TLR2 and TLR4 Polymorphisms Are Not Associated with Dental Caries in Polish Children
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Collaborative Network. In Global Burden of Disease Study 2019 (GBD 2019); Institute for Health Metrics and Evaluation (IHME): Seattle, WA, USA, 2020. [Google Scholar]
- World Health Organization. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Pitts, N.B.; Twetman, S.; Fisher, J.; Marsh, P.D. Understanding dental caries as a non-communicable disease. Br. Dent. J. 2021, 231, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Foxman, B.; McNeil, D.W.; Weinberg, S.M.; Marazita, M.L.; Shaffer, J.R. Genome-Wide Analysis of Dental Caries Variability Reveals Genotype-by-Environment Interactions. Genes 2023, 14, 736. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, J.R.; Wang, X.; McNeil, D.W.; Weyant, R.J.; Crout, R.; Marazita, M.L. Genetic susceptibility to dental caries differs between the sexes: A family-based study. Caries Res. 2015, 49, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shaffer, J.R.; Weyant, R.J.; Cuenco, K.T.; DeSensi, R.S.; Crout, R.; McNeil, D.W.; Marazita, M.L. Genes and their effects on dental caries may differ between primary and permanent dentitions. Caries Res. 2010, 44, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Olszowski, T.; Milona, M.; Janiszewska-Olszowska, J.; Safranow, K.; Uzar, I.; Walczak, A.; Sikora, M.; Chlubek, D.; Adler, G. FCN1 polymorphisms are not the markers of dental caries susceptibility in Polish children: A case-control study. Oral Dis. 2022, 28, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Olszowski, T.; Adler, G.; Janiszewska-Olszowska, J.; Safranow, K.; Kaczmarczyk, M. MBL2, MASP2, AMELX, and ENAM gene polymorphisms and dental caries in Polish children. Oral Dis. 2012, 18, 389–395. [Google Scholar] [CrossRef]
- Olszowski, T.; Milona, M.; Janiszewska-Olszowska, J.; Safranow, K.; Skonieczna-Żydecka, K.; Walczak, A.; Sikora, M.; Chlubek, D.; Madlani, A.; Adler, G. The Lack of Association between FCN2 Gene Promoter Region Polymorphisms and Dental Caries in Polish Children. Caries Res. 2017, 51, 79–84. [Google Scholar] [CrossRef]
- Farges, J.C.; Alliot-Licht, B.; Renard, E.; Ducret, M.; Gaudin, A.; Smith, A.J.; Cooper, P.R. Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediat. Inflamm. 2015, 2015, 230251. [Google Scholar] [CrossRef]
- Mukherjee, S.; Huda, S.; Sinha Babu, S.P. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand J. Immunol. 2019, 90, e12771. [Google Scholar] [CrossRef]
- Oliveira-Nascimento, L.; Massari, P.; Wetzler, L.M. The Role of TLR2 in Infection and Immunity. Front. Immunol. 2012, 3, 79. [Google Scholar] [CrossRef]
- Veerayutthwilai, O.; Byers, M.R.; Pham, T.T.; Darveau, R.P.; Dale, B.A. Differential regulation of immune responses by odontoblasts. Oral Microbiol. Immunol. 2007, 22, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Mutoh, N.; Tani-Ishii, N.; Tsukinoki, K.; Chieda, K.; Watanabe, K. Expression of toll-like receptor 2 and 4 in dental pulp. J. Endod. 2007, 33, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Malekafzali, B.; Sattari, M.; Keyvanfar, S. Correlation between salivary Toll like receptor-2 concentration and early childhood caries. Iran J. Immunol. 2014, 11, 210–216. [Google Scholar] [PubMed]
- Zhao, A.; Blackburn, C.; Chin, J.; Srinivasan, M. Soluble toll like receptor 2 (TLR-2) is increased in saliva of children with dental caries. BMC Oral Health 2014, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, H.; Fan, M.; Zhang, L.; Huang, S.; Li, Y. Activation of autophagy in pulpitis is associated with TLR4. Int. J. Clin. Exp. Pathol. 2017, 10, 4488–4496. [Google Scholar]
- Tellería-Orriols, J.J.; García-Salido, A.; Varillas, D.; Serrano-González, A.; Casado-Flores, J. TLR2-TLR4/CD14 polymorphisms and predisposition to severe invasive infections by Neisseria meningitidis and Streptococcus pneumoniae. Med. Intensiv. 2014, 38, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, M. Associations between genetic polymorphisms of TLRs and susceptibility to tuberculosis: A meta-analysis. Innate Immun. 2020, 26, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Mo, Y.Y.; Wang, H.L.; Tan, Y.; Wen, X.J.; Deng, M.J.; Yan, H.; Li, L. The relationship between toll like receptor 4 gene rs4986790 and rs4986791 polymorphisms and sepsis susceptibility: A meta-analysis. Sci. Rep. 2016, 6, 38947. [Google Scholar] [CrossRef] [PubMed]
- Gowin, E.; Świątek-Kościelna, B.; Kałużna, E.; Nowak, J.; Michalak, M.; Wysocki, J.; Januszkiewicz-Lewandowska, D. Analysis of TLR2, TLR4, and TLR9 single nucleotide polymorphisms in children with bacterial meningitis and their healthy family members. Int. J. Infect. Dis. 2017, 60, 23–28. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jeong, B.H. Strong Association of the rs4986790 Single Nucleotide Polymorphism (SNP) of the Toll-Like Receptor 4 (TLR4) Gene with Human Immunodeficiency Virus (HIV) Infection: A Meta-Analysis. Genes 2020, 12, 36. [Google Scholar] [CrossRef]
- Jabłońska, A.; Paradowska, E.; Studzińska, M.; Suski, P.; Nowakowska, D.; Wiśniewska-Ligier, M.; Woźniakowska-Gęsicka, T.; Wilczyński, J.; Leśnikowski, Z.J. Relationship between toll-like receptor 2 Arg677Trp and Arg753Gln and toll-like receptor 4 Asp299Gly polymorphisms and cytomegalovirus infection. Int. J. Infect. Dis. 2014, 25, 11–15. [Google Scholar] [CrossRef]
- Li, W.; Cao, X.; He, L.; Meng, H.; Yang, B.; Liao, Y. TLR4 polymorphisms may increase susceptibility to periodontitis in Pg-positive individuals. PeerJ 2019, 7, e7828. [Google Scholar] [CrossRef] [PubMed]
- Zacarias, J.M.V.; de Alencar, J.B.; Tsuneto, P.Y.; de Souza, V.H.; Silva, C.O.; Visentainer, J.E.L.; Sell, A.M. The Influence of TLR4, CD14, OPG, and RANKL Polymorphisms in Periodontitis: A Case-Control Study. Mediat. Inflamm. 2019, 2019, 4029217. [Google Scholar] [CrossRef] [PubMed]
- Yıldız Telatar, G.; Saydam, F.; Güzel, A.İ.; Telatar, B.C. Variants in taste genes on caries risk and caries activity status. Med. Mol. Morphol. 2020, 53, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Kinane, D.F.; Shiba, H.; Stathopoulou, P.G.; Zhao, H.; Lappin, D.F.; Singh, A.; Eskan, M.A.; Beckers, S.; Waigel, S.; Alpert, B.; et al. Gingival epithelial cells heterozygous for Toll-like receptor 4 polymorphisms Asp299Gly and Thr399ile are hypo-responsive to Porphyromonas gingivalis. Genes Immun. 2006, 7, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Nath, N.; Kumari, A.; Kumari, N.; Panda, A.K.; Mishra, R. Polymorphisms and haplotypes of TLR-4/9 associated with bacterial infection, gingival inflammation/recession and oral cancer. Pathol. Res. Pract. 2023, 241, 154284. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska, A.; Studzińska, M.; Szenborn, L.; Wiśniewska-Ligier, M.; Karlikowska-Skwarnik, M.; Gęsicki, T.; Paradowska, E. TLR4 896A/G and TLR9 1174G/A polymorphisms are associated with the risk of infectious mononucleosis. Sci. Rep. 2020, 10, 13154. [Google Scholar] [CrossRef]
- Raivisto, T.; Heikkinen, A.; Kovanen, L.; Ruokonen, H.; Kettunen, K.; Tervahartiala, T.; Haukka, J.; Sorsa, T. SNP Analysis of Caries and Initial Caries in Finnish Adolescents. Int. J. Dent. 2018, 2018, 1586762. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jia, P.; Cuenco, K.T.; Feingold, E.; Marazita, M.L.; Wang, L.; Zhao, Z. Multi-dimensional prioritization of dental caries candidate genes and its enriched dense network modules. PLoS ONE 2013, 8, e76666. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.; Tamayo, E.; Flórez, S.; Telleria, J.J.; Bustamante, E.; López, J.; San Román, J.A.; Alvarez, F.J. Toll-like receptor 2 R753Q polymorphisms are associated with an increased risk of infective endocarditis. Rev. Esp. Cardiol. 2011, 64, 1056–1059. [Google Scholar] [CrossRef]
- Rahman, S.; Shering, M.; Ogden, N.H.; Lindsay, R.; Badawi, A. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease. J. Inflamm. Res. 2016, 9, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, E.; Behzadi, P. The role of toll-like receptors (TLRs) in urinary tract infections (UTIs). Cent. Eur. J. Urol. 2016, 69, 404–410. [Google Scholar] [CrossRef]
- Hong, S.W.; Baik, J.E.; Kang, S.S.; Yun, C.H.; Seo, D.G.; Han, S.H. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Mol. Immunol. 2014, 57, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Lappin, D.F.; Sherrabeh, S.; Erridge, C. Stimulants of Toll-like receptors 2 and 4 are elevated in saliva of periodontitis patients compared with healthy subjects. J. Clin. Periodontol. 2011, 38, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, Y.; Zhan, X.; Cui, L.; Xu, S.; Ma, D.; Yue, J.; Wu, B.; Gao, J. TLR4 activation by lipopolysaccharide and Streptococcus mutans induces differential regulation of proliferation and migration in human dental pulp stem cells. J. Endod. 2014, 40, 1375–1381. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Wen, J.; Xu, S. Locations of TLR4 in healthy dental pulp tissue and dental pulp tissue affected by deep caries. J. Prev. Treat. Stomatol. Dis. 2017, 25, 153–158. [Google Scholar] [CrossRef]
- Jafari, R.; Karamzadeh, R.; Pesaran Hajabbas, F.; Sayyadizadeh, F.; Chekini, Z.; Aghajanpour, S.; Shakeri, L.; Nazarimoghaddam, K.; Aflatoonian, R. Human closed and open apex premolar teeth express different toll-like receptor. Mol. Genet. Genom. Med. 2020, 8, e1268. [Google Scholar] [CrossRef]
- Yumoto, H.; Hirao, K.; Hosokawa, Y.; Kuramoto, H.; Takegawa, D.; Nakanishi, T.; Matsuo, T. The roles of odontoblasts in dental pulp innate immunity. Jpn. Dent. Sci. Rev. 2018, 54, 105–117. [Google Scholar] [CrossRef]
- Murwani, S. Immunologic Aspect of Mice (Mus musculus) Dental Caries Induced by Streptococcus mutans. Am. J. Anim. Vet. Sci. 2017, 12, 53–57. [Google Scholar] [CrossRef]
- Alotaibi, R.N.; Howe, B.J.; Chernus, J.M.; Mukhopadhyay, N.; Sanchez, C.; Deleyiannis, F.W.B.; Neiswanger, K.; Padilla, C.; Poletta, F.A.; Orioli, I.M.; et al. Genome-Wide Association Study (GWAS) of dental caries in diverse populations. BMC Oral Health 2021, 21, 377. [Google Scholar] [CrossRef]
- Shungin, D.; Haworth, S.; Divaris, K.; Agler, C.S.; Kamatani, Y.; Keun Lee, M.; Grinde, K.; Hindy, G.; Alaraudanjoki, V.; Pesonen, P.; et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. Nat. Commun. 2019, 10, 2773. [Google Scholar] [CrossRef] [PubMed]
- Noreen, M.; Arshad, M. Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility. Immunol Res. 2015, 62, 234–252. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A. Comparison of different methods for the diagnosis of fissure caries without cavitation. Caries Res. 1993, 27, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.I. Visual and visuo-tactile detection of dental caries. J. Dent. Res. 2004, 83, C56–C66. [Google Scholar] [CrossRef]
- Vieira, A.R.; Marazita, M.L.; Goldstein-McHenry, T. Genome-wide scan finds suggestive caries loci. J. Dent. Res. 2008, 87, 435–439. [Google Scholar] [CrossRef]
SNP (Reference Sequence), Genotype/Allele | Children with Moderate/High Caries Experience (DMFT > 5), N = 82 n (%) | Children with Low/Very Low Caries Experience (DMFT ≤ 5), N = 179 n (%) | p Value a | OR (95%CI) b | Chi2 |
---|---|---|---|---|---|
TLR2 2258G>A (rs5743708) | |||||
GG | 78 (95.12) | 165 (92.18) | 0.38 | – | 0.76 |
GA | 4 (4.88) | 14 (7.82) | |||
AA | 0 (0) | 0 (0) | |||
GG + GA | 82 (100) | 179 (100) | – | – | |
AA | 0 | 0 | |||
GG | 78 (95.12) | 165 (92.18) | 0.38 | 0.60 (0.19–1.89) | 0.76 |
AA + GA | 4 (4.88) | 14 (7.82) | |||
G | 160 (97.56) | 344 (96.09) | 0.39 | 0.61 (0.199–1.895) | 0.73 |
A | 4 (2.44) | 14 (3.91) |
SNP (Reference Sequence), Genotype/Allele | Children with Moderate/High Caries Experience (DMFT > 5), N = 82 n (%) | Children with Low/Very Low Caries Experience (DMFT ≤ 5), N = 179 n (%) | p Value a | OR (95%CI) b | Chi2 |
---|---|---|---|---|---|
TLR4 896A>G (rs4986790) | |||||
AA | 73 (89.02) | 159 (88.83) | 0.96 | – | 0.002 |
AG | 9 (10.98) | 20 (11.17) | |||
GG | 0 | 0 | |||
AA + AG | 82 (100) | 179 (100) | – | – | |
GG | 0 | 0 | |||
AA | 73 (89.02) | 159 (88.83) | 0.96 | 0.98 (0.43–2.26) | 0.002 |
GG + AG | 9 (10.98) | 20 (11.17) | |||
A | 155 (94.5) | 338 (94.4) | 0.96 | 0.98 (0.44–2.20) | 0.002 |
G | 9 (5.5) | 20 (5.6) | |||
TLR4 1196C>T (rs4986791) | |||||
CC | 72 (87.8) | 160 (89.39) | 0.706 | – | 0.14 |
CT | 10 (12.2) | 19 (10.61) | |||
TT | 0 | 0 | |||
CC + CT | 82 (100) | 179 (100) | – | – | |
TT | 0 | 0 | |||
CC | 72 (87.8) | 160 (89.39) | 0.706 | 1.169 (0.5179–2.6414) | 0.14 |
TT + CT | 10 (12.2) | 19 (10.61) | |||
C | 154 (93.9) | 339 (94.69) | 0.714 | 1.159 (0.526–2.55) | 0.13 |
T | 10 (6.10) | 19 (5.31) |
TLR4 Haplotypes +896A>G/+1196 C>T | Haplotype frequency (%) | p Value a | Chi2 | |
---|---|---|---|---|
Children with Moderate/High Caries Experience (DMFT > 5) N = 82 | Children with Low/Very Low Caries Experience (DMFT ≤ 5) N = 179 | |||
AC | 93.9% | 94.4% | 0.82 | 0.054 |
GT | 5.5% | 5.3% | 0.93 | 0.007 |
GC | 0% | 0.3% | 0.50 | 0.458 |
AT | 0.6% | 0% | 0.14 | 2.183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milona, M.; Olszowski, T.; Uzar, I.; Safranow, K.; Janiszewska-Olszowska, J.; Szmidt-Kądys, M.; Rola, H.; Sikora, M.; Chlubek, D.; Adler, G. TLR2 and TLR4 Polymorphisms Are Not Associated with Dental Caries in Polish Children. Int. J. Mol. Sci. 2024, 25, 6985. https://doi.org/10.3390/ijms25136985
Milona M, Olszowski T, Uzar I, Safranow K, Janiszewska-Olszowska J, Szmidt-Kądys M, Rola H, Sikora M, Chlubek D, Adler G. TLR2 and TLR4 Polymorphisms Are Not Associated with Dental Caries in Polish Children. International Journal of Molecular Sciences. 2024; 25(13):6985. https://doi.org/10.3390/ijms25136985
Chicago/Turabian StyleMilona, Marta, Tomasz Olszowski, Izabela Uzar, Krzysztof Safranow, Joanna Janiszewska-Olszowska, Monika Szmidt-Kądys, Hubert Rola, Maciej Sikora, Dariusz Chlubek, and Grażyna Adler. 2024. "TLR2 and TLR4 Polymorphisms Are Not Associated with Dental Caries in Polish Children" International Journal of Molecular Sciences 25, no. 13: 6985. https://doi.org/10.3390/ijms25136985
APA StyleMilona, M., Olszowski, T., Uzar, I., Safranow, K., Janiszewska-Olszowska, J., Szmidt-Kądys, M., Rola, H., Sikora, M., Chlubek, D., & Adler, G. (2024). TLR2 and TLR4 Polymorphisms Are Not Associated with Dental Caries in Polish Children. International Journal of Molecular Sciences, 25(13), 6985. https://doi.org/10.3390/ijms25136985