α-Fe2O3/, Co3O4/, and CoFe2O4/MWCNTs/Ionic Liquid Nanocomposites as High-Performance Electrocatalysts for the Electrocatalytic Hydrogen Evolution Reaction in a Neutral Medium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Morphological and Chemical Composition Study
2.3. Electrochemical HER Activity and Stability of the Different Studied Transition Metal Oxide Nanocomposite Electrocatalysts
2.4. Evolved Hydrogen Quantification through Gas Chromatography
3. Materials and Methods
3.1. Reagents and Equipment
3.2. Ionic Liquid Synthesis
3.3. Cobalt Oxide Synthesis
3.4. Iron Oxide Synthesis
3.5. Cobalt Ferrite Synthesis
3.6. Electrode Preparation/Modification and Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tarhan, C.; Çil, M.A. A Study on Hydrogen, the Clean Energy of the Future: Hydrogen Storage Methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen from Solar Energy, a Clean Energy Carrier from a Sustainable Source of Energy. Int. J. Energy Res. 2020, 44, 4110–4131. [Google Scholar] [CrossRef]
- Rasul, M.G.; Hazrat, M.A.; Sattar, M.A.; Jahirul, M.I.; Shearer, M.J. The Future of Hydrogen: Challenges on Production, Storage and Applications. Energy Convers. Manag. 2022, 272, 116326. [Google Scholar] [CrossRef]
- Dinh, C.-T.; Jain, A.; de Arquer, F.P.G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X.; Cai, J.; Gregory, B.Z.; Voznyy, O.; et al. Multi-Site Electrocatalysts for Hydrogen Evolution in Neutral Media by Destabilization of Water Molecules. Nat. Energy 2019, 4, 107–114. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Water Splitting: From Electrode to Green Energy System. Nano-Micro Lett. 2020, 12, 131. [Google Scholar] [CrossRef]
- Marini, S.; Salvi, P.; Nelli, P.; Pesenti, R.; Villa, M.; Berrettoni, M.; Zangari, G.; Kiros, Y. Advanced Alkaline Water Electrolysis. Electrochim. Acta 2012, 82, 384–391. [Google Scholar] [CrossRef]
- Švancara, I.; Vytřas, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis 2009, 21, 7–28. [Google Scholar] [CrossRef]
- Báez, C.; Navarro, F.; Fuenzalida, F.; Aguirre, M.J.; Arévalo, M.C.; Afonso, M.; García, C.; Ramírez, G.; Palenzuela, J.A. Electrical and Electrochemical Behavior of Carbon Paste Electrodes Modified with Ionic Liquids Based in N-Octylpyridinium Bis(Trifluoromethylsulfonyl)Imide. A Theoretical and Experimental Study. Molecules 2019, 24, 3382. [Google Scholar] [CrossRef]
- Wu, Z.; Wan, T.; Kong, X.; Shen, Q.; Li, K.; Wu, H. Electrocatalytic Hydrogen Evolution at Carbon Paste Electrodes Doped with a Manganese(II) Imidazoledicarboxylate Complex. Z. Für Naturforschung B 2023, 78, 469–476. [Google Scholar] [CrossRef]
- Maleki, N.; Safavi, A.; Tajabadi, F. High-Performance Carbon Composite Electrode Based on an Ionic Liquid as a Binder. Anal. Chem. 2006, 78, 3820–3826. [Google Scholar] [CrossRef]
- Chen, K.; Xu, B.; Shen, L.; Shen, D.; Li, M.; Guo, L.-H. Functions and Performance of Ionic Liquids in Enhancing Electrocatalytic Hydrogen Evolution Reactions: A Comprehensive Review. RSC Adv. 2022, 12, 19452–19469. [Google Scholar] [CrossRef] [PubMed]
- Maleki, N.; Safavi, A.; Tajabadi, F. Investigation of the Role of Ionic Liquids in Imparting Electrocatalytic Behavior to Carbon Paste Electrode. Electroanalysis 2007, 19, 2247–2250. [Google Scholar] [CrossRef]
- Gidi, L.; Arce, R.; Ibarra, J.; Isaacs, M.; Aguirre, M.J.; Ramírez, G. Hydrogen Evolution Reaction Highly Electrocatalyzed by MWCNT/N-Octylpyridinum Hexafluorophosphate Metal-Free System. Electrochim. Acta 2021, 372, 137859. [Google Scholar] [CrossRef]
- Díaz-Coello, S.; Afonso, M.M.; Palenzuela, J.A.; Pastor, E.; García, G. Composite Materials from Transition Metal Carbides and Ionic Liquids as Electrocatalyst for Hydrogen Evolution in Alkaline Media. J. Electroanal. Chem. 2021, 898, 115620. [Google Scholar] [CrossRef]
- Li, T.; Cui, Z.; Yuan, W.; Li, C.M. Ionic Liquid Functionalized Carbon Nanotubes: Metal-Free Electrocatalyst for Hydrogen Evolution Reaction. RSC Adv. 2016, 6, 12792–12796. [Google Scholar] [CrossRef]
- Astruc, D. Introduction: Nanoparticles in Catalysis. Chem. Rev. 2020, 120, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Ott, L.S.; Finke, R.G. Transition-Metal Nanocluster Stabilization for Catalysis: A Critical Review of Ranking Methods and Putative Stabilizers. Coord. Chem. Rev. 2007, 251, 1075–1100. [Google Scholar] [CrossRef]
- Mohammed-Ibrahim, J.; Sun, X. Recent Progress on Earth Abundant Electrocatalysts for Hydrogen Evolution Reaction (HER) in Alkaline Medium to Achieve Efficient Water Splitting—A Review. J. Energy Chem. 2019, 34, 111–160. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-Abundant Transition Metal and Metal Oxide Nanomaterials: Synthesis and Electrochemical Applications. Prog. Mater. Sci. 2019, 106, 100574. [Google Scholar] [CrossRef]
- Alves, I.C.B.; Santos, J.R.N.; Viégas, D.S.S.; Marques, E.P.; Lacerda, C.A.; Zhang, L.; Zhanga, J.; Marques, A.L.B.; Alves, I.C.B.; Santos, J.R.N.; et al. Nanoparticles of Fe2O3 and Co3O4 as Efficient Electrocatalysts for Oxygen Reduction Reaction in Acid Medium. J. Braz. Chem. Soc. 2019, 30, 2681–2691. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, L.; Sun, Y.; Chen, Y.; Chen, H.; Han, S.; Lin, H. Fe2O3 Nanocatalysts on N-Doped Carbon Nanomaterial for Highly Efficient Electrochemical Hydrogen Evolution in Alkaline. J. Power Sources 2019, 426, 74–83. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, Q.; Zhong, Y.; Tahini, H.A.; Shao, Z.; Wang, H. Metal Oxide-Based Materials as an Emerging Family of Hydrogen Evolution Electrocatalysts. Energy Environ. Sci. 2020, 13, 3361–3392. [Google Scholar] [CrossRef]
- Nivetha, R.; Chella, S.; Kollu, P.; Jeong, S.K.; Bhatnagar, A.; Andrews, N.G. Cobalt and Nickel Ferrites Based Graphene Nanocomposites for Electrochemical Hydrogen Evolution. J. Magn. Magn. Mater. 2018, 448, 165–171. [Google Scholar] [CrossRef]
- Krishnan, R.R.; Prasannakumar, A.T.; Chandran, S.R.; Prema, K.H. A Novel Approach for the Fabrication of Cobalt Ferrite and Nickel Ferrite Nanoparticles—Magnetic and Electrocatalytic Studies. J Mater Sci Mater Electron 2022, 33, 17100–17112. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.Z.; Zou, C.; Zhang, F.; Ming, D.; Guan, D.; Ma, L. Theoretical Design of Core–Shell 3d-Metal Nanoclusters for Efficient Hydrogen-Evolving Reaction. Energy Fuels 2023, 37, 16781–16789. [Google Scholar] [CrossRef]
- Yuan, S.; Duan, X.; Liu, J.; Ye, Y.; Lv, F.; Liu, T.; Wang, Q.; Zhang, X. Recent Progress on Transition Metal Oxides as Advanced Materials for Energy Conversion and Storage. Energy Storage Mater. 2021, 42, 317–369. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, L.; Fang, J.; Li, X.; Dai, K. Preparation and Modification of Carbon Nanotubes. Mater. Lett. 2005, 59, 4044–4047. [Google Scholar] [CrossRef]
- de la Peña O’Shea, V.A.; Álvarez-Galván, M.C.; Campos-Martin, J.M.; Menéndez, N.N.; Tornero, J.D.; Fierro, J.L.G. Surface and Structural Features of Co-Fe Oxide Nanoparticles Deposited on a Silica Substrate. Eur. J. Inorg. Chem. 2006, 2006, 5057–5068. [Google Scholar] [CrossRef]
- Raval, A.; Panchal, N.; Jotania, R. Structural Properties and Microstructure of Cobalt Ferrite Particles Synthesized by a Sol-Gel Auto Combustion Method. Int. J. Mod. Phys. Conf. Ser. 2013, 22, 558–563. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-Ray Diffraction; Addison-Wesley Publishing Company: Boston, MA, USA, 1978. [Google Scholar]
- Henríquez, R.; Vásquez, C.; Muñoz, E.; Grez, P.; Martín, F.; Ramos-Barrado, J.R.; Dalchiele, E.A. Phase-Pure Iron Pyrite (FeS2) Micro- and Nano-Sized Crystals Synthesized by Simple One-Step Microwave-Assisted Hydrothermal Method. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 118, 113881. [Google Scholar]
- Santangelo, S.; Messina, G.; Faggio, G.; Lanza, M.; Milone, C. Evaluation of Crystalline Perfection Degree of Multi-Walled Carbon Nanotubes: Correlations between Thermal Kinetic Analysis and Micro-Raman Spectroscopy. J. Raman Spectrosc. 2011, 42, 593–602. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Bannov, A.G.; Popov, M.V.; Yun, J.-W.; Nguyen, A.D.; Kim, Y.S. High-Temperature-Treated Multiwall Carbon Nanotubes for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2018, 43, 6526–6531. [Google Scholar] [CrossRef]
- Wong, I.A.J. Study on the Residual Ion Content From the Employment of Precipitation Method for Catalyst Synthesis. Ph.D. Thesis, UTAR, Kampar, Malaysia, 2019. [Google Scholar]
- Prosper Medang, R.; Fomekong, R.L.; Akongnwi Nforna, E.; Kamta, H.M.T.; Ngnintedem Yonti, C.; Kenfack Tsobnang, P.; Ngolui Lambi, J.; Bitondo, D. Green Synthesis of Cobalt Ferrite from Rotten Passion Fruit Juice and Application as an Electrocatalyst for the Hydrogen Evolution Reaction. Energy Adv. 2024, 3, 1367–1374. [Google Scholar] [CrossRef]
- Ďurovič, M.; Hnát, J.; Bouzek, K. Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline and Neutral Media. A Comparative Review. J. Power Sources 2021, 493, 229708. [Google Scholar] [CrossRef]
- Azizi, O.; Jafarian, M.; Gobal, F.; Heli, H.; Mahjani, M.G. The Investigation of the Kinetics and Mechanism of Hydrogen Evolution Reaction on Tin. Int. J. Hydrogen Energy 2007, 32, 1755–1761. [Google Scholar] [CrossRef]
- Anantharaj, S.; Aravindan, V. Developments and Perspectives in 3d Transition-Metal-Based Electrocatalysts for Neutral and Near-Neutral Water Electrolysis. Adv. Energy Mater. 2020, 10, 1902666. [Google Scholar] [CrossRef]
- Zheng, W.; Suk Lee, L.Y.; Wong, K.-Y. Improving the Performance Stability of Direct Seawater Electrolysis: From Catalyst Design to Electrode Engineering. Nanoscale 2021, 13, 15177–15187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Jia, J.; Lu, J.; Yang, L.; Hou, D.; Li, G.; Chen, S. Recent Developments of Carbon-Based Electrocatalysts for Hydrogen Evolution Reaction. Nano Energy 2016, 28, 29–43. [Google Scholar] [CrossRef]
- Benazzi, E.; Begato, F.; Niorettini, A.; Destro, L.; Wurst, K.; Licini, G.; Agnoli, S.; Zonta, C.; Natali, M. Electrocatalytic Hydrogen Evolution Using Hybrid Electrodes Based on Single-Walled Carbon Nanohorns and Cobalt(II) Polypyridine Complexes. J. Mater. Chem. A 2021, 9, 20032–20039. [Google Scholar] [CrossRef]
- Li, Q.; Xing, Z.; Asiri, A.M.; Jiang, P.; Sun, X. Cobalt Phosphide Nanoparticles Film Growth on Carbon Cloth: A High-Performance Cathode for Electrochemical Hydrogen Evolution. Int. J. Hydrogen Energy 2014, 39, 16806–16811. [Google Scholar] [CrossRef]
- Du, J.; Wang, J.; Ji, L.; Xu, X.; Chen, Z. A Highly Active and Robust Copper-Based Electrocatalyst toward Hydrogen Evolution Reaction with Low Overpotential in Neutral Solution. ACS Appl. Mater. Interfaces 2016, 8, 30205–30211. [Google Scholar] [CrossRef]
- Nayak, A.K.; Verma, M.; Sohn, Y.; Deshpande, P.A.; Pradhan, D. Highly Active Tungsten Oxide Nanoplate Electrocatalysts for the Hydrogen Evolution Reaction in Acidic and Near Neutral Electrolytes. ACS Omega 2017, 2, 7039–7047. [Google Scholar] [CrossRef]
- Jiang, B.; Tang, Z.; Liao, F.; Lin, H.; Lu, S.; Li, Y.; Shao, M. Powerful Synergy: Efficient Pt–Au–Si Nanocomposites as State-of-the-Art Catalysts for Electrochemical Hydrogen Evolution. J. Mater. Chem. A 2017, 5, 21903–21908. [Google Scholar] [CrossRef]
- Domańska, U.; Skiba, K.; Zawadzki, M.; Paduszyński, K.; Królikowski, M. Synthesis, Physical, and Thermodynamic Properties of 1-Alkyl-Cyanopyridinium Bis{(Trifluoromethyl)Sulfonyl}imide Ionic Liquids. J. Chem. Thermodyn. 2013, 56, 153–161. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Chatterjee, K. A Facile and General Route to Size-Controlled Synthesis of Metal (Ni, Co and Mn) Oxide Nanoparticle and Their Optical Behavior. Nanosci. Methods 2012, 1, 213–222. [Google Scholar] [CrossRef]
- Farahmandjou, M.; Soflaee, F. Synthesis and Characterization of α-Fe2O3 Nanoparticles by Simple Co-Precipitation Method. Phys. Chem. Res. 2015, 3, 191–196. [Google Scholar]
- Maaz, K.; Mumtaz, A.; Hasanain, S.K.; Ceylan, A. Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route. J. Magn. Magn. Mater. 2007, 308, 289–295. [Google Scholar] [CrossRef]
H2, H6 | H3, H5 | H4 | 2× H1′ | 2× H2′ | 2× H3′–H7′ | 3× H8′ | |
---|---|---|---|---|---|---|---|
d (ppm) | 8.69 | 8.00 | 8.46 | 4.55 | 1.99 | 1.27 | 0.83 |
Material | Crystallite Size (nm) | Crystal Lattice Parameter (Å) |
---|---|---|
Co3O4 | 37 nm | 8.059 Å |
α−Fe2O3 | 27 nm | 5.008; 13.63 Å |
CoFe2O4 | 34 nm | 7.947 Å |
Material | D | G | 2G | ID/IG | I2D/IG |
---|---|---|---|---|---|
MWCNTs | 12.89 | 15.71 | 11.51 | 0.82 | 0.73 |
MWCNTs/IL | 10.62 | 21.01 | 9.44 | 0.505 | 0.449 |
CoFe2O4/MWCNTs/IL | 9.091 | 18.60 | 18.24 | 0.48 | 0.98 |
Nanocomposite Electrocatalyst | Tafel Slope (mV dec−1) |
---|---|
Co3O4/MWCNTs/IL | 173 |
α–Fe2O3/MWCNTs/IL | 214 |
CoFe2O4/MWCNTs/IL | 172 |
Nanocomposite Electrocatalyst | Rs (Ω) | Rct (Ω) | CPE-P |
---|---|---|---|
Co3O4/MWCNTs/IL | 942.2 | 2715 | 0.72 |
α–Fe2O3/MWCNTs/IL | 339.0 | 1933 | 0.73 |
CoFe2O4 /MWCNTs/IL | 334.0 | 1211 | 0.56 |
Electrocatalytic Material | Hydrogen Production (μmol cm2 h−1) | Efficiency % | Reference |
---|---|---|---|
MWCNTs/IL | 13.82 μmol cm2 h−1 | 58% | [13] |
CoFe2O4/MWCNTs/IL | 132 μmol cm2 h−1 | 68.8% | This work |
SWCNHs/Co (II) complex | 1.78 μmol cm2 h−1 | 100% | [41] |
Carbon cloth/CoS | 20 μmol cm2 h−1 | 100% | [42] |
Cu(II) oxime complex | 105 μmol cm2 h−1 | 100% | [43] |
WO3 | 55 μmol cm2 h−1 | ----- | [44] |
Pt/C (acid media) | 2.32 mmol cm2 h−1 | 100% | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarra, J.; Aguirre, M.J.; del Río, R.; Henriquez, R.; Faccio, R.; Dalchiele, E.A.; Arce, R.; Ramírez, G. α-Fe2O3/, Co3O4/, and CoFe2O4/MWCNTs/Ionic Liquid Nanocomposites as High-Performance Electrocatalysts for the Electrocatalytic Hydrogen Evolution Reaction in a Neutral Medium. Int. J. Mol. Sci. 2024, 25, 7043. https://doi.org/10.3390/ijms25137043
Ibarra J, Aguirre MJ, del Río R, Henriquez R, Faccio R, Dalchiele EA, Arce R, Ramírez G. α-Fe2O3/, Co3O4/, and CoFe2O4/MWCNTs/Ionic Liquid Nanocomposites as High-Performance Electrocatalysts for the Electrocatalytic Hydrogen Evolution Reaction in a Neutral Medium. International Journal of Molecular Sciences. 2024; 25(13):7043. https://doi.org/10.3390/ijms25137043
Chicago/Turabian StyleIbarra, José, María Jesus Aguirre, Rodrigo del Río, Rodrigo Henriquez, Ricardo Faccio, Enrique A. Dalchiele, Roxana Arce, and Galo Ramírez. 2024. "α-Fe2O3/, Co3O4/, and CoFe2O4/MWCNTs/Ionic Liquid Nanocomposites as High-Performance Electrocatalysts for the Electrocatalytic Hydrogen Evolution Reaction in a Neutral Medium" International Journal of Molecular Sciences 25, no. 13: 7043. https://doi.org/10.3390/ijms25137043
APA StyleIbarra, J., Aguirre, M. J., del Río, R., Henriquez, R., Faccio, R., Dalchiele, E. A., Arce, R., & Ramírez, G. (2024). α-Fe2O3/, Co3O4/, and CoFe2O4/MWCNTs/Ionic Liquid Nanocomposites as High-Performance Electrocatalysts for the Electrocatalytic Hydrogen Evolution Reaction in a Neutral Medium. International Journal of Molecular Sciences, 25(13), 7043. https://doi.org/10.3390/ijms25137043