formation and Vascularization in Human Tissue-Engineered Grafts. Cells 2022, 11, 3070. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, C.S.; Park, S.Y.; Ethiraj, L.P.; Singh, P.; Raj, G.; Quek, J.; Prasadh, S.; Choo, Y.; Goh, B.T. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int. J. Mol. Sci. 2024, 25, 6805. https://doi.org/10.3390/ijms25126805
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. International Journal of Molecular Sciences. 2024; 25(12):6805. https://doi.org/10.3390/ijms25126805
Chicago/Turabian StyleLau, Chau Sang, So Yeon Park, Lalith Prabha Ethiraj, Priti Singh, Grace Raj, Jolene Quek, Somasundaram Prasadh, Yen Choo, and Bee Tin Goh. 2024. "Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration" International Journal of Molecular Sciences 25, no. 12: 6805. https://doi.org/10.3390/ijms25126805
APA StyleLau, C. S., Park, S. Y., Ethiraj, L. P., Singh, P., Raj, G., Quek, J., Prasadh, S., Choo, Y., & Goh, B. T. (2024). Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. International Journal of Molecular Sciences, 25(12), 6805. https://doi.org/10.3390/ijms25126805