Development of a Radiolabeled Cyclin-Dependent Kinases 4 and 6 (CDK4/6) Inhibitor for Brain and Cancer PET Imaging
Abstract
:1. Introduction
2. Results
2.1. Chemical Synthesis and Characterization of Derivatives of NT431
2.2. Biochemical Evaluation
2.3. Evaluation of NT431 Cytotoxicity in Cancer Cells
2.4. Radiosynthesis
2.5. Formulation and In Situ Stability of [18F]NT431
2.6. In Vitro Autoradiography
2.7. In Vivo PET and Preliminary Pharmacodynamic Imaging
2.8. Radiometabolite Studies
3. Discussion
4. Materials and Methods
4.1. Reagents and Instruments
4.2. Chemical Synthesis
4.3. Biochemical Evaluation and Cytotoxicity Studies
4.3.1. CDK4/CyclinD3 and CDK6/CyclinD3 Kinase Activities
4.3.2. MTT Assay Protocol
4.4. Molar Activity
4.5. PET Imaging Procedures in Animals
4.6. In Vitro Autoradiography
4.7. Radiometabolism of [18F]NT431
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riess, C.; Irmscher, N.; Salewski, I.; Strüder, D.; Classen, C.F.; Große-Thie, C.; Junghanss, C.; Maletzki, C. Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer Metastasis Rev. 2021, 40, 153–171. [Google Scholar] [CrossRef]
- Niu, Y.; Xu, J.; Sun, T. Cyclin-Dependent Kinases 4/6 Inhibitors in Breast Cancer: Current Status, Resistance, and Combination Strategies. J. Cancer 2019, 10, 5504–5517. [Google Scholar] [CrossRef]
- O’Leary, B.; Finn, R.S.; Turner, N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 2016, 13, 417–430. [Google Scholar] [CrossRef]
- Matsushime, H.; Ewen, M.E.; Strom, D.K.; Kato, J.Y.; Hanks, S.K.; Roussel, M.F.; Sherr, C.J. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 1992, 71, 323–334. [Google Scholar] [CrossRef]
- Kato, J.; Matsushime, H.; Hiebert, S.W.; Ewen, M.E.; Sherr, C.J. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993, 7, 331–342. [Google Scholar] [CrossRef]
- Akervall, J.A.; Michalides, R.J.; Mineta, H.; Balm, A.; Borg, A.; Dictor, M.R.; Jin, Y.; Loftus, B.; Mertens, F.; Wennerberg, J.P. Amplification of cyclin D1 in squamous cell carcinoma of the head and neck and the prognostic value of chromosomal abnormalities and cyclin D1 overexpression. Cancer 1997, 79, 380–389. [Google Scholar] [CrossRef]
- Betticher, D.C.; Heighway, J.; Hasleton, P.S.; Altermatt, H.J.; Ryder, W.D.; Cerny, T.; Thatcher, N. Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small-cell lung cancer. Br. J. Cancer 1996, 73, 294–300. [Google Scholar] [CrossRef]
- Bleeker, F.E.; Lamba, S.; Rodolfo, M.; Scarpa, A.; Leenstra, S.; Vandertop, W.P.; Bardelli, A. Mutational profiling of cancer candidate genes in glioblastoma, melanoma and pancreatic carcinoma reveals a snapshot of their genomic landscapes. Hum. Mutat. 2009, 30, E451–E459. [Google Scholar] [CrossRef]
- Curtin, J.A.; Fridlyand, J.; Kageshita, T.; Patel, H.N.; Busam, K.J.; Kutzner, H.; Cho, K.H.; Aiba, S.; Bröcker, E.B.; LeBoit, P.E.; et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 2005, 353, 2135–2147. [Google Scholar] [CrossRef] [PubMed]
- Freedman, J.A.; Tyler, D.S.; Nevins, J.R.; Augustine, C.K. Use of gene expression and pathway signatures to characterize the complexity of human melanoma. Am. J. Pathol. 2011, 178, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The somatic genomic landscape of glioblastoma. Cell 2013, 155, 462–477. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, E.; Infante, J.R. Targeting CDK4/6 in patients with cancer. Cancer Treat. Rev. 2016, 45, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Bartkova, J.; Lukas, J.; Müller, H.; Lützhøft, D.; Strauss, M.; Bartek, J. Cyclin D1 protein expression and function in human breast cancer. Int. J. Cancer 1994, 57, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Aleshin, A.; Slamon, D.J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Musgrove, E.A.; Caldon, C.E.; Barraclough, J.; Stone, A.; Sutherland, R.L. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer 2011, 11, 558–572. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Sicinska, E.; Geng, Y.; Ahnström, M.; Zagozdzon, A.; Kong, Y.; Gardner, H.; Kiyokawa, H.; Harris, L.N.; Stål, O.; et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell 2006, 9, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Fernández, M.; Malumbres, M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020, 37, 514–529. [Google Scholar] [CrossRef] [PubMed]
- Spring, L.M.; Zangardi, M.L.; Moy, B.; Bardia, A. Clinical Management of Potential Toxicities and Drug Interactions Related to Cyclin-Dependent Kinase 4/6 Inhibitors in Breast Cancer: Practical Considerations and Recommendations. Oncologist 2017, 22, 1039–1048. [Google Scholar] [CrossRef]
- Cersosimo, R.J. Cyclin-dependent kinase 4/6 inhibitors for the management of advanced or metastatic breast cancer in women. Am. J. Health Syst. Pharm. 2019, 76, 1183–1202. [Google Scholar] [CrossRef]
- Bronner, S.M.; Merrick, K.A.; Murray, J.; Salphati, L.; Moffat, J.G.; Pang, J.; Sneeringer, C.J.; Dompe, N.; Cyr, P.; Purkey, H.; et al. Design of a brain-penetrant CDK4/6 inhibitor for glioblastoma. Bioorg. Med. Chem. Lett. 2019, 29, 2294–2301. [Google Scholar] [CrossRef]
- Taylor, J.W.; Parikh, M.; Phillips, J.J.; James, C.D.; Molinaro, A.M.; Butowski, N.A.; Clarke, J.L.; Oberheim-Bush, N.A.; Chang, S.M.; Berger, M.S.; et al. Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J. Neuro-Oncol. 2018, 140, 477–483. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Sahebjam, S.; Le Rhun, E.; Bachelot, T.; Kabos, P.; Awada, A.; Yardley, D.; Chan, A.; Conte, P.; Diéras, V.; et al. A Phase II Study of Abemaciclib in Patients with Brain Metastases Secondary to Hormone Receptor-Positive Breast Cancer. Clin. Cancer Res. 2020, 26, 5310–5319. [Google Scholar] [CrossRef]
- Rosik, D.; Thibblin, A.; Antoni, G.; Honarvar, H.; Strand, J.; Selvaraju, R.K.; Altai, M.; Orlova, A.; Eriksson Karlström, A.; Tolmachev, V. Incorporation of a triglutamyl spacer improves the biodistribution of synthetic affibody molecules radiofluorinated at the N-terminus via oxime formation with 18F-4-fluorobenzaldehyde. Bioconjug. Chem. 2014, 25, 82–92. [Google Scholar] [CrossRef]
- Gage, H.D.; Voytko, M.L.; Ehrenkaufer, R.L.; Tobin, J.R.; Efange, S.M.; Mach, R.H. Reproducibility of repeated measures of cholinergic terminal density using [18F](+)-4-fluorobenzyltrozamicol and PET in the rhesus monkey brain. J. Nucl. Med. 2000, 41, 2069–2076. [Google Scholar]
- Narendran, R.; May, M.A.; Mason, N.S.; Chen, C.M.; Kendro, S.; Ridler, K.; Rabiner, E.A.; Laruelle, M.; Mathis, C.A.; Frankle, W.G. Positron emission tomography imaging of dopamine D2/3 receptors in the human cortex with [11C] FLB 457: Reproducibility studies. Synapse 2011, 65, 35–40. [Google Scholar] [CrossRef]
- Pike, V. PET radiotracers: Crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol. Sci. 2009, 30, 431–440. [Google Scholar] [CrossRef]
- Ramos, N.; Baquero-Buitrago, J.; Ben Youss Gironda, Z.; Wadghiri, Y.Z.; Reiner, T.; Boada, F.E.; Carlucci, G. Noninvasive PET Imaging of CDK4/6 Activation in Breast Cancer. J. Nucl. Med. 2020, 61, 437–442. [Google Scholar] [CrossRef]
- Gan, Q.; Song, X.; Zhang, X.; Zhang, J. Preparation and evaluation of (99m)Tc-labeled HYNIC-palbociclib analogs for cyclin-dependent kinase 4/6-positive tumor imaging. Eur. J. Med. Chem. 2020, 188, 112032. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Z.; Liu, M.; Wang, X.; Song, S.; Xu, X.; Yang, Z. Gallium-68 Labeling of the Cyclin-Dependent Kinase 4/6 Inhibitors as Positron Emission Tomography Radiotracers for Tumor Imaging. ACS Omega 2021, 6, 32253–32261. [Google Scholar] [CrossRef]
- Song, X.; Gan, Q.; Zhang, X.; Zhang, J. Synthesis and Biological Evaluation of Novel (99m)Tc-Labeled Palbociclib Derivatives Targeting Cyclin-Dependent Kinase 4/6 (CDK4/6) as Potential Cancer Imaging Agents. Mol. Pharm. 2019, 16, 4213–4222. [Google Scholar] [CrossRef]
- Xiao, D.; Gan, Q.; Duan, X.; Wang, Q.; Jiang, Y.; Han, P.; Zhang, J. Preparation and Evaluation of [18F]AlF-NOTA-PBB for PET Imaging of Cyclin-dependent Kinase 4/6 in Tumors. Mol. Pharm. 2023, 20, 4528–4536. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Yang, Z.; Gao, H.; Yang, H.; Zhu, S.; An, Z.; Wang, J.; Li, Q.; Chandarlapaty, S.; Deng, H.; et al. Potent and Preferential Degradation of CDK6 via Proteolysis Targeting Chimera Degraders. J. Med. Chem. 2019, 62, 7575–7582. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Bendjennat, M.; Kour, S.; King, H.M.; Kizhake, S.; Zahid, M.; Natarajan, A. Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorg. Med. Chem. Lett. 2019, 29, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- Turkman, N.; Liu, D.; Pirola, I. Novel late-stage radiosynthesis of 5-[18F]-trifluoromethyl-1,2,4-oxadiazole (TFMO) containing molecules for PET imaging. Sci. Rep. 2021, 11, 10668. [Google Scholar] [CrossRef] [PubMed]
- Turkman, N.; Liu, D.; Pirola, I. Design, synthesis, biochemical evaluation, radiolabeling and in vivo imaging with high affinity class-IIa histone deacetylase inhibitor for molecular imaging and targeted therapy. Eur. J. Med. Chem. 2022, 228, 114011. [Google Scholar] [CrossRef]
- Turkman, N.; Xu, S.; Huang, C.H.; Eyermann, C.; Salino, J.; Khan, P. High-Contrast PET Imaging with [18F]NT160, a Class-IIa Histone Deacetylase Probe for In Vivo Imaging of Epigenetic Machinery in the Central Nervous System. J. Med. Chem. 2023, 66, 5611–5621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-H.; Khan, P.; Xu, S.; Cohen, J.; Georgakis, G.V.; Turkman, N. Development of a Radiolabeled Cyclin-Dependent Kinases 4 and 6 (CDK4/6) Inhibitor for Brain and Cancer PET Imaging. Int. J. Mol. Sci. 2024, 25, 6870. https://doi.org/10.3390/ijms25136870
Huang C-H, Khan P, Xu S, Cohen J, Georgakis GV, Turkman N. Development of a Radiolabeled Cyclin-Dependent Kinases 4 and 6 (CDK4/6) Inhibitor for Brain and Cancer PET Imaging. International Journal of Molecular Sciences. 2024; 25(13):6870. https://doi.org/10.3390/ijms25136870
Chicago/Turabian StyleHuang, Chun-Han, Palwasha Khan, Sulan Xu, Jules Cohen, Georgios V. Georgakis, and Nashaat Turkman. 2024. "Development of a Radiolabeled Cyclin-Dependent Kinases 4 and 6 (CDK4/6) Inhibitor for Brain and Cancer PET Imaging" International Journal of Molecular Sciences 25, no. 13: 6870. https://doi.org/10.3390/ijms25136870
APA StyleHuang, C. -H., Khan, P., Xu, S., Cohen, J., Georgakis, G. V., & Turkman, N. (2024). Development of a Radiolabeled Cyclin-Dependent Kinases 4 and 6 (CDK4/6) Inhibitor for Brain and Cancer PET Imaging. International Journal of Molecular Sciences, 25(13), 6870. https://doi.org/10.3390/ijms25136870